En-tête de navigationNavigation principaleSuiviFiche


Unité de recherche
INNOSUISSE
Numéro de projet
14478.2;12 PFIW-IW
Titre du projet
Arling ¿ Profitable Electricity Storage through Intelligent Operation Management of Distributed Storage Units (Arling ¿ Profitable Stromspeicherung durch intelligente Betriebsstrategien von dezentralen Energiespeichern)
Titre du projet anglais
Arling ¿ Profitable Electricity Storage through Intelligent Operation Management of Distributed Storage Units (Arling ¿ Profitable Stromspeicherung durch intelligente Betriebsstrategien von dezentralen Energiespeichern)

Textes relatifs à ce projet

 AllemandFrançaisItalienAnglais
Description succincte
Anzeigen
-
-
Anzeigen
Résumé des résultats (Abstract)
Anzeigen
-
-
Anzeigen

Textes saisis


CatégorieTexte
Description succincte
(Allemand)
Ampard - Profitable Electricity Storage through Intelligent Operation Management of Distributed Storage Units (Arling ¿ Profitable Stromspeicherung durch intelligente Betriebsstrategien von dezentralen Energiespeichern)
Description succincte
(Anglais)
Arling ¿ Profitable Electricity Storage through Intelligent Operation Management of Distributed Storage Units (Arling ¿ Profitable Stromspeicherung durch intelligente Betriebsstrategien von dezentralen Energiespeichern)
Résumé des résultats (Abstract)
(Allemand)
Energy storage is a must for a stable electrical grid with a high degree of fluctuating new renewable energy. This project allows Ampard to improve the operational strategy of distributed energy storage systems, for example, battery and demand response systems. The algorithms developed within this project dynamically identify the value-optimized operations strategy for each unit within a swarm of geographically distributed assets of different technologies and sizes.
Résumé des résultats (Abstract)
(Anglais)
Energy storage is a must for a stable electrical grid with a high degree of fluctuating new renewable energy. This project allows Ampard to improve the operational strategy of distributed energy storage systems, for example, battery and demand response systems. The algorithms developed within this project dynamically identify the value-optimized operations strategy for each unit within a swarm of geographically distributed assets of different technologies and sizes.