ServicenavigationHauptnavigationTrailKarteikarten


Forschungsstelle
INNOSUISSE
Projektnummer
14753.1;8 PFES-ES
Projekttitel
FEDARS: Feature Extraction from Deep learning Architectures for face Recognition Systems
Projekttitel Englisch
FEDARS: Feature Extraction from Deep learning Architectures for face Recognition Systems

Texte zu diesem Projekt

 DeutschFranzösischItalienischEnglisch
Kurzbeschreibung
-
Anzeigen
-
Anzeigen
Abstract
-
Anzeigen
-
Anzeigen

Erfasste Texte


KategorieText
Kurzbeschreibung
(Englisch)
FEDARS: Feature Extraction from Deep learning Architectures for face Recognition Systems
Kurzbeschreibung
(Französisch)
FEDARS: Feature Extraction from Deep learning Architectures for face Recognition Systems
Abstract
(Englisch)
This porject FEDARS is to develop new methods to extract robust features for face recognition systems. Deep learning architectures will be investigated to learn new features from the data. These new features will be integrated into KeyLemon¿s product line to improve the efficiency of their core technology and to enable KeyLemon to reach new market segment (banking and finance). This project will be part of the larger EUREKA European project PRI-BIOSEC.
Abstract
(Französisch)
This porject FEDARS is to develop new methods to extract robust features for face recognition systems. Deep learning architectures will be investigated to learn new features from the data. These new features will be integrated into KeyLemon¿s product line to improve the efficiency of their core technology and to enable KeyLemon to reach new market segment (banking and finance). This project will be part of the larger EUREKA European project PRI-BIOSEC.