En-tête de navigationNavigation principaleSuiviFiche


Unité de recherche
INNOSUISSE
Numéro de projet
14753.1;8 PFES-ES
Titre du projet
FEDARS: Feature Extraction from Deep learning Architectures for face Recognition Systems
Titre du projet anglais
FEDARS: Feature Extraction from Deep learning Architectures for face Recognition Systems

Textes relatifs à ce projet

 AllemandFrançaisItalienAnglais
Description succincte
-
Anzeigen
-
Anzeigen
Résumé des résultats (Abstract)
-
Anzeigen
-
Anzeigen

Textes saisis


CatégorieTexte
Description succincte
(Anglais)
FEDARS: Feature Extraction from Deep learning Architectures for face Recognition Systems
Description succincte
(Français)
FEDARS: Feature Extraction from Deep learning Architectures for face Recognition Systems
Résumé des résultats (Abstract)
(Anglais)
This porject FEDARS is to develop new methods to extract robust features for face recognition systems. Deep learning architectures will be investigated to learn new features from the data. These new features will be integrated into KeyLemon¿s product line to improve the efficiency of their core technology and to enable KeyLemon to reach new market segment (banking and finance). This project will be part of the larger EUREKA European project PRI-BIOSEC.
Résumé des résultats (Abstract)
(Français)
This porject FEDARS is to develop new methods to extract robust features for face recognition systems. Deep learning architectures will be investigated to learn new features from the data. These new features will be integrated into KeyLemon¿s product line to improve the efficiency of their core technology and to enable KeyLemon to reach new market segment (banking and finance). This project will be part of the larger EUREKA European project PRI-BIOSEC.