Abstract
(Englisch)
|
Respiratory infections resulted in >7 million deaths in 2020 and were responsible for 7 of the last 9 pandemics, causing trillions of €s in economic
losses. Despite the importance of early detection for individual health and pandemic control, flawed sampling methods for respiratory infections
limit the impact of highly-sensitive molecular diagnostics. BreathForDx’s overall goal is to tackle this problem by establishing exhaled breath
aerosol (XBA) as a novel, evidence-based sample for respiratory infections in three use cases: diagnosis, screening, and antimicrobial resistance,
using tuberculosis (TB) as a model infection. The project will leverage innovation in bioaerosol and material science, as well as the multidisciplinary
(including academia, industry and NGOs) consortium’s track record of delivering transformative diagnostic innovation. More specifically, we will
optimise an innovative, easy-to-use, scalable XBA sampling device, and compare it to a face mask sampling device coupled with rapid molecular
detection in three clinical studies. We will evaluate the XBA sampling efficiency of these devices using the Respiratory Aerosol Sampling Chamber
as a benchmark. Next, we will assess performance of the devices for diagnosis of TB and drug-resistance among symptomatic patients in a high
burden EU country. In parallel, we will assess the feasibility of multiplexing XBA samples for multiple respiratory pathogens (i.e., TB, influenza,
SARS-CoV-2) in a screening use case. Accuracy and feasibility data will be complemented by data on acceptability and usability, as well as cost-effectiveness and impact modelling to inform the implementation potential of the novel devices across different use cases. We envision a world in
which a single breath sample, coupled with point-of-care molecular diagnostics, enables accessible and accurate pathogen and resistance
detection of highly transmissible respiratory infections, thereby improving both individual and public health
|