ServicenavigationHauptnavigationTrailKarteikarten


Research unit
SFOE
Project number
SI/501737
Project title
ReVerDi Plattform zur Reduktion des Verbrauchs und CO2-Emissionen dieselmotorischer Antriebe mittels optimalem Betrieb mit alternativen Kraftstoffen

Texts for this project

 GermanFrenchItalianEnglish
Short description
Anzeigen
-
-
-
Publications / Results
Anzeigen
-
-
Anzeigen
Final report
-
-
-
Anzeigen

Inserted texts


CategoryText
Short description
(German)
Das Ziel des Projektes ist die Erarbeitung einer Plattform zur Optimierung der Antriebseinheit (Motor mit Abgasnachbehandlung) von Fahrzeugen aller Grössen. Diese Plattform enthält Modelle für Verbrennung und Emissionen (NOx, Russ), welche in verschiedenen Genauigkeiten resp. Rechengeschwindigkeit mit demselben Modellkonzept verfügbar sind. Dabei verfügen die Modelle mit geringerer Vorhersagbarkeit über zusätzliche Modellparameter, welche auch mithilfe der detaillierteren Modelle kalibriert werden können (anstatt mit zusätzlichen Messungen). Zudem soll beispielhaft deren Einbindung in ein kommerzielles Arbeitsprozessrechenpaket (GT-POWER, welches das im Markt dominante Softwarepaket in der Motorenindustrie ist) und deren Überprüfung an einem Versuchsmotor erfolgen. Die Modelle sollen einerseits die Rechenzeit bei vielen durchzuführender Berechnungen nicht verlängern, andererseits muss die Vorhersagequalität hoch sein.
Publications / Results
(German)
Wer Diesel oder Benzin tankt, weiss mitunter gar nicht, dass darin Biotreibstoff enthalten ist. Denn geringe Beimischungen müssen nicht ausgewiesen werden. Biogene Treibstoffe machen in der Schweiz fast 7%(Diesel) bzw. annähernd 3%(Benzin) des verkauften Treibstoffs aus. Sie könnten in den nächsten Jahren einen wachsenden Beitrag zur Reduktion der Treibhausgas-Emissionen im Mobilitätssektor leisten. Dies dank ihrer biogenen Herkunft, aber auch dank Effizienzsteigerungen in angepassten Motoren. Das zeigt ein Team aus Forschenden der Eidgenössischen Technischen Hochschule Zürich (ETHZ) und der Eidgenössischen Materialprüfungs- und Forschungsanstalt (Empa) in einer neuen Studie.
Related documents
Publications / Results
(English)
People who fuel up with diesel or gasoline sometimes don't even know that it contains biofuel. This is because small portions of biofuel do not have to be declared. Biogenic fuels account for almost 7% (diesel) and nearly 3% (gasoline) of the fuel sold in Switzerland. In the coming years, they could make a growing contribution to reducing greenhouse gas emissions in the mobility sector. This is thanks to their biogenic origin, but also to efficiency improvements in adapted engines. This is shown in a new study by a team of researchers from the Swiss Federal Institute of Technology Zurich (ETHZ) and the Swiss Federal Laboratories for Materials Testing and Research (Empa).
Related documents
Final report
(English)

The reduction of CO2 emissions in transport and power generation is a key challenge of the current generation. One particular opportunity of CO2 reduction is the introduction of fuels with a smaller CO2 footprint. The combustion characteristics of such fuels are different and require engine settings modification to profit most from these characteristics. The aim of this project is to develop a simulation platform for optimizing the overall engine unit (engine with exhaust gas aftertreatment) of vehicles of all sizes for fuels with different characteristics. Therefore, different diesel like fuels have been tested in a single cylinder research engine to determine their detailed behavior with respect to combustion and emission characteristics, including required particulate filter regeneration energy. The combustion and emission formation process has been modelled and included into a GT Power model of a 6-cylinder heavy-duty engine. The model includes an SCR (selective catalytic reduction) for NOx reduction and a DPF (particulate filter), which requires energy for regeneration depending on the soot oxidation activity of each fuel which was determined through detailed analysis within this project. This model platform enables the comparison of engine efficiency when operating the engine with different fuels, including e.g. benefits from a fuel with lower tendency to form soot. The fuels tested include Hydrotreated Vegetable Oil (HVO), Gas-to-Liquid fuel (GTL) and polyoximethylene dimethylether (OME3-6), which were tested neat and as blends with Diesel or among each other.

The main findings of this project are:

Different liquid diesel-like fuels which can be obtained by renewable sources show different combustion and emission characteristics.

  • The fuels have different characteristics when compared to Diesel. For the paraffinic fuels, the ignitability is higher due to the high cetane number. In addition, soot formation is reduced due to absence of aromatic content, which leads to reduced energy consumption for the particulate filter regeneration. The oxygenated fuels inhibit soot formation even more effectively, and the air fuel mixing is faster, resulting in faster diffusion combustion.

    The different fuel characteristics result in a potential to optimize diesel internal combustion engines including aftertreatment systems (Diesel particulate filter and NOx SCR catalyst) for operation with fuels of different composition. For the fuels investigated, the following maximum and minimum well-to-wheel CO2 reduction potential was found (well-to-tank in brackets):

  • Diesel with 20% HVO:                                       19.2% / 17.7% (18%)
  • HVO:                                                               90.2% / 89.6% (90%)
  • Diesel with 7% OME                                         6.1% / 3.8% (4%)
  • 77% HVO with 18% OME and 5% stabilizer:      88.2% / 87.9% (88%)

The approx. 90% CO2 reduction found is dominated by the well-to-tank characteristics of the fuel itself and only small contribution originates from changes in engine operation. For fuels mixtures with small proportions of alternative fuels, the contribution to well-to-wheel improvements from the optimized engine operation is up to 35% of the total improvement observed. The optimization performed also compensates or even overcompensates for the smaller volumetric heating value of the alternative fuels, which otherwise would result in an engine efficiency decrease.

The final results show that engines with a DPF (i.e. used in applications where soot emissions are tightly regulated) can benefit from fuels which are less prone to form soot. After the optimization, in the case of HVO at low load, a higher EGR (exhaust gas recirculation) rate can be applied in comparison to Diesel. The higher EGR rate does not increase DPF regeneration events and results in lower engine-out (before SCR) NOx emissions without a significant penalty in fuel consumption. The reduction in raw NOx reduces urea consumption (more than 50% in this case). This behaviour is even more apparent when the size of the SCR is reduced. As a general rule, it was determined that low sooting fuels are most beneficial when employing small particulate filters (where regeneration frequency is high), an efficient EGR path and a small NOx aftertreatement device.The latter has been demonstrated by an SCR size reduction of 50% which was investigated during the project.

The engine optimization for specific fuel compositions can be conducted at the engine design phase using engine modelling tools which have been developed within this project. Swiss and international engine manufacturers can directly benefit from the project’s findings.
Related documents