En-tête de navigationNavigation principaleSuiviFiche


Unité de recherche
INNOSUISSE
Numéro de projet
9861.1;3 PFNM-NM
Titre du projet
Flywheel Gyroscope: levitated rotating MEMS for high sensitivity multi-axis gyroscope and multifunctional accelerometer
Titre du projet anglais
Flywheel Gyroscope: levitated rotating MEMS for high sensitivity multi-axis gyroscope and multifunctional accelerometer

Textes relatifs à ce projet

 AllemandFrançaisItalienAnglais
Description succincte
Anzeigen
-
-
Anzeigen
Résumé des résultats (Abstract)
Anzeigen
-
-
Anzeigen

Textes saisis


CatégorieTexte
Description succincte
(Allemand)
Flywheel Gyroscope: levitated rotating MEMS for high sensitivity multi-axis gyroscope and multifunctional accelerometer
Description succincte
(Anglais)
Flywheel Gyroscope: levitated rotating MEMS for high sensitivity multi-axis gyroscope and multifunctional accelerometer
Résumé des résultats (Abstract)
(Allemand)
The goal of this project is to develop a system-level model for mixed-domain simulation of a next generation inertial sensor system. The proposed sensor system is a multiple axis accelerometer and gyroscope based on electrostatic levitation of a disc shaped proof mass. The electrostatic suspension and high rotational speed of the disc enable the integration of improved sensitivity and resolution sensing in 6 degrees of freedom in one sensor device. Such an inertial sensor would represent a significant improvement concerning system performance and cost. The model developed during the project will allow to secure the realization of a future prototype by verifying key design and device operating parameters.
Résumé des résultats (Abstract)
(Anglais)
The goal of this project is to develop a system-level model for mixed-domain simulation of a next generation inertial sensor system. The proposed sensor system is a multiple axis accelerometer and gyroscope based on electrostatic levitation of a disc shaped proof mass. The electrostatic suspension and high rotational speed of the disc enable the integration of improved sensitivity and resolution sensing in 6 degrees of freedom in one sensor device. Such an inertial sensor would represent a significant improvement concerning system performance and cost. The model developed during the project will allow to secure the realization of a future prototype by verifying key design and device operating parameters.