Titel
Accueil
Navigation principale
Contenu
Recherche
Aide
Fonte
Standard
Gras
Identifiant
Interrompre la session?
Une session sous le nom de
InternetUser
est en cours.
Souhaitez-vous vraiment vous déconnecter?
Interrompre la session?
Une session sous le nom de
InternetUser
est en cours.
Souhaitez-vous vraiment vous déconnecter?
Accueil
Plus de données
Partenaires
Aide
Mentions légales
D
F
E
La recherche est en cours.
Interrompre la recherche
Recherche de projets
Projet actuel
Projets récents
Graphiques
Identifiant
Titel
Titel
Unité de recherche
SEFRI
Numéro de projet
16.0023
Titre du projet
New generation of Intelligent Efficient District Cooling systems
Données de base
Textes
Participants
Titel
Textes relatifs à ce projet
Allemand
Français
Italien
Anglais
Résumé des résultats (Abstract)
-
-
-
Textes saisis
Catégorie
Texte
Résumé des résultats (Abstract)
(Anglais)
In Europe, different prognosis show an increase in cooling demand of almost 60% in 2030 with respect to nowadays. District cooling (DC) can play a part in satisfying this demand in a sustainable way (since can offer 5 to 10 times higher efficiency solutions than on??site stand??alone distributed systems). Even if DC captures only minor portion of the prospective market, this will translate into a dramatic increase in the size of the global DC sector.\nINDIGO aims to develop a more efficient, intelligent and cheaper generation of DC systems by improving system planning, control and management, anticipating the aforementioned scenario. This target will be achieved through the following specific objectives:\n• Contribute to the wider use of DC systems and motivate the competiveness of European DC market by the development of two open-source tools:\no A planning tool for DC systems with the aim of supporting their optimal design\no A library with thermo-fluid dynamic models of DC System components which will provide the designers detailed information about their physical behaviour\n• Primary energy reduction over 45% addressed by a ground breaking DC system management strategy focused mainly on energy efficiency maximization but also on energy cost minimization. Its main characteristics is the predictive management but it also will address other challenges such as:\no Integration of Renewable Energy Sources\no Dealing with different types of cooling sources \no Suitable coupling between generation, storage and demand\nAll this, with the help of intelligent and innovative component controllers (Predictive Controllers) to be developed at all DC system levels. Some of them include embedded self-learning algorithms, allowing components to respond appropriately to the set-points established.\nDevelopments carried out within INDIGO will be validated in a real District Heating and Cooling installation with appropriate conditions for testing the new functionalities. \n
SEFRI
- Einsteinstrasse 2 - 3003 Berne -
Mentions légales