Titel
Accueil
Navigation principale
Contenu
Recherche
Aide
Fonte
Standard
Gras
Identifiant
Interrompre la session?
Une session sous le nom de
InternetUser
est en cours.
Souhaitez-vous vraiment vous déconnecter?
Interrompre la session?
Une session sous le nom de
InternetUser
est en cours.
Souhaitez-vous vraiment vous déconnecter?
Accueil
Plus de données
Partenaires
Aide
Mentions légales
D
F
E
La recherche est en cours.
Interrompre la recherche
Recherche de projets
Projet actuel
Projets récents
Graphiques
Identifiant
Titel
Titel
Unité de recherche
SEFRI
Numéro de projet
24.00448
Titre du projet
Green SELf-Powered NEuromorphic Processing EnGines with Integrated VisuAl and FuNCtional SEnsing
Données de base
Textes
Participants
Titel
Textes relatifs à ce projet
Allemand
Français
Italien
Anglais
Résumé des résultats (Abstract)
-
-
-
Textes saisis
Catégorie
Texte
Résumé des résultats (Abstract)
(Anglais)
Today’s Internet-of-Things (IoT) incorporates a complex distributed network of wireless sensors and processors connected to the cloud. These platforms and their data-processing needs are creating a stronger and stronger demand for energy that is not sustainable. At the same time, the increasing consumers demand for IoT electronic devices and their limited lifespan, are significantly contributing to the world’s fastest-growing waste stream, known as electronic waste. To avoid an unsustainable energy cost in this data deluge, disruptive innovations in electronics from material to systems are urgently required. ELEGANCE proposes the development of a radically new, printable and light-operated processing technology specialized for IoT edge-computing applications. The project implements an ecosustainable approach at component and processes level, where abundant, recyclable eco-friendly materials are employed, targeting a zero environmental footprint strategy. The processor’s building block includes a hybrid stack of an oxide optoelectronic memristor with an electrochromic layer on top exhibiting a unique light-triggered Processing-in-Memory enabling simultaneous IoT energy-efficient computing and visual sensing. In-memory computing schemes, such as crossbar memristor arrays, will be implemented employing lowcost, industrially compatible sustainable printing techniques. This will enable the design of energy efficient neuromorphic and artificial intelligence computing systems optimized for a plethora of consumer applications in the wearable, healthcare, and edge-computing sectors, making ELEGANCE an ambitious and technologically concrete breakthrough for the IoT with high potential for large societal benefits.
SEFRI
- Einsteinstrasse 2 - 3003 Berne -
Mentions légales