ServicenavigationHauptnavigationTrailKarteikarten


Forschungsstelle
COST
Projektnummer
C97.0071
Projekttitel
Etude dans les fluides à composants multiples et des structures dans les fluides non newtoniens

Texte zu diesem Projekt

 DeutschFranzösischItalienischEnglisch
Schlüsselwörter
-
-
-
Anzeigen
Forschungsprogramme
-
-
-
Anzeigen
Kurzbeschreibung
-
-
-
Anzeigen
Weitere Hinweise und Angaben
-
-
-
Anzeigen
Partner und Internationale Organisationen
-
-
-
Anzeigen
Abstract
-
-
-
Anzeigen
Datenbankreferenzen
-
-
-
Anzeigen

Erfasste Texte


KategorieText
Schlüsselwörter
(Englisch)
Turbulence; Numerical Simulation; Non-Newtonian Fluids; FENE-P model; Dissipation Scales; Drag Reduction.
Forschungsprogramme
(Englisch)
COST-Action P3 - Simulation of physical phenomena in technological application
Kurzbeschreibung
(Englisch)
See abstract
Weitere Hinweise und Angaben
(Englisch)
Full name of research-institution/enterprise: EPF Lausanne Département de génie mécanique Institut de machines hydrauliques et de mécanique des fluides IMHEF-LMF
Partner und Internationale Organisationen
(Englisch)
A, B, CH, CZ, D, DK, E, F, FIN, GR, H, IRL, NL, PL, Sl, UK
Abstract
(Englisch)
Non-Newtonian fluid behaviour is simulated by introducing a composite bead-spring model of mesomolecules in a Newtonian solvent. A FENE-P type of model is used. A first study looks at the normal stresses generated by these molecules when they float passively in simulated Newtonian turbulence. The method used for generating the turbulent fields was fully spectral thus having high small-scale accuracy. When the particles are released near the wall, the largest FENE-P stress generated is related to the ratio of the molecular (FENE) time scales to those of the local dissipation range of the flow. The FENE stress increases as the two scales become comparable. In the second part of the study, a plane channel direct simulation was carried out using a second order finite difference code. Here the FENE-P molecules are active in that their stress is used in the calculation of the simulated flow field. The effects of rather high numerical dissipation of the scheme become evident. The results indicate that in order to recover the drag-reducing properties of the dilute polymer chains in Newtonian turbulent flows, it is necessary to resolve the dissipation range scales near the walls.
Datenbankreferenzen
(Englisch)
Swiss Database: COST-DB of the State Secretariat for Education and Research Hallwylstrasse 4 CH-3003 Berne, Switzerland Tel. +41 31 322 74 82 Swiss Project-Number: C97.0071