ServicenavigationHauptnavigationTrailKarteikarten


Forschungsstelle
BFE
Projektnummer
SI/501337
Projekttitel
Optimal design of wind energy projects

Texte zu diesem Projekt

 DeutschFranzösischItalienischEnglisch
Schlüsselwörter
Anzeigen
-
-
Anzeigen
Kurzbeschreibung
-
Anzeigen
-
Anzeigen
Publikationen / Ergebnisse
Anzeigen
-
-
Anzeigen
Schlussbericht
-
-
-
Anzeigen

Erfasste Texte


KategorieText
Schlüsselwörter
(Deutsch)
Windenergie, WKA, Parkoptimierung, LiDAR; Windkanal
Schlüsselwörter
(Englisch)

Wind energy, wind farm optimization, wind turbine, LiDAR, wind tunnel

Kurzbeschreibung
(Englisch)

The main goal of this project is to develop and validate a ‘Virtual Wind Simulator’ for the optimal design (layout) and operation of wind energy projects. During the course of the project, substantial progress has been made on all the planned tasks, corresponding to the three main work packages highlighted in the original proposal. The activities and main results for each task are briefly summarized below:

  • Numerical Simulations: The development of the EPFL Virtual Wind Simulator has focused on improving the ability of our computational models to simulate wind turbine performance on complex terrain, as well as wind-turbines subjected to active yaw control. The new tool has been validated for both topography and active yaw control against wind tunnel flow data collected for that purpose. This unique validation exercise has shown an excellent performance of our newly-developed largeeddy simulation (LES) code.
  • Wind-tunnel experiments: An optimized miniature wind-turbine model has been designed and built to be used in controlled wind-tunnel experiments. Its performance (power and thrust coefficients) is more realistic than any turbine model used in wind tunnels before. This model turbine  has been used at the EPFL-WiRE wind-tunnel facility to carefully characterize its performance and the wake flow (using laser-based techniques) under different conditions. These experiments are providing unique datasets for the validation of the EPFL Virtual Wind Simulator (e.g., LES) of wake flows of wind turbines subject to topography effects as well as yaw control strategies.
  • Field experiments: Three field experiments have been carried out, as planned, using the EPFLWiRE scanning doppler lidars. The experiments were performed in Collonges (single turbine; ground-based lidars), Iowa (single turbine; nacelle-based lidars), and Colorado (wind farm with active yaw control; nacelle-based lidars). The measurements have provided interesting new insights on how the turbine wake (shadow) flows are affected by atmospheric conditions and yaw control strategies. The datasets are being used to validate numerical models.
Kurzbeschreibung
(Französisch)

L'objectif principal de ce projet est de développer et de valider des modèles numériques pour la prédiction précise de la performance des parcs éoliens. Pour ce faire, une combinaison unique de simulations informatiques, expériences sur le terrain et des expériences en soufflerie sera utilisée. Ce projet aidera finalement à optimiser la conception et l'exploitation de projets d'énergie éolienne, ce qui est essentiel pour garantir leur faisabilité en Suisse (dans le cadre de la stratégie 2050 de l'énergie suisse) et dans le monde.

Publikationen / Ergebnisse
(Deutsch)
Zugehörige Dokumente
Publikationen / Ergebnisse
(Englisch)

The  main  goal  of  this  project  is  to  develop  and  validate  a  ‘Virtual  Wind  Simulator’  for  the  optimal   design  (layout)  and  operation  of  wind  energy projects.  During  the  first  year  of  the  project,  progress  has   been  made,  as  planned,  on  tasks  corresponding  to  the  three  main  work  packages.
The  activities  and   main  results  for  each  task  are  briefly  summarized  below:

  • Numerical  Simulations:  The  development  of  the  EPFL  Virtual  Wind  Simulator  has  focused  on   improving  the  ability  of  our  computational  models  to  simulate  wind  turbine  performance  on   complex  terrain.  The  new  tool  has  been  validated  for  the  only  case  of  airflow  through  wind   turbines  over  topography  for  which  wind  tunnel  flow  data  is  currently  available  for  validation.  This   first  validation  exercise  has  shown  an  excellent  performance  of  our  large-­eddy  simulation  (LES)   code. 
  • Wind-­tunnel  experiments:  An  optimized  miniature  wind-­turbine  model  has  been  designed  and   built  to  be  used  in  controlled  wind-­tunnel  experiments.  Its  performance  (power  and  thrust   coefficients)  is  more  realistic  than  any  turbine  model  used  in  wind  tunnels  before.  This  model   turbine  is  currently  being  used  at  the  EPFL-­WiRE  wind-­tunnel  facility  to  carefully  characterize  its   performance  and  the  wake  flow  (using  laser-­based  techniques)  under  different  conditions.  These   experiments  are  providing  unique  datasets  that  will  soon  be  used  for  further  validation  of  the   EPFL  Virtual  Wind  Simulator.
  • Field  experiments:  Field  experiments  have  continued,  as  planned,  in  Collonges,  where  a  new   volumetric  scanning  technique  using  the  three  laser-­based  EPFL  wind  LiDARs  has  been  tested.   The  measurements  are  giving  interesting  new  insights  on  how  the  turbine  wake  (shadow)  flows  is   affected  by  atmospheric  conditions.  This  in  turn  would  affect  the  performance  of  downwind   turbines  in  wind  farms.  
Zugehörige Dokumente
Schlussbericht
(Englisch)

The main goal of this project is to develop and validate a ‘Virtual Wind Simulator’ for the optimal design (layout) and operation of wind energy projects. During the course of the project, substantial progress has been made on all the planned tasks, corresponding to the three main work packages highlighted in the original proposal. The activities and main results for each task are briefly summarized below:

 Numerical Simulations: The development of the EPFL Virtual Wind Simulator has focused on improving the ability of our computational models to simulate wind turbine performance on complex terrain, as well as wind-turbines subjected to active yaw control. The new tool has been validated for both topography and active yaw control against wind tunnel flow data collected for that purpose. This unique validation exercise has shown an excellent performance of our newly-developed largeeddy simulation (LES) code.

• Wind-tunnel experiments: An optimized miniature wind-turbine model has been designed and built to be used in controlled wind-tunnel experiments. Its performance (power and thrust coefficients) is more realistic than any turbine model used in wind tunnels before. This model turbine has been used at the EPFL-WiRE wind-tunnel facility to carefully characterize its performance and the wake flow (using laser-based techniques) under different conditions. These experiments are providing unique datasets for the validation of the EPFL Virtual Wind Simulator (e.g., LES) of wake flows of wind turbines subject to topography effects as well as yaw control strategies.

Field experiments: Three field experiments have been carried out, as planned, using the EPFLWiRE scanning doppler lidars. The experiments were performed in Collonges (single turbine; ground-based lidars), Iowa (single turbine; nacelle-based lidars), and Colorado (wind farm with active yaw control; nacelle-based lidars). The measurements have provided interesting new insights on how the turbine wake (shadow) flows are affected by atmospheric conditions and yaw control strategies. The datasets are being used to validate numerical models.

Zugehörige Dokumente