Titel
Accueil
Navigation principale
Contenu
Recherche
Aide
Fonte
Standard
Gras
Identifiant
Interrompre la session?
Une session sous le nom de
InternetUser
est en cours.
Souhaitez-vous vraiment vous déconnecter?
Interrompre la session?
Une session sous le nom de
InternetUser
est en cours.
Souhaitez-vous vraiment vous déconnecter?
Accueil
Plus de données
Partenaires
Aide
Mentions légales
D
F
E
La recherche est en cours.
Interrompre la recherche
Recherche de projets
Projet actuel
Projets récents
Graphiques
Identifiant
Titel
Titel
Unité de recherche
SEFRI
Numéro de projet
22.00029
Titre du projet
Hybrid electronic-photonic architectures for brain-inspired computing
Données de base
Textes
Participants
Titel
Textes relatifs à ce projet
Allemand
Français
Italien
Anglais
Résumé des résultats (Abstract)
-
-
-
Textes saisis
Catégorie
Texte
Résumé des résultats (Abstract)
(Anglais)
As artificial intelligence (AI) proliferates, hardware systems that can perform inference at ultralow latency, high precision and low power are crucial and urgently required to deal – especially quasi-locally, i.e. ‘in the edge’ – with massive and heterogenous data, respond in real time and avoid unintended consequences and function in complex and often unpredictable environments. Conventional digital electronics and the associated computer architecture is unable to meet these stringent requirements with sub-ms latency inference and a sub-10W power budget, using convolution neural networks (CNNs) on benchmarks such as ImageNet classification. HYBRAIN’s vision is to realize a pathway for a radical new technology with ultrafast (~1 microsecond) and energy-efficient (~1 watt) edge AI inference based on a world-first, brain-inspired hybrid architecture of integrated photonics and unconventional electronics. The deeply entwined memory and processing like in the mammalian brain obviates the need to shuttle around synaptic weights. The most stringent latency bottleneck in CNNs is in the initial convolution layers. Our approach will take advantage of the ultrahigh throughput and low latency of photonic convolutional processors (PCPs) employing novel phase-change materials in these initial layers to radically speed up processing. Their output is processed using cascaded electronic linear and nonlinear classifier layers, based on memristive (phase-change memory) crossbar arrays and dopant network processing units, respectively. HYBRAIN’s science-towards-technology breakthrough brings together the world’s top research groups from academia and industry in complementary technology platforms. Each of these platforms is already highly promising, but by integrating them, HYBRAIN will have a transformative effect of overcoming existing barriers of latency and energy consumption and will enable a whole new spectrum of edge AI applications throughout society.
SEFRI
- Einsteinstrasse 2 - 3003 Berne -
Mentions légales