ServicenavigationHauptnavigationTrailKarteikarten


Research unit
INNOSUISSE
Project number
9313.1;7 PFLS-LS
Project title
Miniaturized bio-chips based on multiple laser tweezers

Texts for this project

 GermanFrenchItalianEnglish
Short description
Anzeigen
-
-
Anzeigen
Abstract
Anzeigen
-
-
Anzeigen

Inserted texts


CategoryText
Short description
(German)
Miniaturized liquid handling system based on multiple laser tweezers
Short description
(English)
Miniaturized bio-chips based on multiple laser tweezers
Abstract
(German)
The goal is to develop a novel, extremely miniaturized liquid handling platform capable of replacing microtiter plate procedures. Micro-fluidics combined with multiple optical tweezers allows creating free-floating arrays of cells, cell fragments, micro- to nanometer-sized containers and beads to investigate in a highly parallel manner (bio)chemical reactions in-vivo or in-vitro. The new platform allows to downscale chemical¿s consumption and biotechnological production & analysis to the ultimate limits. As prototypical examples, we will investigate cellular signaling reactions mediated by G protein coupled receptors, ionotropic receptors and nuclear receptors in arrays of living cells, vesicles and beads trapped by multiple laser tweezers. The versatile application potential of the new platform for both academic research and industrial R&D will be demonstrated by screening cellular signaling reactions induced by compounds activating pharma-relevant-, taste- and odorant-receptors.
Abstract
(English)
The goal is to develop a novel, extremely miniaturized liquid handling platform capable of replacing microtiter plate procedures. Micro-fluidics combined with multiple optical tweezers allows creating free-floating arrays of cells, cell fragments, micro- to nanometer-sized containers and beads to investigate in a highly parallel manner (bio)chemical reactions in-vivo or in-vitro. The new platform allows to downscale chemical¿s consumption and biotechnological production & analysis to the ultimate limits. As prototypical examples, we will investigate cellular signaling reactions mediated by G protein coupled receptors, ionotropic receptors and nuclear receptors in arrays of living cells, vesicles and beads trapped by multiple laser tweezers. The versatile application potential of the new platform for both academic research and industrial R&D will be demonstrated by screening cellular signaling reactions induced by compounds activating pharma-relevant-, taste- and odorant-receptors.