ServicenavigationHauptnavigationTrailKarteikarten


Research unit
COST
Project number
C11.0054
Project title
METAL EVO-ENVIRONOMICS

Texts for this project

 GermanFrenchItalianEnglish
Key words
-
-
-
Anzeigen
Research programs
-
-
-
Anzeigen
Short description
-
-
-
Anzeigen
Partners and International Organizations
-
-
-
Anzeigen
Abstract
-
-
-
Anzeigen
References in databases
-
-
-
Anzeigen

Inserted texts


CategoryText
Key words
(English)
Metals in Biology Bioremediation Metal Toxicity Metalloproteins Evolution
Research programs
(English)
COST-Action CM0902 - Molecular machineries for ion translocation across biomembranes
Short description
(English)
Although proteins are genetically encoded, the activity of metalloproteins (and their genetic de-scendants) crucially depends on metal availability. Consequently, metalloproteins are a useful model from the emerging field of “molecular environomics”, defined as the study of the adaptation (and evolution) of a system according to environmental conditions. Here, we explore the environmental adaptation of a bacterial enzyme (dapE) with two curiously independent activities in vivo according to the nature of catalytic metal bound: a manganese-dependent peptidase activity and a zinc-dependent desuccinylase activity. We implement a plat-form for directed evolution towards these two separate activities with different metals, with the aim of producing a model of how bacteria and metallohydrolases adapt to metal-availability and toxic-ity over laboratory-evolution time-scales. The project is designed for a postdoctoral worker for 18 months using techniques that are now well established in the Creus laboratory and offers ample opportunity for integration and collabo-ration within the COST network. The outcome of the project will be a more detailed description of how protein evolution adapts to metal cation-availability and toxicity, an important question with implications in biomedicine and in bioremediation.
Partners and International Organizations
(English)
AT, CH, CZ, DE, DK, EL, ES, FI, FR, HU, IE, IL, IT, LV, PL, PT, SE, SK, TR, UK
Abstract
(English)
The project explored the emerging field of “molecular environomics”, defined as the study of the adaptation and evolution of a system at the molecular level according to environmental conditions. Here, we explored the environmental adaptation of a bacterial enzyme (dapE) -a potential antibiotic drug target- with two curiously independent activities in vivo according to the nature of catalytic metal bound: a manganese-dependent peptidase activity and a zinc-dependent desuccinylase activity. We implemented a platform for laboratory directed evolution towards these two separate activities with different metals, with the aim of producing a model of how bacteria and metallohydrolases adapt to metal-availability and toxicity over laboratory-evolution time-scales. The outcome of the project was a more detailed description of how protein evolution adapts to metal cation-availability and toxicity, an important question with fundamental implications in evolution and practical use in drug discovery.
References in databases
(English)
Swiss Database: COST-DB of the State Secretariat for Education and Research Hallwylstrasse 4 CH-3003 Berne, Switzerland Tel. +41 31 322 74 82 Swiss Project-Number: C11.0054