Titel
Accueil
Navigation principale
Contenu
Recherche
Aide
Fonte
Standard
Gras
Identifiant
Interrompre la session?
Une session sous le nom de
InternetUser
est en cours.
Souhaitez-vous vraiment vous déconnecter?
Interrompre la session?
Une session sous le nom de
InternetUser
est en cours.
Souhaitez-vous vraiment vous déconnecter?
Accueil
Plus de données
Partenaires
Aide
Mentions légales
D
F
E
La recherche est en cours.
Interrompre la recherche
Recherche de projets
Projet actuel
Projets récents
Graphiques
Identifiant
Titel
Titel
Unité de recherche
PCRD EU
Numéro de projet
02.0420-1
Titre du projet
RAMBOQ: Probabilistic gates making binary optical quanta
Titre du projet anglais
RAMBOQ: Probabilistic gates making binary optical quanta
Données de base
Textes
Participants
Projets afférents
Titel
Textes relatifs à ce projet
Allemand
Français
Italien
Anglais
Mots-clé
-
-
-
Autre Numéro de projet
-
-
-
Programme de recherche
-
-
-
Description succincte
-
-
-
Résumé des résultats (Abstract)
-
-
-
Références bases de données
-
-
-
Textes saisis
Catégorie
Texte
Mots-clé
(Anglais)
Forecasting; Information Processing; Information Systems; Innovation; Technology Transfer
Autre Numéro de projet
(Anglais)
EU project number: IST-2001-38864
Programme de recherche
(Anglais)
EU-programme: 5. Frame Research Programme - 1.2.8 Generic R&D activities
Description succincte
(Anglais)
See abstract
Résumé des résultats (Abstract)
(Anglais)
We will explore the possibility of building scalable quantum information processors using novel ideas of linear quantum logic. This will include probabilistic CNOT gates assembled from single photon sources and sources of entangled states. We will also investigate the development of higher dimensional quantum logic aimed at developing error resilient quantum networks. Supporting work will develop logic realisations. A theoretical effort will aim to increase the efficiency of simple gate and look at scalability, error correction and the overall limits to this technology.
Objectives:
Ultimately RAMBOQ seeks to develop the technologies supporting elementary scalable quantum processors and robust optical links between separated quantum processors. It aims to do this by developing on novel schemes for efficient quantum computation using conditional linear logic. Studying the theoretical limits to conditional linear logic we will reduce gate complexity and increase efficiency. Experimentally we will demonstrate efficient creation of single photon input states, single mode entangled states and efficient readout detectors. Starting from a single gate our ultimate goal will be to demonstrate scalability through a cascaded (few gate) quantum logic circuit. We would also like to demonstrate applications of logic in novel quantum communication schemes: sharing and teleportation of quantum states for quantum networking, distributed quantum processing and other quantum communication protocols. Finally we will investigate novel logic schemes using higher order states for multi-party quantum protocols.
Work description:
The project is arranged into six workparts:
WP0 Management and dissemination of results.
WP1 Theory of linear quantum logic.
WP2 Input-output: single photon sources and detectors.
WP3 Implementation of quantum logic.
WP4 Tools for Quantum Networks. Higher dimensional Hilbert space.
WP6 Applications. We will develop simplified logic gates in WP1 and feed these designs to WP3, WP4 and WP6.
WP2 will develop time bandwidth limited single photon sources suitable for logic and demonstrate the fundamental interference effects required.
Similar developments on entangled pair sources will be carried out in WP3 and an eventual experiment will demonstrate a scalable gate combining entangled state and single photon sources. Such gates will show low errors arising from interference only but may suffer from low efficiency. We will directly address this low efficiency with novel designs for single photon sources and detectors WP2 and with novel gate design WP1/3. The simple gates developed will be directly applied to novel quantum network ideas to show novel quantum states and use also investigate higher order encoding using higher order quantum states and use such states for emerging multiparty communication proptocoles WP5. Output from the programme leading to nearer term applications will be analysed in WP6.
Références bases de données
(Anglais)
Swiss Database: Euro-DB of the
State Secretariat for Education and Research
Hallwylstrasse 4
CH-3003 Berne, Switzerland
Tel. +41 31 322 74 82
Swiss Project-Number: 02.0420-1
SEFRI
- Einsteinstrasse 2 - 3003 Berne -
Mentions légales