En-tête de navigationNavigation principaleSuiviFiche


Unité de recherche
COST
Numéro de projet
C93.0001
Titre du projet
Experimental and theoretical investigations of nonlinear effects in passive and active fibers with special emphasis on their relevance for optical communication applications
Titre du projet anglais
Experimental and theoretical investigations of nonlinear effects in passive and active fibers with special emphasis on their relevance for optical communication applications

Textes relatifs à ce projet

 AllemandFrançaisItalienAnglais
Mots-clé
-
-
-
Anzeigen
Programme de recherche
-
-
-
Anzeigen
Description succincte
-
-
-
Anzeigen
Partenaires et organisations internationales
-
-
-
Anzeigen
Résumé des résultats (Abstract)
-
-
-
Anzeigen
Références bases de données
-
-
-
Anzeigen

Textes saisis


CatégorieTexte
Mots-clé
(Anglais)
NONLINEAR EFFECTS IN FIBERS; FIBER LASERS; SOLITON COMMUNICATIONS
Programme de recherche
(Anglais)
COST-Action 241 - Characterisations of optical fibres for the photonic network
Description succincte
(Anglais)
See abstract
Partenaires et organisations internationales
(Anglais)
B, CH, CZ, D, DK, F, FIN, H, I, NL, P, S, SK, UK
Résumé des résultats (Abstract)
(Anglais)
We have for the first time realized a continuously tuneable Pr3+-doped fluoride all-fiber laser using a broadband (16 nm) chirped fiber Bragg grating (FBG) and a novel, narrowband (1 nm) tuneable I;BG as cavity mirrors. The laser can reproducibly be tuned to every wavelength in the range from 1292 nm to 1308 nm with an average output power of 5 mW over the whole tuning range. In a second experiment the Pr3+-doped fiber laser was actively mode-locked using a novel fiber-optic phase modulator. 200 ps pulses at a repetition rate of 200 MHz at average power levels in the order of 10 mW were routinely generated using either conventional dielectric mirrors or narrowband FBG's (0.2 nm bandwidth, peak reflectivity 80-90%). Furthermore, using a thorough numerical analysis we have investigated the potential of a periodically amplified (using in-line Er3 -doped fiber amplifiers), dispersion managed 1550 nm soliton WDM system based on standard transmission and dispersion compensating fibers. We have proposed a new power and dispersion management scheme and have demonstrated the huge potential of this technique by showing that error-free transmission is feasible in a 30 channel (1 nm channel spacing), periodically amplified (amplifier distance 66.7 km) WDM system at a total bit rate of 450 Gbit/s over 1200 km. Finally, we have shown that the influence of the dispersion slope, i.e. the fact that each channel has a slightly different value of the dispersion, is rather small for this system.
Références bases de données
(Anglais)
Swiss Database: COST-DB of the State Secretariat for Education and Research Hallwylstrasse 4 CH-3003 Berne, Switzerland Tel. +41 31 322 74 82 Swiss Project-Number: C93.0001