ServicenavigationHauptnavigationTrailKarteikarten


Forschungsstelle
BFE
Projektnummer
SI/500777
Projekttitel
Aerogels from sodium silicate: towards cost-effective mass production technologies

Texte zu diesem Projekt

 DeutschFranzösischItalienischEnglisch
Kurzbeschreibung
-
-
-
Anzeigen
Publikationen / Ergebnisse
-
-
-
Anzeigen
Schlussbericht
Anzeigen
Anzeigen
-
Anzeigen

Erfasste Texte


KategorieText
Kurzbeschreibung
(Englisch)

Sodium silicate based aerogels were successfully synthesized from using ion exchanged waterglass. The gelation process was investigated and we found rapid gelation for silicic acid (ion exchanged waterglass) and considerably slower gelation with commercial low-sodium silica sols did. Optimal gelation pH is between 4.5 and 5.5 with gelation times ranging from 40 to a few minutes at room temperature. After aging, the water inside the gels is replaced by removed by solvent exchange. Efforts directed at finding a simple and cost competitive hydrohpobization process were very successful. At this point we are able to carry out drying of the gels under ambient pressure and obtain aerogels with quite intriguing properties. These new aerogels show comparable optical and mechanical properties to alkoxide (TEOS) based aerogels. Experiments to improve the mechanical strength by microfibrillated cellulose (MFC) modification were tried but only showed moderate success. In the coming year of 2013, improved ion exchange processing, gelation and aging conditions will be identified, supported by means of analytical methods, and polymer as well as fiber-reinforced aerogel composites will be systematically screened and characterized.

Publikationen / Ergebnisse
(Englisch)
Sodium silicate based aerogels were successfully synthesized from using ion exchanged waterglass. The gelation process was investigated and we found rapid gelation for silicic acid (ion exchanged waterglass) and considerably slower gelation with commercial low-sodium silica sols did. Optimal gelation pH is between 4.5 and 5.5 with gelation times ranging from 40 to a few minutes at room temperature. After aging, the water inside the gels is replaced by removed by solvent exchange. Efforts directed at finding a simple and cost competitive hydrohpobization process were very successful. At this point we are able to carry out drying of the gels under ambient pressure and obtain aerogels with quite intriguing properties. These new aerogels show comparable optical and mechanical properties to alkoxide (TEOS) based aerogels. Experiments to improve the mechanical strength by microfibrillated cellulose (MFC) modification were tried but only showed moderate success. In the coming year of 2013, improved ion exchange processing, gelation and aging conditions will be identified, supported by means of analytical methods, and polymer as well as fiber-reinforced aerogel composites will be systematically screened and characterized.

Auftragnehmer/Contractant/Contraente/Contractor:
EMPA

Autorschaft/Auteurs/Autori/Authors:
Zhao,Shanyu
Koebel,Matthias M.
Zugehörige Dokumente
Schlussbericht
(Deutsch)
Im Rahmen dieses Projekts wurden chemische Prozessverfahren zur Herstellung, mechanischen Verstärkung sowie chemischen Modifizierung (Hydrophobierung) von silikatbasierten Aerogelen ausgehend von Wasserglas entwickelt. Die Arbeiten sind nach Plan verlaufen und alle Projektziele wurden rechtzeitig erreicht. Als Highlight wurde eine neue Stoffklasse von Silikat-Pektin Aerogelen entwickelt, welche hervorragende mechanische Eigenschaften (staubfrei, kein Bruch bis >80% Kompression, Festigkeit >25MPa) bei tiefer Wärmeleitfähigkeit (

Auftragnehmer/Contractant/Contraente/Contractor:
EMPA

Autorschaft/Auteurs/Autori/Authors:
Koebel,Matthias M.
Zhao,Shanyu
Malfait,Wim J.
Schlussbericht
(Englisch)
Within the scope of this project, chemical synthetic methods for gelation, aging, mechanical reinforcement and chemical modification (hydrophobization) of sodium silicate-based aerogels have been developed. The project work was completed according to plan and all goals and milestones were met in time. As a highlight, a new class of silica-pectin hybrid aerogels was developed, featuring excellent mechanical properties (dust free, no rupture until >80% strain, final strength >25MPa) combined with extremely low thermal conductivity values (

Auftragnehmer/Contractant/Contraente/Contractor:
EMPA

Autorschaft/Auteurs/Autori/Authors:
Koebel,Matthias M.
Zhao,Shanyu
Malfait,Wim J.
Zugehörige Dokumente
Schlussbericht
(Französisch)
Au cours de ce projet, des procédés chimiques de synthèse, des methods pour le renforcement structurel et la modification chimique (hydrophobisation) des aérogels de silice à base de silicate de soude ont été développés. Les travaux se sont deroulés comme prévu et tous les objectifs ont été atteints à temps. Comme aspect original dans ce projèt, une nouvelle classe d'aérogels hybrides pectine-silice a été inventé, qui ont d'excellentes propriétés mécaniques (sans poussière, compressibles jusqu'à > 80% sans fracture, compressibilité >25 MPa) et une faible conductivité thermique (< 17MW/(m K)). A partir d'une analyse détaillée, nous jugeons les coûts de production pour ces aerogels dans les environs de 600EUR/m3 comme réalistes, ce qui permettrait d'accélérer l'application dans la construction des bâtiments. Bien que le silicate de soude est sans doute éfficace pour la production d'aerogels au niveau industriel, des développements parallèles ont mené à la découverte d'une route minimale "one-pot" à base de TEOS. Ayant les coûts totales les plus bas (CAPEX et OPEX dominent les coûts des matières premières) cette route est la plus prometteuse pour la commercialisation rapide des aérogels. La technologie silicate de soude compétitive est uniques pour les hybrides biopolymères et les membranes.

Auftragnehmer/Contractant/Contraente/Contractor:
EMPA

Autorschaft/Auteurs/Autori/Authors:
Koebel,Matthias M.
Zhao,Shanyu
Malfait,Wim J.