En-tête de navigationNavigation principaleSuiviFiche


Unité de recherche
PCRD EU
Numéro de projet
01.0360
Titre du projet
GTEM: Galois theory and explicit methods in arithmetic
Titre du projet anglais
GTEM: Galois theory and explicit methods in arithmetic

Textes relatifs à ce projet

 AllemandFrançaisItalienAnglais
Mots-clé
-
-
-
Anzeigen
Autre Numéro de projet
-
-
-
Anzeigen
Programme de recherche
-
-
-
Anzeigen
Description succincte
-
-
-
Anzeigen
Partenaires et organisations internationales
-
-
-
Anzeigen
Résumé des résultats (Abstract)
-
-
-
Anzeigen
Références bases de données
-
-
-
Anzeigen

Textes saisis


CatégorieTexte
Mots-clé
(Anglais)
Ideal lattices; automorphisms; characteristic polynomials;
Education; Training; Scientific Research; Social Aspects
Autre Numéro de projet
(Anglais)
EU project number: HPRN-CT-2000-00114
Programme de recherche
(Anglais)
EU-programme: 5. Frame Research Programme - 4.1.1 Research training networks
Description succincte
(Anglais)
See abstract
Partenaires et organisations internationales
(Anglais)
Coordinator: Université Pierre et Marie Curie, Paris (F)
Résumé des résultats (Abstract)
(Anglais)
Determinants of integral ideal lattices and automorphisms of given characteristic polynomial

Let K be an algebraic number field endoved with a non-trivial involution - : K ® K. Let F be the fixed field of the involution. We denote by OK the ring of integers of K, and by OF the ring of integers of F . An integral ideal lattice is an integral lattice (I,b) , where I is a fractional OK-ideal, satisfying the relation
b(l x, y) = b( x, ly)
for all x,y I , and for all l OK.
It is easy to see that this is equivalent with the existence of an a K* with a = a such that
b(x,y ) = Tr (a x y),
for x,y I , where Tr = TrK/Q: K ® Q is the trace map.

It is natural to try to characterise the ideal lattices defined on a given algebraic number field; in particular, to ask which determinants and signatures are possible. We give such a characterisation in terms of ramification properties of the extension K/F . The details are given in [1].
A lattice is said to be unimodular if its determinant is ± 1 . In particular, we obtain a characterization of the signatures of unimodular lattices :

Proposition: Suppose that no prime OF-ideal ramifies in K/F. Let p, q be two non-negative integers with p + q = 2n . Then there exists a unimodular ideal lattice of signature (p,q) if and only if the following conditions hold :
(a) (p,q) ³ (n-s,n-s) and (p,q) º (n-s,n-s) (mod 2)
(b) p º q ( mod 8).
Integral ideal lattices occur in several applications, for instance to symmetric bilinear forms with an additional structure, like an automorphism with given characteristic polynomial. A recent paper of B. Gross and C. McMullen [2] deals with the characteristic polynomials of automorphisms of even, unimodular lattices with signature (p,q). Using the char-acterisation of signatures and determinants of ideal lattices, we give a different proof of their results, cf. [1].

[1] E. Bayer--Fluckiger, Determinants of integral ideal lattices and automorphisms of given characteristic polynomial, to appear.
[2] B.H. Gross and C.T. McMullen, Automorphisms of even unimodular lattices and unramified Salem numbers, to appear.
Références bases de données
(Anglais)
Swiss Database: Euro-DB of the
State Secretariat for Education and Research
Hallwylstrasse 4
CH-3003 Berne, Switzerland
Tel. +41 31 322 74 82
Swiss Project-Number: 01.0360