ServicenavigationHauptnavigationTrailKarteikarten


Forschungsstelle
EU FRP
Projektnummer
99.0438-2
Projekttitel
Knowledge-driven batch production
Projekttitel Englisch
Knowledge-driven batch production

Texte zu diesem Projekt

 DeutschFranzösischItalienischEnglisch
Schlüsselwörter
-
-
-
Anzeigen
Alternative Projektnummern
-
-
-
Anzeigen
Forschungsprogramme
-
-
-
Anzeigen
Kurzbeschreibung
-
-
-
Anzeigen
Partner und Internationale Organisationen
-
-
-
Anzeigen
Abstract
-
-
-
Anzeigen
Datenbankreferenzen
-
-
-
Anzeigen

Erfasste Texte


KategorieText
Schlüsselwörter
(Englisch)
Batch production; batch process control; batch optimization;
Education; Training; Scientific Research; Social Aspects
Alternative Projektnummern
(Englisch)
EU project number: HPRN-2000-00039
Forschungsprogramme
(Englisch)
EU-programme: 5. Frame Research Programme - 4.1.1 Research training networks
Kurzbeschreibung
(Englisch)
See abstract
Partner und Internationale Organisationen
(Englisch)
Coordinator: Technical University of Denmark; Lyngby (DK)
Abstract
(Englisch)
Two key areas of concern in the chemical and biochemical processing industries are how to achieve greater efficiency at lower cost with existing plants, and how to maximize the benefits of modern multi-purpose agile manufacturing technology. As many companies are now looking to manufacture a wide variety of products, often in small batches, there is a requirement for generic types of models and control and optimization tools that can encompass a range of products and recipes. The Research Training Network 'BatchPro' is a major contributor to the modeling, monitoring, control and optimization of batch production systems.

More specifically, the ability to use knowledge from different sources to drive batch processes is of crucial importance across many sectors. In order to satisfy the identified needs, advanced measurement techniques and leading edge multivariate data processing and optimizing process control procedures are required. It is essential, therefore, that process engineers, chemists, mathematicians, statisticians and control engineers collaborate to develop the appropriate tools through multi-disciplinary research.

The knowledge-driven approach consists of three research themes:
· Modeling through knowledge integration,
· Multivariate measurements, performance monitoring and state estimation,
. Nonlinear control and dynamic optimization.
Datenbankreferenzen
(Englisch)
Swiss Database: Euro-DB of the
State Secretariat for Education and Research
Hallwylstrasse 4
CH-3003 Berne, Switzerland
Tel. +41 31 322 74 82
Swiss Project-Number: 99.0438-2