Titel
Accueil
Navigation principale
Contenu
Recherche
Aide
Fonte
Standard
Gras
Identifiant
Interrompre la session?
Une session sous le nom de
InternetUser
est en cours.
Souhaitez-vous vraiment vous déconnecter?
Interrompre la session?
Une session sous le nom de
InternetUser
est en cours.
Souhaitez-vous vraiment vous déconnecter?
Accueil
Plus de données
Partenaires
Aide
Mentions légales
D
F
E
La recherche est en cours.
Interrompre la recherche
Recherche de projets
Projet actuel
Projets récents
Graphiques
Identifiant
Titel
Titel
Unité de recherche
OFEN
Numéro de projet
100459
Titre du projet
Micro Solid Oxide Fuel Cell on the Chip
Données de base
Textes
Participants
Titel
Textes relatifs à ce projet
Allemand
Français
Italien
Anglais
Mots-clé
-
-
-
Description succincte
-
-
-
Publications / Résultats
-
-
-
Rapport final
-
-
-
Textes saisis
Catégorie
Texte
Mots-clé
(Allemand)
TP0076;F-Brennstoffzellen
Description succincte
(Allemand)
Micro Solid Oxide Fuel Cell on the Chip
Publications / Résultats
(Allemand)
Publikation bitte bei A. Bieberle-Hütter beziehen.
Auftragnehmer/Contractant/Contraente/Contractor:
Nonmetallic Inorganic Materials, ETH Zürich
Autorschaft/Auteurs/Autori/Authors:
Bieberle-Hütter,Anja
Beckel,Daniel
Infortuna,Anna
Mücke,Ulrich P.
Rupp,Jennifer L.M
Rapport final
(Anglais)
The aim of this project is the numerical and experimental investigation of hydrocarbon-to-syngas reforming in microreformers for incorporation into an entire micro fuel cell system. Numerical simulations are used to achieve deeper understanding of several determining aspects in such a microreformer. These insights are used to optimize the reforming performance by proper choice of operational and geometrical parameters of a reformer. These numerical results are continued by comprehensive experimental studies. In the first chapter, the effect of wall conduction of a tubular methane microreformer is investigated numerically. Methane is used as the representative hydrocarbon because its detailed surface reaction mechanism is known. It is found that the axial wall conduction can strongly influence the performance of the microreactor and should not be neglected without a careful a priori investigation of its impact. In the second chapter, the effect of the catalyst amount and reactor geometry on the reforming process was investigated. It was found that the hydrogen selectivity changes significantly with varying catalyst loading. Thus, the reaction path leading to higher hydrogen production becomes more important by increasing the catalyst surface site density on the active surface. Another unexpected result is the presence of optimum channel geometry and optimum catalyst amount. In the third chapter of this project, the capability of flame-made Rh/Ce0.5Zr0.5O2 nanoparticles catalyzing the reforming of butane to H2- and CO-rich syngas was investigated experimentally in a packed bed reactor. The main goal of this study was the efficient reforming of butane at temperatures between 500 and 600°C for a micro intermediate-temp erature SOFC system. Our results showed that Rh/Ce0.5Zr0.5O2 nanoparticles proved to be a very promising material for butane-to-syngas reforming with complete butane conversion and a hydrogen yield of 77% at 600°C, which is higher than any value reported by other studies.
Auftragnehmer/Contractant/Contraente/Contractor:
Autorschaft/Auteurs/Autori/Authors:
Stutz,Michael
Hotz,Nico
Bieri,Nicole
Poulikakos,Dimos
Documents annexés
Micro Solid Oxide Fuel Cell on the Chip - Final Report
[PDF]
652 kB
SEFRI
- Einsteinstrasse 2 - 3003 Berne -
Mentions légales