En-tête de navigationNavigation principaleSuiviFiche


Unité de recherche
PCRD EU
Numéro de projet
03.0255-3
Titre du projet
IBAAC: An integrated biomimetic approach to asymmetric catalysis
Titre du projet anglais
IBAAC: An integrated biomimetic approach to asymmetric catalysis

Textes relatifs à ce projet

 AllemandFrançaisItalienAnglais
Mots-clé
-
-
-
Anzeigen
Autre Numéro de projet
-
-
-
Anzeigen
Programme de recherche
-
-
-
Anzeigen
Description succincte
-
-
-
Anzeigen
Résumé des résultats (Abstract)
-
-
-
Anzeigen
Références bases de données
-
-
-
Anzeigen

Textes saisis


CatégorieTexte
Mots-clé
(Anglais)
Enantioselective catalysis; artificial metallo enzymes
Autre Numéro de projet
(Anglais)
EU project number: 505020
Programme de recherche
(Anglais)
EU-programme: 6. Frame Research Programme - 2.2.1 Marie-Curie Research Training Networks
Description succincte
(Anglais)
See abstract
Résumé des résultats (Abstract)
(Anglais)

The project 'An Integrated Biomimetic Approach to Asymmetric Catalysis' (IBAAC) outlines complementary strategies to incorporate active catalyst precursors into a chiral host environment and efficiently test with high-throughput screening methodologies the resulting hybrid catalytic systems in asymmetric catalysis. Enantioselective catalysis is one of the most versatile tools to produce enantiomerically pure compounds to satisfy the needs of our society. Research in enantioselective catalysis is however hampered by the lack of predictive tools and thus mostly relies on a trial and error approach. As a consequence, the number of efficient catalysts and the corresponding substrates remains modest. In recent years, combinatorial approaches have successfully been applied to the discovery and to the development of new enantioselective catalysts. These studies have highlighted the fact that many subtle experimental parameters (solvent, counter ion, added salts etc.) often have a significant and unpredictable influence on the enantioselectivity of a reaction. These weak contacts between a catalyst and its 'non-bonded' environment are commonly referred to as the second coordination sphere. As host for asymmetric catalysis, various macromolecules will be evaluated: proteins, antibodies, imprinted polymers, dendrimers, and polymers. Both organic and organometallic coenzymes will be incorporated into the host. In order to ensure proper localization of the coenzyme within the host, covalent as well as non-covalent (H-bonds, x-stacking, hydrophobic interactions, dative bonds) anchoring will be evaluated. A chemo-genetic approach will be used to optimize both the activity and the selectivity of the catalysts. Chemical modification of the coenzyme and genetic modification of the host protein offer orthogonal optimization procedures, which allow to produce large libraries of hybrid catalysts.
Références bases de données
(Anglais)
Swiss Database: Euro-DB of the
State Secretariat for Education and Research
Hallwylstrasse 4
CH-3003 Berne, Switzerland
Tel. +41 31 322 74 82
Swiss Project-Number: 03.0255-3