En-tête de navigationNavigation principaleSuiviFiche


Unité de recherche
INNOSUISSE
Numéro de projet
14000.1;6 PFLS-LS
Titre du projet
Establishment of a predictive model for chemical permeation across the human airway epithelium in vitro using MucilAirTM
Titre du projet anglais
Establishment of a predictive model for chemical permeation across the human airway epithelium in vitro using MucilAirTM

Textes relatifs à ce projet

 AllemandFrançaisItalienAnglais
Description succincte
-
Anzeigen
-
Anzeigen
Résumé des résultats (Abstract)
-
Anzeigen
-
Anzeigen

Textes saisis


CatégorieTexte
Description succincte
(Anglais)
Establishment of a predictive model for chemical permeation across the human airway epithelium in vitro using MucilAirTM
Description succincte
(Français)
Establishment of a predictive model for chemical permeation across the human airway epithelium in vitro using MucilAirTM
Résumé des résultats (Abstract)
(Anglais)
To evaluate the effects of the chemicals on human health, it is necessary to know how the chemical interacts with and across the physical barriers such as airway epithelia. In this CTI project, we will evaluate the permeation of 40 chemicals using MucilAirTM, an in vitro cell model of the human airway epithelia made by Epithelix, which closely mimics the morphology and function of the human native tissues. The results will be compared to the in vivo data (animal and human). The final goal of this project is to establish a predictive model for pre-validation by ECVAM.
Résumé des résultats (Abstract)
(Français)
To evaluate the effects of the chemicals on human health, it is necessary to know how the chemical interacts with and across the physical barriers such as airway epithelia. In this CTI project, we will evaluate the permeation of 40 chemicals using MucilAirTM, an in vitro cell model of the human airway epithelia made by Epithelix, which closely mimics the morphology and function of the human native tissues. The results will be compared to the in vivo data (animal and human). The final goal of this project is to establish a predictive model for pre-validation by ECVAM.