ServicenavigationHauptnavigationTrailKarteikarten


Research unit
EU RFP
Project number
02.0109
Project title
EUROFET: Organised molecular films and their use for organic field-effect transistors and related opto-electronic devices

Texts for this project

 GermanFrenchItalianEnglish
Key words
-
-
-
Anzeigen
Alternative project number
-
-
-
Anzeigen
Research programs
-
-
-
Anzeigen
Short description
-
-
-
Anzeigen
Abstract
-
-
-
Anzeigen
References in databases
-
-
-
Anzeigen

Inserted texts


CategoryText
Key words
(English)
Education; Training; Scientific Research; Social Aspects
Alternative project number
(English)
EU project number: HPRN-CT-2002-00327
Research programs
(English)
EU-programme: 5. Frame Research Programme - 4.1.1 Research training networks
Short description
(English)
See abstract
Abstract
(English)
The EUROFET Network will develop deposition schemes for ordered growth of organic conjugated materials for use in the fabrication of efficient organic field effect transistors (OFETs) and related opto-electronic devices (OEDs). This includes new preparation techniques like vapour deposition polymerisation (VDP). It will also improve the European knowledge base concerning the fundamental processes in OFETs and OEDs that determine recombination efficiency, charge generation efficiency, mobility and lifetime. The programme of work will focus on the design and implementation of synthetic methodologies for the use of reactive monomers inVDP, the establishment of substrate modification and deposition conditions to control order and post-deposition processing schemes. So one basic idea for the EUROFET project is to use the high degree of orientation in both conjugated polymers and cross-linkable reactive mesogenes that have been realised in organic LEDs to produce OFET -materials with high carrier mobilities.

Device studies will constitute a large part of the work but additional studies will be carried out on the materials and structures in order to study the dynamics and reaction paths of fundamental photo-excitations and the recombination processes determining the conversion efficiency of electrical energy into light or gain by optical or electrical pumping of materials. Both intra-molecular, intermolecular and interfacial charge and energy transfer as well as confinement phenomena due to the layered structures will be studied by different techniques including laser spectroscopy with time resolution down to 20 fs, polarisation dependent UPS, XPS and NEXAFS studies using synchrotron radiation, and other methods of analytical, electrical and optical thin layer characterisation. Technologically critical aspects such as degradation processes and methods for increasing the lifetime of devices are also included.
References in databases
(English)
Swiss Database: Euro-DB of the
State Secretariat for Education and Research
Hallwylstrasse 4
CH-3003 Berne, Switzerland
Tel. +41 31 322 74 82
Swiss Project-Number: 02.0109