En-tête de navigationNavigation principaleSuiviFiche


Unité de recherche
INNOSUISSE
Numéro de projet
14586.2 PFES-ES
Titre du projet
Machine Learning approaches for freight train safety monitoring
Titre du projet anglais
Machine Learning approaches for freight train safety monitoring

Textes relatifs à ce projet

 AllemandFrançaisItalienAnglais
Description succincte
Anzeigen
-
-
Anzeigen
Résumé des résultats (Abstract)
Anzeigen
-
-
Anzeigen

Textes saisis


CatégorieTexte
Description succincte
(Allemand)
Machine Learning approaches for freight train safety monitoring
Description succincte
(Anglais)
Machine Learning approaches for freight train safety monitoring
Résumé des résultats (Abstract)
(Allemand)
The proposed project aims to provide a method for safety monitoring of trains in the SBB network. It focuses on automatically identifying wheel defects on freight trains based on the existing SBB infrastructure.|The method is expected to provide within-class and overall wheel defect rankings. This goal involves adapting and extending current machine learning methods such as multiple instance learning, semi-supervised classification and simultaneous regression and ranking.
Résumé des résultats (Abstract)
(Anglais)
The proposed project aims to provide a method for safety monitoring of trains in the SBB network. It focuses on automatically identifying wheel defects on freight trains based on the existing SBB infrastructure.|The method is expected to provide within-class and overall wheel defect rankings. This goal involves adapting and extending current machine learning methods such as multiple instance learning, semi-supervised classification and simultaneous regression and ranking.