ServicenavigationHauptnavigationTrailKarteikarten


Forschungsstelle
SBFI
Projektnummer
22.00282
Projekttitel
Exploiting ex vivo expansion and deep multiomics profiling to bring novel, efficient and safer hematopoietic stem cell gene therapies to clinical application

Texte zu diesem Projekt

 DeutschFranzösischItalienischEnglisch
Abstract
-
-
-
Anzeigen

Erfasste Texte


KategorieText
Abstract
(Englisch)
Hematopoietic stem cells (HSC) are an elusive cell type, whose presence can only be inferred retrospectively, from the outcome of timeconsuming transplantation experiments. Since current state-of-the-art does not allow prospective HSC identification, today’s cell and gene therapy technology has been mostly optimized on surrogate progenitor cells, which differ biologically from HSC. The technological breakthrough of this proposal is to capture HSC in the ex vivo culture, achieved by a combination of innovative expansion conditions, iterative cell sorting and multiomics single cell profiling. Rapid, quantitative and qualitative in vitro HSC assessment predictive of in vivo function may become a sustainable alternative to mouse xenotransplantation experiments. Applied to a state-of-the-art toolbox of genetic engineering technologies including clinically-proven lentiviral vectors as well as established and emerging targeted genome editing approaches, our in vitro HSC readout sets new standards in terms of throughput and turnaround time, allowing to efficiently test a multitude of HSC engineering conditions and tailor the most suitable technological approach to a specific disease or therapeutic application. This new precision-based approach to ex vivo HSC gene therapy will be applied to inherited bone marrow failure syndromes and cancer as paradigmatic examples where gene therapy may be used to correct a cell-intrinsic genetic defect or turn hematopoietic progeny into therapeutic vehicles provided with novel functions. Bringing together experts in cutting-edge gene editing technologies, ex vivo HSC manipulation, assessment of HSC responses to genetic engineering and bioinformatics analysis & integration of multidimensional single cell data will maximize the chances of delivering safer and more effective next-generation HSC-based gene therapy products, extending the reach of gene therapy to new disease contexts and making the outcome after gene therapy more predictable.