En-tête de navigationNavigation principaleSuiviFiche


Unité de recherche
PCRD EU
Numéro de projet
99.0438-2
Titre du projet
Knowledge-driven batch production
Titre du projet anglais
Knowledge-driven batch production

Textes relatifs à ce projet

 AllemandFrançaisItalienAnglais
Mots-clé
-
-
-
Anzeigen
Autre Numéro de projet
-
-
-
Anzeigen
Programme de recherche
-
-
-
Anzeigen
Description succincte
-
-
-
Anzeigen
Partenaires et organisations internationales
-
-
-
Anzeigen
Résumé des résultats (Abstract)
-
-
-
Anzeigen
Références bases de données
-
-
-
Anzeigen

Textes saisis


CatégorieTexte
Mots-clé
(Anglais)
Batch production; batch process control; batch optimization;
Education; Training; Scientific Research; Social Aspects
Autre Numéro de projet
(Anglais)
EU project number: HPRN-2000-00039
Programme de recherche
(Anglais)
EU-programme: 5. Frame Research Programme - 4.1.1 Research training networks
Description succincte
(Anglais)
See abstract
Partenaires et organisations internationales
(Anglais)
Coordinator: Technical University of Denmark; Lyngby (DK)
Résumé des résultats (Abstract)
(Anglais)
Two key areas of concern in the chemical and biochemical processing industries are how to achieve greater efficiency at lower cost with existing plants, and how to maximize the benefits of modern multi-purpose agile manufacturing technology. As many companies are now looking to manufacture a wide variety of products, often in small batches, there is a requirement for generic types of models and control and optimization tools that can encompass a range of products and recipes. The Research Training Network 'BatchPro' is a major contributor to the modeling, monitoring, control and optimization of batch production systems.

More specifically, the ability to use knowledge from different sources to drive batch processes is of crucial importance across many sectors. In order to satisfy the identified needs, advanced measurement techniques and leading edge multivariate data processing and optimizing process control procedures are required. It is essential, therefore, that process engineers, chemists, mathematicians, statisticians and control engineers collaborate to develop the appropriate tools through multi-disciplinary research.

The knowledge-driven approach consists of three research themes:
· Modeling through knowledge integration,
· Multivariate measurements, performance monitoring and state estimation,
. Nonlinear control and dynamic optimization.
Références bases de données
(Anglais)
Swiss Database: Euro-DB of the
State Secretariat for Education and Research
Hallwylstrasse 4
CH-3003 Berne, Switzerland
Tel. +41 31 322 74 82
Swiss Project-Number: 99.0438-2