ServicenavigationHauptnavigationTrailKarteikarten


Forschungsstelle
INNOSUISSE
Projektnummer
14586.2 PFES-ES
Projekttitel
Machine Learning approaches for freight train safety monitoring
Projekttitel Englisch
Machine Learning approaches for freight train safety monitoring

Texte zu diesem Projekt

 DeutschFranzösischItalienischEnglisch
Kurzbeschreibung
Anzeigen
-
-
Anzeigen
Abstract
Anzeigen
-
-
Anzeigen

Erfasste Texte


KategorieText
Kurzbeschreibung
(Deutsch)
Machine Learning approaches for freight train safety monitoring
Kurzbeschreibung
(Englisch)
Machine Learning approaches for freight train safety monitoring
Abstract
(Deutsch)
The proposed project aims to provide a method for safety monitoring of trains in the SBB network. It focuses on automatically identifying wheel defects on freight trains based on the existing SBB infrastructure.|The method is expected to provide within-class and overall wheel defect rankings. This goal involves adapting and extending current machine learning methods such as multiple instance learning, semi-supervised classification and simultaneous regression and ranking.
Abstract
(Englisch)
The proposed project aims to provide a method for safety monitoring of trains in the SBB network. It focuses on automatically identifying wheel defects on freight trains based on the existing SBB infrastructure.|The method is expected to provide within-class and overall wheel defect rankings. This goal involves adapting and extending current machine learning methods such as multiple instance learning, semi-supervised classification and simultaneous regression and ranking.