[1] Fernández Ruiz M., Vaz Rodrigues R., Muttoni A., (2009), « Dimensionnement et vérification des dalles de roulement des ponts routiers, Rapport OFROU, N° 636, 53 p., Bern, Suisse.
[2] Vaz Rodrigues R., Muttoni A., Burdet O., (2006), “Large Scale Tests on Bridge Slabs Cantilevers Subjected to Traffic Loads”, Proceedings of the 2nd fib Congress, vol.1, 232 p., Naples, Italie.
[3] Vaz Rodrigues R., Fernández Ruiz M., Muttoni A. (2008), Punching shear strength of R/C bridge cantilever slabs, Engineering structures, Vol. 30, pp. 3024-3033, Netherlands.
[4] Sagaseta J., Fernández Ruiz M., Muttoni A., (2009), “Non-symmetrical punching of flat slabs and slab bridges without transverse reinforcement”, fib Symposium London 2009, 8 p., London, UK.
[5] Muttoni A. (2003), Schubfestigkeit und Durchstanzen von Platten ohne Querkarftbewehrung, Beton- und Stahlbetonbau, Vol. 98, No 2, pp. 74-84, Berlin, Germany.
[6] Muttoni A., Fernández Ruiz M. (2008), Shear strength of members without transverse reinforcement as function of critical shear crack width, ACI Structural Journal, V. 105, No 2, pp. 163-172, Farmington Hills, USA.
[7] Fernández Ruiz M., Muttoni A., Gambarova P. (2007), Relationship between nonlinear creep and cracking of concrete under uniaxial compression, Journal of Advanced Concrete Technology, Vol. 5, No 3, pp. 383-393, Japon
[8] Rombach G. A., Latte S., (2008), „Shear resistance of bridge decks without shear reinforcement”, Proceedings of the fib-Symposium, Rotterdam, Walraven and Stoelhorst (eds), Taylor & Francis Group, ISBN 978-0-415-47535-8, pp. 519-525, London, UK.
[9] Rombach G. A., Latte S., (2008), „Querkrafttragfähigkeit von Fahrbahnplatten ohne Querkraftbewehrung“, Beton- und Stahlbetonbau, Volume 104 Issue 10, pp. 642 – 656, Berlin, Allemagne.
[10] Lantsoght E., van der Veen C., Walraven J., (2010), “Experimental Study of Reinforced Concrete Bridge Decks Under Concentrated Loads Near Supports”, Proceeding of the 8th fib-PhD Symposium, Copenhagen, pp. 81-86, Copenhagen, Denmark.
[11] Regan, P.E (1982), “Shear Resistance of Concrete Slabs at Concentrated Loads close to Supports”, Engineering Structures Research Group, Polytechnic of Central London, 24 p., London, UK.
[12] Grimaldi A., Meda A., Rinaldi Z.. (2008) “Punching shear response in fiber reinforced bridge decks”, BEFIB 2008 7th Rilem symposium on fibre reinforced concrete (FRC). Chennai (India).
[13] Sawko F. and G.P. Saha (1971), “Effect of Fatigue on Ultimate Load Behavior of Concrete Bridge Decks”, ACI Journal Proceedings, SP26-36, pp. 942-961, Farmington Hills, USA.
[14] Hawkins N. M., (1976), “Fatigue Design Considerations for Reinforcement in Concrete Bridge Decks”, ACI Journal Proceedings, V. 73, No. 2, pp. 104-115, Farmington Hills, USA.
[15] Batchelor, B., Hewitt, B E., Csagoly, P. (1978), “An Investigation of the Fatigue Strength of Deck Slabs of Composite Steel-Concrete Bridges”, Transportation Research Record, Transportation Research Board, pp. 153-161, Washington DC, USA.
[16] Okada, K., Okamura, H., Sonoda, K., (1978), “Fatigue Failure Mechanism of Reinforced Concrete Bridge Deck Slabs”, Transportation Research Record No. 664, Bridge Engineering, Volume 1. Proceedings of a conference conducted by the Transportation Research Board, pp. 136-144, Washington DC, USA.
[17] Sonoda, K., Horikawa, T., (1982), “Fatigue Strength of Reinforced Concrete Slabs Under Moving Loads”, Fatigue of Steel and Concrete Structures; 1982. pp. 455-462, Lausanne.
[18] Pedikaris P. C., Beim S. R. and Bousias S. N. (1989), “Slab Continuity Effect on Ultimate and Fatigue Strength of Reinforced Concrete bridge deck models”, ACI Journal Proceedings, V. 86, No. 4, pp. 483-491, Farmington Hills, USA.
[19] Matsui S., Moon T., Fukumoto Y., (1992), “Relation between fatigue strength and plate thickness of highway bridge composite decks”, Technology reports of the Osaka University, vol. 42, no207600, pp. 181-188, Osaka, Japon.
[20] Toutlemonde F., Ranc G., (2001), Fatigue tests of cracked reinforced concrete slabs for estimating the service life of composite bridge decks”, Revue française de génie civil, vol. 5, no4, pp. 483-494, Paris.
[21] Graddy J. C., Kim J., Whitt J. H., Burns N. H., and Klingner R. E. (2002) “Punching-Shear Behavior of Bridge Decks under Fatigue Loading”, ACI Structural Journal, V. 99, No 3, pp. 257-266, Farmington Hills, USA.
[22] Youn S.-G., Chang S.-P. (1998), « Behavior of Composite Bridge Decks Subjected to Static and Fatigue Loading “,ACI Structural Journal, V. 95, No 3, pp. 249-258, Farmington Hills, USA.
[23] Hwang H, et al. (2010), “Punching and fatigue behavior of long-span prestressed concrete deck slabs”, Engineering Structures; doi:10.1016/j.engstruct.2010.05.005 (article in press)
[24] Schläfli M. (1999), Ermüdung von Brückenfahrbahnplatten aus Stahlbeton, Thèse EPFL, no 1998.
[25] Schläfli M., Brühwiler E., (1998), “Fatigue of existing reinforced concrete bridge deck slabs”, Engineering Structures, Volume 20, Issue 11, November 1998, pp. 991-998.
[26] Ueda T., Okamura H. (1983), “Behavior in Shear of concrete Beams under Fatigue Loading”, The University of Tokio, Journal of the Faculty of Engineering, Vol. 37, pp. 17-48, Tokio, Japon.
[27] Markworth E., Mildner K., Streiber A., (1984), „Versuche zur Quertragfähigkeit von Stahlbetonbalken unter dynamischer Belastung“, Die Strasse, Jahrgang 24, No. 6, pp. 175-180,
[28] Johansson U., (2004), “Fatigue tests and analysis of reinforced concrete bridge deck models”, Trita-BKN. Bulletin 2004, vol. 76, pp. 1-197 Royal Institute of Technology, Stockholm, Suède.
[29] Chang T. S., Kesler C. E. (1958), “Static and Fatigue Strength in Shear of Beams with Tensile Reinforcement”, ACI Journal Proceedings, Volume 54, No 6, pp. 1033-1057, Farmington Hills, USA.
[30] Chang T. S., Kesler C. E. (1958), “Fatigue Behavior of Reinforced Concrete Beams”, ACI Journal Proceedings, Volume 55, No 8, pp. 245-254, Farmington Hills, USA.
[31] fib (2010), “Model Code 2010 - First complete draft”, Volume 2, 312 p., Lausanne.