En-tête de navigationNavigation principaleSuiviFiche


Unité de recherche
PCRD EU
Numéro de projet
96.0023-1
Titre du projet
PCP: Phosphate and crop productivity
Titre du projet anglais
PCP: Phosphate and crop productivity

Textes relatifs à ce projet

 AllemandFrançaisItalienAnglais
Mots-clé
-
-
-
Anzeigen
Autre Numéro de projet
-
-
-
Anzeigen
Programme de recherche
-
-
-
Anzeigen
Description succincte
-
-
-
Anzeigen
Autres indications
-
-
-
Anzeigen
Partenaires et organisations internationales
-
-
-
Anzeigen
Résumé des résultats (Abstract)
-
-
-
Anzeigen
Références bases de données
-
-
-
Anzeigen

Textes saisis


CatégorieTexte
Mots-clé
(Anglais)
Phosphate; phosphate transporter; root; rhizodermis
Autre Numéro de projet
(Anglais)
EU project number: PL960770
Programme de recherche
(Anglais)
EU-programme: 4. Frame Research Programme - 4.1 Biotechnology
Description succincte
(Anglais)
See abstract
Autres indications
(Anglais)
Full name of research-institution/enterprise:
ETH Zürich
Institut für Pflanzenwissenschaften
Biochemie und Physiologie der Pflanzen
Partenaires et organisations internationales
(Anglais)
Europäisches Konsortium (D, E, F, GB, NI, P)
Résumé des résultats (Abstract)
(Anglais)
Phosphate (Pi) efficiency is of crucial importance for the growth and development of plants and a key component of the genetic yield potential of crops. Most soils under agricultural exploitation are low in Pi availability. Even in Pi rich soils, for example in central Europe, most of the Pi is present in an immobile form and therefore is not readily available for the plant. In this EU project a multidisciplinary approach is followed to devise means to genetically engineer plants in order to improve Pi efficiency and optimise carbon allocation towards storage organs. The vertically integrated approach on the whole plant level will enable the development of new technologies for crop improvement.
In contrast to the crucial importance of Pi for plant growth and development very little is known about the mechanisms which influence Pi-efficiency on the whole plant as well as on the cellular and molecular levels. The same holds true for the root system, which is an indispensable source for mineral nutrients.
Our group at the Institute of Plant Sciences, ETH Zurich, is studying the molecular and biochemical processes involved in Pi acquisition at the root/soil interface (Bucher et al., 2001).
Genes which are predominantly expressed in rhizodermal cells have been characterised (Bucher et al., 1997) and the regulation of expression of one of these genes has been investigated (Bucher et al., submitted).
Since the root hairs are the first cells to get into contact with Pi from the soil, we believe that these cells carry all prerequisits for efficient Pi acquisition. To unravel these mechanisms, we analyse Pi-directed gene expression in root hairs in a second part of our work.
The first step in Pi biology is its uptake in living root cells. This is mediated by Pi transporter proteins in the plasma membrane of the rhizodermal cells (Raghothama, 1999; Raghothama et al., 1999; Daram et al., 1998). After entry in the root, Pi is translocated within the plant, e.g. to leaves, flowers or seeds, due to the concerted action of other transport systems. We have characterized a Pi transporter, which is expressed in the shoot and belongs to a novel family of plant transporter proteins (Daram et al., 1999).
Références bases de données
(Anglais)
Swiss Database: Euro-DB of the
State Secretariat for Education and Research
Hallwylstrasse 4
CH-3003 Berne, Switzerland
Tel. +41 31 322 74 82
Swiss Project-Number: 96.0023-1