En-tête de navigationNavigation principaleSuiviFiche


Unité de recherche
INNOSUISSE
Numéro de projet
10442.2;4 PFES-ES
Titre du projet
Prediction and visualization of social dynamics
Titre du projet anglais
Prediction and visualization of social dynamics

Textes relatifs à ce projet

 AllemandFrançaisItalienAnglais
Description succincte
Anzeigen
-
-
Anzeigen
Résumé des résultats (Abstract)
Anzeigen
-
-
Anzeigen

Textes saisis


CatégorieTexte
Description succincte
(Allemand)
Prediction and visualization of social dynamics
Description succincte
(Anglais)
Prediction and visualization of social dynamics
Résumé des résultats (Abstract)
(Allemand)
In cooperation with ETH Zurich (Chair for Entrepreneurial Risks, Prof. Dr. Didier Sornette) and the University of Applied Sciences Northwestern Switzerland (Institute 4D¿Technologies and DataSpaces, Prof. Dr. Manfred Vogel), Amazee will develop and deploy an analysis platform to crawl, aggregate and visualize time series of people¿s web-surfing activities and connections. The dynamics based analysis will allow to identify relevance in emerging social trends and predict future behavior of large groups of interacting individuals. The predictions will be derived from mathematical modeling that allows for the simulation of social dynamics and epidemic word-of-mouth processes in social networks.
Résumé des résultats (Abstract)
(Anglais)
In cooperation with ETH Zurich (Chair for Entrepreneurial Risks, Prof. Dr. Didier Sornette) and the University of Applied Sciences Northwestern Switzerland (Institute 4D¿Technologies and DataSpaces, Prof. Dr. Manfred Vogel), Amazee will develop and deploy an analysis platform to crawl, aggregate and visualize time series of people¿s web-surfing activities and connections. The dynamics based analysis will allow to identify relevance in emerging social trends and predict future behavior of large groups of interacting individuals. The predictions will be derived from mathematical modeling that allows for the simulation of social dynamics and epidemic word-of-mouth processes in social networks.