Titel
Accueil
Navigation principale
Contenu
Recherche
Aide
Fonte
Standard
Gras
Identifiant
Interrompre la session?
Une session sous le nom de
InternetUser
est en cours.
Souhaitez-vous vraiment vous déconnecter?
Interrompre la session?
Une session sous le nom de
InternetUser
est en cours.
Souhaitez-vous vraiment vous déconnecter?
Accueil
Plus de données
Partenaires
Aide
Mentions légales
D
F
E
La recherche est en cours.
Interrompre la recherche
Recherche de projets
Projet actuel
Projets récents
Graphiques
Identifiant
Titel
Titel
Unité de recherche
SEFRI
Numéro de projet
23.00176
Titre du projet
A TRUSTworthy speech-based AI monitorING system for the prediction of relapse in psychosis patients
Données de base
Textes
Participants
Titel
Textes relatifs à ce projet
Allemand
Français
Italien
Anglais
Résumé des résultats (Abstract)
-
-
-
Textes saisis
Catégorie
Texte
Résumé des résultats (Abstract)
(Anglais)
Schizophrenia affects a staggering 21 million people worldwide, with 80% of these citizens suffering from a relapsing disease, putting their health and safety at enormous risk. Timely detection of these psychotic relapses would require very frequent contact with clinicians, which is neither desirable nor feasible. An accurate online relapse predictor could alert clinicians of subtle deterioration, which enables timely intervention and allow safe discontinuation of long-term medication, which so many affected citizens desire. Our Consortium demonstrated that subtle alterations in speech carry a predictive signal for psychosis onset. This project will develop an AI monitoring system that leverages spoken language processing (SLP) and natural language processing (NLP) of speech recorded at home to calculate the relapse risk. The monitoring tool we develop will be validated retrospectively in a longitudinal cohort, cross-sectionally, across six languages, after which it will be tested prospectively in a multicenter randomized trial, with the end goal of improving functional and clinical outcomes of those affected by schizophrenia. Developing such a system for exceptionally vulnerable people requires ‘buy-in’ from clinicians and mental health care service users, namely trust. A lack of trust is the biggest obstacle to the real-world implementation of a speech-based monitoring system. TRUSTING will develop a framework that systematically ensures addressing all the criteria for trustworthy AI put forward by the EU. This will ensure an empirically based and validated tool that can reliably detect pending relapse. As the core philosophy of trustworthiness is part of every aspect of the project, it will be a system more likely to be welcomed and embraced by service users and their carers. TRUSTING generates the scientific and social foundation for disruptive technology to deliver the unmet promise of an equitable and just form of healthcare for people at risk of relapse.
SEFRI
- Einsteinstrasse 2 - 3003 Berne -
Mentions légales