ServicenavigationHauptnavigationTrailKarteikarten


Forschungsstelle
COST
Projektnummer
C13.0157
Projekttitel
Parametrized Refractivity Model for GNSS Severe Weather Monitoring (PaReMo-GNSS)
Projekttitel Englisch
Parametrized Refractivity Model for GNSS Severe Weather Monitoring (PaReMo-GNSS)

Texte zu diesem Projekt

 DeutschFranzösischItalienischEnglisch
Schlüsselwörter
-
-
-
Anzeigen
Forschungsprogramme
-
-
-
Anzeigen
Kurzbeschreibung
-
-
-
Anzeigen
Weitere Hinweise und Angaben
-
-
-
Anzeigen
Partner und Internationale Organisationen
-
-
-
Anzeigen
Abstract
-
-
-
Anzeigen
Datenbankreferenzen
-
-
-
Anzeigen

Erfasste Texte


KategorieText
Schlüsselwörter
(Englisch)
Multi-GNSS; ground-based atmospheric sounding of water vapour; monitoring of severe weather; exploitation of space technology
Forschungsprogramme
(Englisch)
COST-Action ES1206 - Advanced Global Navigation Satellite Systems tropospheric products for monitoring severe weather events and climate (GNSS4SWEC)
Kurzbeschreibung
(Englisch)
This project will address new and improved capabilities from developments in both Global Navigation Satellite Systems (GNSS) and atmospheric communities. It will exploit the potential of multi-GNSS (GPS, GLONASS, Galileo) water vapour data on a temporal and spatial scale, appropriate for real-time severe weather monitoring. Specifically we aim at a further development and exploitation of the multi-GNSS Precise Point Positioning (PPP) for water vapor retrieval in a parametrized refractivity field model with the inclusion of the apiori information of weather radar data. The new model will be developed within the area of the GNSS ground station network (AGNES, swisstopo). The parameters of the model will directly be estimated in the GNSS software. The methodology and implementation will be validated in close cooperation with MeteoSwiss and swisstopo in the area of Switzerland before up-scaling to the larger dimension of Europe. This second step is pursued in co-operation with further COST partners. The proposed method allows determining anisotropies in the troposphere without the necessity of performing a complete tomographic inversion. The consistent determination of time varying three dimensional anisotropies over the whole region under investigation is the main advantage over the determination of quasi-independent single zenith path delays. The detection and modelling of anisotropic distributions of the water vapour is a crucial element of monitoring severe weather conditions
Weitere Hinweise und Angaben
(Englisch)
Full name of research-institution/enterprise: ETH Zürich Departement Bau, Umwelt und Geomatik (D-BAUG) Institut für Geodäsie und Photogrammetrie
Partner und Internationale Organisationen
(Englisch)
AT; BE; BG; CY; CZ; DK; EE; FI; FR; DE; EL; HU; IS; IT; LT; LU; MT; NL; NO; PL; RS; SK; ES: SE; TR; UK; TN; AU; US; CA
Abstract
(Englisch)
This project addresses new and improved capabilities from developments in both Global Navigation Satellite Systems (GNSS) and geodetic/atmospheric modelling. It will exploit the potentiel of multi-GNSS (GPS, GLONASS, Galileo) water vapour data on a temporal and spatial scale, appropriate for real-time severe weather monitoring. Specifically we aim at a further development and exploitation of the multi-GNSS Précise Point Positioning (PPP) for water vapor retrieval in a parametrized refractivity field model. In our approach we can combine any meteorological data with GNSS data. Mainly ground meteorological measurement networks are used to this end. This leads to a consistent détermination of time varying three dimensional anisotropies over the whole région under investigation. The détection and modelling of anisotropic distributions of the water vapour is a crucial élément of monitoring severe weather conditions. The new model is under development within the area of a GNSS ground station networit.ln our case it has been applied to two networks one in Switzeriand (AGNES, swisstopo) and one in Poland (national référence network). The main relevant différence of the characteristics of the two networks is topograpy (mountainous vs. flat). This wortc is pursued in co-operation writh further COST partners especially writh Wroclaw University, Poland. For Swfitzeriand, the data set with the best agreement with the référence radiosonde (RS) measurements is the combination of ground-based meteorological observations and GNSS zénith path delays. For Poland, the data set based on meteorological parameters from the numerical weather prédiction (NWP) model (Weather Research and Forecasting (VVRF)) and from a combination of the NWP model and GNSS zénith path delays shows the best agreement with the référence RS data. In ternis of zénith path delays, the combined NWP-GNSS observations and GNSS-only data set exhibit the t>est accuracy with an average bias (from ail stations) of 3.7 mm and average standard déviations of 17.0 mm w.r.t. the référence GNSS stations
Datenbankreferenzen
(Englisch)
Swiss Database: COST-DB of the State Secretariat for Education and Research Hallwylstrasse 4 CH-3003 Berne, Switzerland Tel. +41 31 322 74 82 Swiss Project-Number: C13.0157