Titel
Accueil
Navigation principale
Contenu
Recherche
Aide
Fonte
Standard
Gras
Identifiant
Interrompre la session?
Une session sous le nom de
InternetUser
est en cours.
Souhaitez-vous vraiment vous déconnecter?
Interrompre la session?
Une session sous le nom de
InternetUser
est en cours.
Souhaitez-vous vraiment vous déconnecter?
Accueil
Plus de données
Partenaires
Aide
Mentions légales
D
F
E
La recherche est en cours.
Interrompre la recherche
Recherche de projets
Projet actuel
Projets récents
Graphiques
Identifiant
Titel
Titel
Unité de recherche
SEFRI
Numéro de projet
24.00306
Titre du projet
Challenging AI with Challenges from Physics: How to solve fundamental problems in Physics by AI and vice versa
Données de base
Textes
Participants
Titel
Textes relatifs à ce projet
Allemand
Français
Italien
Anglais
Résumé des résultats (Abstract)
-
-
-
Textes saisis
Catégorie
Texte
Résumé des résultats (Abstract)
(Anglais)
AI is a disruptive technology that is currently changing not only many research fields but also substantially challenges current business concepts. Keeping up with the ever-faster progress on one hand side and the ever increasing competition from US and Chinese IT giants is a challenge for European Industry and Research Institutions. Yet, new concepts are required to keep pace. This concept is to intertwine modern AI concepts with strategies from the application field, a strategy where we claim that we can contribute substantially to a novel and promising research field. Particle physics is a formidable basis for such developments as there are no critical, personal data, data can be easily generated; and we have a good understanding of the underlying models and the ground truth. Yet, particle physics has challenges such as detailed questions of new physics and extremely high precision of the results. We identified three main fields where this project will contribute by solving 1) highly ill-posed inverse problems using physics models, 2) handling uncertainties, rare events and give reliable error bounds, and finally, 3) to be able to give explanations of the machine learning results in terms of physics ontologies and models. This highly challenging research agenda is tackled by 9 internationally recognized and leading researchers from both physics and computer science, from 5 universities in 5 European countries, all being member of the 4EU+ Alliance of European Universities. Over 4EU+ an excellent infrastructure for unique training opportunities is available to enable the research fellows to reach the ambitious goals, on one hand side and to educate them in critical and innovative thinking, management and social skills to prepare them optimally for leading positions in academics and industry.
SEFRI
- Einsteinstrasse 2 - 3003 Berne -
Mentions légales