

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Eidgenössisches Departement für Umwelt, Verkehr, Energie und Kommunikation UVEK

Bundesamt für Energie BFE

KATALYTISCHE DIREKT-VERFLÜSSIGUNG VON BIOMASSE (KDV)

Schlussbericht

Ausgearbeitet durch

Jürgen Good, Verenum Langmauerstrasse 109, CH - 8006 Zürich, www.verenum.ch

Thomas Nussbaumer, Verenum Langmauerstrasse 109, CH - 8006 Zürich, www.verenum.ch

Hanspeter Ott, W. Müller Konstruktionen AG Botzen 12, 8416 Flaach, wmag@bluewin.ch

Druckdatum Original:

28.September 2007

Revidierte Fassung:

18. Juli 2013

Impressum

Im Auftrag des Bundesamt für Energie, Forschungsprogramm Biomasse Mühlestrasse 4, CH-3063 Ittigen Postadresse: CH-3003 Bern Telefon +41 31 322 56 11, Fax +41 31 323 25 00 www.bfe.admin.ch BFE-Projektleiter: Daniel Binggeli, <u>daniel.binggeli@bfe.admin.ch</u> Projektnummer: 101194 Bezugsort der Publikation: <u>www.energieforschung.ch</u>

Für den Inhalt und die Schlussfolgerungen sind ausschliesslich die Autoren verantwortlich.

Inhaltsverzeichnis

Zusammenfassung Abstract 1 Einleitung 1.1 Ausgangslage und Motivation 1.2 Zielsetzung 2 Grundlagen der Pyrolyse 1 2.1 Begriffe	.5 .6 .7 7 8 0 10 10 16 19 21
Abstract 1 Einleitung 1.1 Ausgangslage und Motivation 1.2 Zielsetzung 2 Grundlagen der Pyrolyse 1 2.1 Begriffe	.6 7 8 0 10 10 16 19 21
1 Einleitung 1.1 Ausgangslage und Motivation 1.2 Zielsetzung 2 Grundlagen der Pyrolyse 1 Begriffe	7 8 0 10 16 19 21
1.1 Ausgangslage und Motivation 1.2 Zielsetzung	7 8 0 10 10 16 19 21
 1.2 Zielsetzung	8 0 10 10 16 19
2 Grundlagen der Pyrolyse1 2.1 Begriffe	0 10 10 16 19
2.1 Begriffe	10 10 16 19
	10 16 19
2.2 Grundlagen	16 9 1
2.3 Einflussgrössen	9 1
2.4 Reaktionsablauf	21
3 Pyrolyseverfahren	
3.1 Verfahrenstechnik der schnellen Pyrolyse	21
3.2 Wirbelschichtverfahren	23
3.3 Pyrolyse im Doppelschneckenreaktor	25
3.4 Pyrolyse unter Vakuum 2	26
3.5 Ablative Pyrolyse 2	26
3.6 Druckverflüssigung	28
3.7 Eigenschaften und Nutzung von Pyrolyseöl 2	29
4 Aufbau der KDV-Anlage	51
4.1 Ursprüngliche Laboranlage (Batch-Prozess)	31
4.2 Technikumsanlage (kontinuierlicher Prozess)	32
4.3 Mess- und Regeltechnik	36
4.3.1 Anlagensteuerung 3	36
4.3.2 Temperaturen 3	36
4.3.3 Zugeführte elektrische Energie 3	36
4.3.4 Gasanalytik 33	37
4.3.6 Massenstrom	37 37
4.3.7 Wassergehalt 3	38
5 Berechnungen	9
6 Resultate	0
7 Schlussfolgerungen	5
8 Litaratur	יט די

Vorbemerkung zur revidierten Fassung

Im Forschungsbericht mit dem Titel "Katalytische Direkt-Verflüssigung von Biomasse (KDV)" sollte die Eignung eines bei Projekteingabe vorgeschlagenen Verfahrens zur Verflüssigung von Biomasse untersucht werden. In einer ersten Projektphase wurde das Konzept jedoch abgeändert und ein neuartiger Reaktor ohne Kathalysatorzugabe untersucht, mit dem die Zwischenziele nicht erreicht wurden und weshalb das Projekt vorzeitig abgebrochen wurde.

Das untersuchte Konzept entspricht damit weder dem chemisch-katalytischen Verfahren von Dr. Koch/Alphakat, welches als "katalytische drucklose Verölung/KDV" bekannt ist, noch der Pyrolyse mit zusätzlicher Verwendung von Katalysator, welche teilweise – und verwechselbar – auch als katalytische Direkt-Verflüssigung oder (ebenfalls) abgekürzt "KDV" bezeichnet wird.

Es konnten somit insbesondere über die KDV-Technologie von Dr. Koch/Alphakat, welche als "KDV" "katalytische drucklose Verölung" bekannt ist, keinerlei Aussagen gemacht werden; vielmehr blieb diese Technologie ungeprüft.

Diese Vorbemerkung wurde in der vorliegenden Fassung vom 18. Juli 2013 ergänzt.

Der Berichtstitel und der Inhalt des Berichts sind gegenüber der Original-Version nicht verändert.

Zusammenfassung

Vor Beginn des Projekts wurden in Voruntersuchungen Messungen an einer einstufigen absatzweise betriebenen Versuchsanlage mit direkter katalytischer Verflüssigung durchgeführt. Diese Messungen liessen eine hohe Ausbeute an Pyrolyseöl mit Diesel ähnlichen Eigenschaften erwarten, waren jedoch insbesondere wegen des Batch-Betriebs mit grossen Unsicherheiten behaftet. Ziel des vorliegenden Projekts war die Realisierung einer kontinuierlichen Technikumsanlage und die Validierung einer hohen Ausbeute an als Diesel ähnlichem Flüssigöl. Die Ausbeute sollte sicher höher als 50% mit einem Zielwert von über 60% bezogen auf die zugeführte Energie erreichen.

Im Projekt wurde eine kontinuierliche Versuchsanlage realisiert, in welcher in einem ersten Reaktor eine Pyrolyse stattfindet, welche Eigenheiten der schnellen und der ablativen Pyrolyse verbindet. Anschliessend ist eine Konversion der hochmolekularen Verbindungen in einem mit Katalysator und schwersiedendem Öl betriebenen Crackreaktor vorgesehen, danach werden die Gase direkt in eine Rektifikationskolonne geleitet, aus der eine Abtrennung der Flüssigfraktion mit Diesel ähnlichem Siedebereich erfolgt, während der Sumpf in den Crackreaktor zurückgeführt wird.

Im Projekt wurden mehrere Testreihen mit trockenem Sägemehl und einer Pyrolysetemperatur von rund 480°C durchgeführt, wobei der zweite Reaktor noch nicht mit Katalysator beschickt war, da ein cracken der hochsiedenden Sumpffraktion erst bei längerem Betrieb erforderlich wird. Während der Messungen wurden alle wichtigen Temperaturen und Massenströme sowie die Zusammensetzung der leichtflüchtigen Komponenten im Produktgas (CO, CH₄, H₂, CO₂) kontinuierlich erfasst. Für die anfallende Flüssigphase war eine Analyse gemäss der Brennstoffspezifikationen von EN 590 vorgesehen. In den Testreihen wurde die erwartete Durchsatzleistung nicht erreicht und es konnte nur während maximal rund 8 Stunden ein kontinuierlicher Betrieb aufrecht erhalten werden. Wegen der geringen Durchsatzmengen und des noch nicht stationären Betriebszustands ist die Bestimmung der Produktausbeute noch mit einer grossen Unsicherheit behaftet. Dennoch zeigte sich, dass die erwartete Ausbeute an Diesel ähnlichem Flüssigöl nicht erreicht werden konnte, sondern lediglich rund 20% bezogen auf die zugeführte Energie betrug. Rund 60% des Energieinhalts waren im Gas, der Rest im Pyrolysekoks.

Es wird vermutet, dass die initiale Pyrolyse weder die Anforderungen an eine schnelle Pyrolyse mit hohem konvektivem Wärmeübergang im Bett noch die Anforderungen an eine ablative Pyrolyse mit hohen Anpressdrücken ausreichend erfüllt und dass aufgrund der daraus resultierenden zu geringen Aufheizrate eine hohe Umsetzung der Biomasse in leichtflüchtige Verbindungen erfolgt. Die Konversion zu leichtflüchtigen Verbindungen kann zusätzlich verstärkt werden durch Folgereaktionen an Koks im Pyrolysereaktor und im Staubabscheider vor dem Crackreaktor. Im Weiteren kann die lange Aufenthaltszeit der Pyrolysegase in der anschliessenden Rektifikationskolonne zu einer weiteren Umsetzung zu leichtflüchtigen Verbindungen führen, da Pyrolyseöl insbesondere wegen des hohen Sauerstoffgehalts thermisch nicht stabil ist.

Da das Zwischenziel der geforderten Produktausbeute nicht erreicht wurde, wurde das Projekt nach den Vorversuchen abgebrochen.

Abstract

Title: Direct catalytic liquefaction of biomass

Prior to the present project, preliminary tests on the direct catalytic liquefaction of biomass in a singlestep reactor have been performed in a batch-wise operated test bench enabling promising, but uncertain results with respect to the potential yield of liquid fuel. The target of the present project was to validate the high yield of liquid fuels by a revised concept combining the characteristics of ablative and fast pyrolysis, a catalytic cracking of heavy tars in a secondary reactor, and a subsequent direct distillation of the high molecular product gas. For this purpose, the test-bench plant was extended to a continuously operated plant for a fuel throughput of 20 to 100 kg per hour with the target to confirm the capability of a direct conversion of biomass into a liquid fuel with similar fuel properties as Diesel and with high energetic yield, i.e. certainly > 50% with a target of > 60%.

The operation parameters such as temperatures and mass flows were measured to derive experimental data of the product yield and to calculate the mass and energy balances during stationary operation. During several test runs, the plant was operated with dry saw dust at a typical pyrolysis temperature of app. 480°C without addition of catalyst to the secondary reactor. Further, the gaseous products such (CO, CH_4 , H_2 , CO_2) were continuously analysed during the tests. The liquid products, i.e., product fractions with boiling temperatures corresponding to gasoline and Diesel, were planned to be investigated by chemical analyses in order to check their suitability as transportation fuel with respect to fuel specification EN 590. During the test runs, the fuel throughput was lower than expected and a stationary operation was enabled during few hours, i.e. up to maximum 8 h, only which did not enable an final assessment during real steady-state operation. Consequently, the measurement of mass flows and results on mass balance and energy balance exhibit high uncertainties. However, the evaluation of the results show, that the target yield of liquid fuel with similar boiling point as Diesel was not achieved and estimated to be app. 20% based on energy input only, while roughly 60% of the energy content was found in the highly volatile pyrolysis gas and the rest in the pyrolysis coke.

It is assumed, that neither the needs for fast pyrolysis with high convective heat transfer in the bed nor the conditions for efficient ablative pyrolysis can be achieved in the presented concept of pyrolysis, thus resulting in an insufficient heating rate leading to a conversion to highly volatile gases instead of high molecular condensable organic compounds. The conversion to light gases may be further promoted by catalytic cracking on solid coke available in the reactor and on the filter for coke removal. Furthermore, the principle of subsequent direct distillation may be responsible for a further conversion into gaseous products, since pyrolysis oil is thermally instable mainly due to its high oxygen content.

Since the target yield of liquid product set as a milestone was not achieved by the investigated process, the project was not continued.

Keywords: Pyrolysis, ablative pyrolysis, flash pyrolysis, catalytic liquefaction.

1 Einleitung

1.1 Ausgangslage und Motivation

Holz und andere Biomasse weist ein grosses Potenzial als Energieträger auf, das nicht ausgeschöpft ist und in Zukunft zur Substitution nicht erneuerbarer Energieträger genutzt werden kann. Der Einsatz von Holz und Biomasse bietet sich einerseits im Wärme- und Stromsektor an. Entsprechende Verfahren können teilweise hohe Wirkungsgrade erreichen, sie führen jedoch in kleinen und mittleren Anlagen oft zu erhöhten Schadstoffemissionen an Feinstaub und Stickoxiden. Zudem besteht auch ein grosses Interesse an der Produktion von Treibstoffen aus Biomasse zur Anwendung erneuerbarer Energieträger im Verkehr. Für die Treibstofferzeugung aus Holz und holzähnlicher Biomasse werden vor allem folgende zwei Umwandlungsverfahren untersucht:

- Zum Einen wird als initialer Umwandlungsschritt die Vergasung von Holz zu einem Produktgas propagiert, welches zum Beispiel als Ausgangsstoff zur Fischer-Tropsch-Synthese von Diesel dient, der auch als Sun-Diesel oder BtL (Biomass to Liquid) bezeichnet wird. Dieser Ansatz wird beispielsweise von Shell, Daimler-Chrysler und VW mit der Firma CHOREN nach dem Carbo-V-Verfahren verfolgt. Das Produktgas der Holzvergasung kann aber auch zur Synthese anderer Treibstoffe wie Methanol, Methan, Wasserstoff oder Benzin verwendet werden. Daneben wird die katalytische Umwandlung des Produktgases zu Methan im Projekt EcoGas des PSI verfolgt. Institutionen aus dem EU-Raum zielen dagegen die Herstellung von Flüssigtreibstoffen an, da diese eine höhere Energiedichte als Methan aufweisen und in das bestehende Versorgungsnetz für Fahrzeuge integriert werden können.
- Zum Andern besteht ein Interesse an der Pyrolyse von Holz zu einem Pyrolyseöl, welches nach einer mehr oder weniger aufwändigen Reinigung und Aufbereitung als Treibstoff für Verbrennungsmotoren oder Gasturbinen dient. Um eine hohe Ausbeute an Flüssigtreibstoff zu erzielen, ist dabei eine sehr rasche Erhitzung der Biomasse erforderlich. Die Umwandlung von Holz bei sehr hohen Aufheizraten wird als schnelle Pyrolyse oder Flash-Pyrolyse bezeichnet.

Die Verfahren zur Treibstoffherstellung über die schnelle Pyrolyse sowie über die Vergasung und anschliessende Synthese weisen zwei wesentliche Nachteile auf:

- Beide Verfahren umfassen mehrstufige, aufwändige Prozesse. Nach dem thermischen Umwandlungsprozess ist bei der Vergasung eine Synthese notwendig, während die Pyrolyseölherstellung eine Aufarbeitung des instabilen und chemisch aggressiven Pyrolyseöls zu einem lagerfähigen Flüssigtreibstoff erfordert. Aus diesem Grund lassen sich beide Verfahren nur grosstechnisch realisieren, wobei in der Regel Anlagen mit weit mehr als 100'000 Jahrestonnen Durchsatz vorausgesetzt werden. Experten aus dem Treibstoffbereich gehen zum Teil gar von Anlagegrössen mit mindestens 1 Million Jahrestonnen Durchsatz aus, was auch den Verflüssigungsanlagen für Kohle entspricht (z.B. [Boerigter 2005]). Selbst Grossanlagen weisen noch hohe spezifische Investitionskosten auf, so dass ein wirtschaftlicher Betrieb bis anhin kaum ohne Subventionen möglich ist.
- Zum andern und teilweise als Folge der Mehrstufigkeit erreichen beide Verfahren nur relative bescheidene Umwandlungswirkungsgrade vom Holz zum Treibstoff von rund 45% bis 55%. (Die

Pyrolyseöl-Ausbeute erreicht rund 60% bezogen auf den Heizwert, ist aber noch mit einem Aufwand für die Aufbereitung zu einem technischen Treibstoff verbunden. Durch Vergasung kann ein Wirkungsgrad von rund 75% zu Gas erreicht werden, für die anschliessende Aufbereitung zu einem Treibstoff ist aber noch mit einem Wirkungsgrad von rund 65% bis 75% zu rechnen.)

Als Sonderverfahren der Pyrolyse kommt auch die katalytisch unterstützte Pyrolyse in Frage, welche in vorgängigen Untersuchungen und im vorliegenden Projekt als katalytische Direkt-Verflüssigung (KDV) bezeichnet wird. Für das KDV-Verfahren wurden beim Projektstart im Vergleich zu Vergasungsund schnellen Pyrolyseverfahren wesentliche Vorteile erwartet. Aus Vorversuche wurde erwartet, dass durch katalytisches cracken direkt ein Produktöl hergestellt werden kann, welches ähnliche Eigenschaften wie Diesel aufweist, das ohne aufwändige Aufbereitung als Dieselersatz verwendet werden kann. Diese Erwartungen basierten einerseits auf publizierten Grundlagenuntersuchungen an einer Laboranlage an der Hochschule für angewandte Wissenschaften Hamburg gemäss Tabelle 1.1. Im Weiteren liessen Vorversuche an einer diskontinuierlich betriebenen Anlage der Firma Müller Konstruktionen AG in Flaach ähnliche Resultate erwarten.

Tabelle 1.1Vergleich von Wirkungsgrad und Wirtschaftlichkeit verschiedener Techniken zur Herstellung von
Treibstoff aus Biomasse nach [Willner 2005] basierend auf [Willner 1993], [Willner & Brunner 1994].
und [Willner et al. 2004].

Prozess	Wirkungsgrad	Ausbeute	Heizwert	Dichte	Ausbeute	Kosten	Kosten
	[%]	[l ha ⁻¹ a ⁻¹]	[MJ kg ⁻¹]	[kg l ⁻¹]	[t ha ⁻¹ a ⁻¹]	[€ ⁻¹]	[€ I _{Diesel} ⁻¹]
Methanol	40–55	5 000	21,1	0,8	2,0	0,36	0,77
Ethanol	33–50	4 200	27,7	0,8	2,2	0,44	0,72
RME	45–54	1 600	37	0,9	1,3	0,55	0,60
FT-Diesel	40–47	2 000	42,5	0,85	1,7	0,70	0,70
KDV-Diesel	70–75	9 000	32	0,85	5,9	0,30	0,40

Der ausgewiesenen Heizwert von 32 MJ/kg beträgt beinahe das Zweifache des üblicherweise von Pyrolyseöl in der Literatur angegebenen Wertes von 16 bis 19 MJ/kg. Im Weiteren wurde auch ein höherer Wirkungsgrad als üblicherweise ausgewiesen erwartet. Das KDV-Verfahren wäre damit nicht nur einfacher, sondern insbesondere auch für kleine und mittlere Anlagen geeignet und versprach deshalb einen wirtschaftlichen Betrieb für dezentrale Anlagen. Im vorliegenden Projekt sollten deshalb die erzielbaren Werte zu Wirkungsgrad, Ausbeute und Produktqualität an einer quasi-kontinuierlichen Technikumsanlage überprüft werden.

1.2 Zielsetzung

Im Forschungsprojekt sollte das in Vorversuchen chargenweise betriebene Verfahren der katalytischen Direkt-Verflüssigung (KDV) von Biomasse zu einer kontinuierlichen Versuchsanlage im Technikums-Massstab mit einem Durchsatz von 20 bis 100 kg pro Stunde erweitert und in mehreren Versuchsreihen ausgemessen werden. Anhand von Messungen sollten die wichtigsten Kenngrössen der Anlage bestimmt sowie die Produktströme zur Analyse erfasst werden. Damit sollte eine Stoff- und Energiebilanz im stationären Zustand erstellt und der Umwandlungswirkungsgrad zu Treibstoff bestimmt sowie beurteilt werden, ob die in Labormessungen von [Willner & Brunner 1994] dokumentierte Ausbeute an Dieseltreibstoff in einer Technikumsanlage erreicht werden kann. Bei erfolgreichem Betrieb sollten die Zusammensetzung der Produkte sowie die Eignung des Hauptprodukts als Dieseltreibstoff nach EN 590 bestimmt werden.

Als Ausgangsstoff sollten verschiedene Biomassen, vorab Holz, versuchsweise weitere wie Stroh, Gras, Cellulose oder Zucker, untersucht und die Produkte im Hinblick auf ihre Eignung als Diesel und Benzin bewertet. Im Weiteren sollten die festen Rückstände und das anfallende Kondensat bestimmt und ihre Eignung als Brennstoff (fester Rückstand) bzw. ihre Möglichkeit zur Aufbereitung (Abwasser) beurteilt werden. Bei erfolgreichem Betrieb war in der Folge eine KDV-Anlage in Marthalen geplant, welche unter wirtschaftlichen Bedingungen Bio-Diesel aus Holz produzieren sollte. Für den erzeugten Dieseltreibstoff wurde dabei eine Qualität angestrebt, die direkt in den bestehenden Infrastrukturen der Firma AGROLA, die das Projekt mitfinanziert, vermarktet werden kann. Dazu wurde folgendes Vorgehen geplant:

- Aufbau einer quasi-kontinuierlichen Versuchsanlage zur direkten katalytischen Verflüssigung von Biomasse (Holz, Stroh, Gras, Cellulose, Zucker) in einer kontinuierlich arbeitenden Crackanlage mit Hilfe von Katalysatoren durch Ergänzung der bestehenden Versuchsanlage mit einer nachgeschalteten Rektifikationskolonne.
- Inbetriebnahme und Betrieb der Versuchsanlage mit Beprobung der drei Produktfraktionen aufgeteilt in Hauptprodukt (Diesel-ähnlich), Sumpf (zur Rückführung in den Reaktor) und leichtflüchtige Fraktion (zur Abscheidung von Wasser und Verwertung des Gases).
- Bestimmung der Massen- und Energiebilanz im quasi-stationären Betrieb durch kontinuierliche oder periodische Erfassung der wichtigsten Betriebsparameter.
- Analyse und Bewertung des Hauptprodukts zur Eignung als Dieseltreibstoff und Benzin für Verbrennungsmotoren.
- Analyse und Bewertung des festen Austrags aus dem Prozess, welcher zur Hauptsache aus Kohlenstoff und teilweise aus Katalysator besteht, im Hinblick auf eine Eignung als Brennstoff für Holzfeuerungen oder zur weiteren Verwertung. Analyse und Bewertung des Kondensatstroms im Hinblick auf Menge und Aufbereitung zur Einleitung in einen Vorfluter.
- Bewertung des Verbrauchs an Katalysator.
- Bewertung des Verbrauchs an Grundöl zur Inbetriebnahme des Prozesses und Beurteilung der Frage, ob das Verfahren im stationären Zustand ohne Zugabe von Grundöl mit dem aus der Biomasse-Pyrolyse erzeugten Sumpf betrieben werden kann.
- Abklärung, mit welchen Massnahmen (z.B. durch Mischung des Biotreibstoffes mit fossilem Diesel oder Beimischung von Additiven) der Treibstoff die Norm EN 590 erfüllen kann.

In Ergänzung zur Versuchsdurchführung sollte eine kurze Literaturstudie zu ähnlichen Verfahren durchgeführt und die Grundlagen der Pyrolyseverfahren dokumentiert werden. Erfahrungen betreffend Energiebilanz, Betriebsverhalten und Katalysatormaterial sollten in der Folge für die Versuche berücksichtigt werden, sofern dadurch eine Optimierung des Anlagenbetriebs erwartet werden konnte. Im Weiteren sollten die wichtigsten Einflussgrössen identifiziert und soweit möglich in einzelnen Versuchen zur Bestimmung des Einflusses auf das Betriebsverhalten und die Produktqualität variiert werden.

2 Grundlagen der Pyrolyse

2.1 Begriffe

Die Pyrolyse bezeichnet streng genommen die rein thermische Zersetzung eines Feststoffs, einer Flüssigkeit oder einer Suspension (Slurry, Schlamm) durch Zufuhr von Wärme ohne externe Zufuhr eines Oxidationsmittels, also bei Luftüberschusszahl 0. Da Biobrennstoffe Sauerstoff enthalten (Holz enthält rund 44 Gew.-% Sauerstoff), umfasst die Pyrolyse dennoch auch Oxidationsreaktionen.

Die Wärmezufuhr kann bei der Pyrolyse durch Strahlung und/oder durch Wärmeübergang erfolgen. Eine Wärmeübertragung durch Strahlung findet zum Beispiel in einem Toaster statt, was zumindest auf der Oberfläche des Gutes beginnende Pyrolyse bewirkt. In technischen Festbett-Reaktoren zur Pyrolyse erfolgt dagegen meist eine indirekte Wärmeübertragung von einem heissen Gas über eine metallische Wand auf die zu pyrolysierende Biomasse, während vor allem in Wirbelschichtreaktoren auch eine konvektive Wärmeübertragung durch Anströmung der Brennstoffschüttung mit heissem, sauerstofffreiem Abgas zur Anwendung kommt.

Um die für die Pyrolyse erforderliche Temperaturen zu erzielen und die Umsatzraten zu erhöhen, werden technische Pyrolyseanlagen teilweise auch mit einer geringen Zufuhr von Oxidationsmittel (meist Luft) betrieben, die Luftüberschusszahl ist in solchen Fällen also geringfügig grösser als 0 (sicher kleiner als 0,2, da ein Luftüberschuss von 0,3 bereits einer idealen Stöchiometrie für die Vergasung entspricht). Ein Pyrolyse-Betrieb gänzlich ohne Luft erfordert zudem eine Inertisierung der Brennstoffzuführung mit Stickstoff, was nicht in allen Fällen zur Anwendung kommt. Mit zunehmender Sauerstoffzufuhr in den Reaktor erfolgt allerdings eine partielle Oxidation der Pyrolyseprodukte und tendenziell eine Zunahme der nicht nutzbaren Gasphase.

Der Begriff der Pyrolyse wird im Folgenden zur Bezeichnung des technischen Verfahrens zur Umwandlung der Biomasse verwendet (wobei auch geringe Mengen an Sauerstoff zugeführt werden können), während der eigentliche Prozess der thermochemischen Umwandlung ohne Sauerstoffzufuhr als thermische oder auch als pyrolytische Zersetzung bezeichnet wird.

2.2 Grundlagen

Bei der technischen Pyrolyse von Biomasse entstehen als erwünschtes Produkt flüchtige kondensierbare Verbindungen (Teere), welche bei Abkühlung auf Raumtemperatur als Pyrolyseöl anfallen. Zur energetischen Nutzung ist eine maximale Ausbeute an Pyrolyseöl erwünscht. Als Bezugsgrösse zur Verfahrensbewertung sollte als Basis dabei der Energieinhalt der Produkte verwendet werden. Da bei Messungen allerdings die Massenanteile ermittelt werden, wird die Ausbeute meist als Gewichtsanteil angegeben. Eine sinnvolle Bewertung setzt deshalb voraus, dass zusätzlich der Heizwert der verschiedenen Fraktionen bekannt ist oder bestimmt wird.

Nebst kondensierbarem Pyrolyseöl werden gasförmige Verbindungen wie CO, H₂ und CH₄ und mit steigender Sauerstoffzufuhr zunehmend auch heizwertloses CO₂ gebildet. Im Weiteren entsteht fester Kohlenstoff (Pyrolysekoks oder Holzkohle) sowie Wasserdampf, welcher in der Gasfraktion anfällt. Der Wasserdampfanteil steigt tendenziell mit zunehmendem Wassergehalt des Brennstoffs, weshalb für die Pyrolyse in der Regel nur technisch getrocknete Biomasse mit Wassergehalten unter 10 Gew.-% zum Einsatz kommt. Die gasförmigen Verbindungen werden oft zur Beheizung des Pyrolysereaktors genutzt, wobei das Gasgemisch in einem für Schwachgas mit geringem Heizwert ausgelegten

Brenner genutzt werden kann. In Frage kommt auch eine Aufbereitung des Gases zur Verwertung in einem Verbrennungsmotor zur Wärmekraftkopplung.

Für die Verwendung des festen Kohlenstoffs bietet sich grundsätzlich ebenfalls eine thermische Verwertung an, wobei der Koks im Gegensatz zum Gas einfach lagerbar ist, die rein thermische Nutzung aber nur eine bescheidene Wertschöpfung ergibt. Daneben kommt auch eine Verwendung als Holzkohle (als Reduktionsmittel oder als Grillkohle) oder gar als hochwertiges Adsorptionsmittel (Aktivkohle) in Frage. Diese Anwendungen ermöglichen eine höhere Wertschöpfung, setzen jedoch eine höhere Produktqualität und eine zusätzliche Aufbereitung voraus. Der Einsatz als Reduktionsmittel dient zur Metallherstellung. Metalle, insbesondere Eisen, aber auch Blei, Kupfer und Silber liegen in in der Natur in oxidischer Form vor, aus der das reine Metall mit Hilfe von Kohlenstoff als Reduktionsmittel im Hochofenprozess erschmolzen wird. Für Eisen erfolgt dies zum Beispiel gemäss der Reaktion:

Fe ₂ O ₃	+ 3 C	\rightarrow	2 Fe	+	3 CO
Eisenerz	+ Kohlenstoff		flüssiges	+	Kohlenmonoxid
	(Holzkohle)		Eisen (roh)		

Für diese Anwendung gab es jahrtausendelang nur Holzkohle, die von Köhlern produziert wurde. Seit dem 18. Jahrhundert konnte die Verwendung von Steinkohlenkoks entwickelt werden, welcher heute in riesigen Mengen als Reduktionsmittel zur Verfügung steht. In der post-fossilen Zeitperiode wird Biomasse jedoch als einziger erneuerbar verfügbarer Kohlenstoffträger verfügbar sein und dannzumal auch als Reduktionsmittel wieder an Bedeutung gewinnen. Sofern die Holzvergasung und/oder die Holzpyrolyse im grossen Massstab eingesetzt wird, wäre jedoch auch bereits in den kommenden Jahrzehnten eine Verwendung des Kokses als Reduktionsmittel zur Substitution fossiler Kokse denkbar.

Im Weiteren bestehen auch Ideen, Holzkohle als Zuschlagsstoff für Böden zu verwenden, da dies deren Fruchtbarkeit deutlich erhöhen kann und da so deponierter Kohlenstoff zumindest in begrenztem Mass gleichzeitig als CO₂-Senke wirkt. Der Ansatz zu dieser Anwendung stammt aus Untersuchungen im Regenwald des Amazonas-Gebiets, wo unter dem Begriff "Terra preta" (dunkle Erde) mit vor über 2000 Jahren mit Holzkohle zugesetzte Böden gefunden wurden, welche hohe Erträge im Regenwaldgebiet ermöglichten und dadurch wahrscheinlich auch eine fortschreitende Abholzung verhinderten [Mann 2002]. Die mit Holzkohle versetzten Schichten weisen dabei typische Schichthöhen zwisschen 40 cm und 2 m auf. Die Untersuchungen zeigen, dass die Holzkohle eine rasche Mineralisierung des organischen Kohlenstoffs verhindert und durch über Jahrhunderte anhaltende, sehr langsame partielle Oxidation Nährstoffe binden und für die Pflanzen verfügbar machen kann. In entsprechenden Böden sind deshalb die Gehalte an pflanzenverfügbaren Stoffen wie P, Ca, S und N höher als in unbehandelten Böden und der Nachweis der bis zu über 2000 Jahre alten in den Böden weitgehend unoxidiert erhaltenen Holzkohle zeigt, dass die Holzkohle über lange Zeit als Kohlenstoffsenke wirkt.

Eine Sonderanwendung der Pyrolyse ist die Herstellung von Pyrolyseöl oder -teer als Aromastoff. Dieser wird auch als Flüssigrauch (liquid smoke) bezeichnet und dient in der Lebensmittelindustrie als Geschmacksstoff zur Imitation des Grillgeschmacks. Da Flüssigrauch sehr geschmacksintensiv ist, werden nur geringe Mengen benötigt, es wird jedoch eine um Grössenordungen höhere Wertschöpfung als bei der Gewinnung von Energieträgern erzielt. Wegen der geringen erforderlichen Mengen ist dies ein Nischenmarkt für einige wenige grosstechnische Anlagen.

Der Reaktionsablauf der Pyrolyse kann zum Beispiel gemäss Bild 2.1 beschrieben werden.

Bild 2.1 Reaktionsschema der Pyrolyse. Die Reaktionen k₁ bis k₃ werden als Broido-Shafizadeh-Modell bezeichnet. Die Einführung der "aktiven Cellulose" ist umstritten und für den Reaktionsablauf nicht unbedingt erforderlich, weshalb im Folgenden das Schema ohne diese Zwischenstufe verwendet wird. Dagegen wird im Folgenden mit drei parallelen Reaktionen die Bildung von Koks und Gas separat betrachtet.

Biomasse
$$k_1$$
 Kohle + CO₂ + H₂O
 k_2 Flüssigkeit k_4 Gase (CO + H₂ + CH₄)
 k_3 Gase (CO, H₂, CH₄ etc.)

Bild 2.2 Reaktionsschema der Pyrolyse nach Oasma in [Meier 2001] mit drei parallelen Startreaktionen. Für die Aktivierungsenergien gilt: $E_1 < E_2 < E_3$. Die Reaktion k_1 ist somit bei tiefer Temperatur entscheidend, während bei sehr hohen Temperaturen k_3 überwiegt. Die bei der Pyrolyse angestrebte Ausbeute an Flüssigkeit durch Reaktion k_2 wird demnach in einem mittleren Temperaturbereich maximal. Die Reaktion k_4 ist bei Temperaturen < 650°C sehr langsam. Somit gilt: k_1 : Langsame Pyrolyse wie bei der Köhlerei führt zu Holzkohle.

k₂: Schnelle Pyrolyse bei erhöhter Temperatur ermöglicht maximale Ausbeute an Pyrolyseöl, die Folgereaktion 4 muss aber durch sofortiges Entfernen der Produkte aus dem Reaktor und der sofortigen Abkühlung und Kondensation verhindert werden. Die kondensierbaren Stoffe sollten auch nicht in Kontakt mit Kohle (Koks) verbleiben, da das Cracken hochmolekularer Verbindungen zu gasförmigen Stoffen nach Reaktion k₄ durch Koks katalysiert wird.

 k_{3} : Die Zersetzung bei sehr hoher Temperatur führt direkt zu Gasen, was bei der Pyrolyse unerwünscht ist.

Die Hauptbestandteile von Holz sind die hochmolekularen Verbindungen Zellulose, Hemizellulose und Lignin. Während Zellulose einen linearen Molekülaufbau aufweist, ist Lignin als amorphe und räumlich vernetzte Struktur hauptverantwortlich für das Gerüst der nach der Vergasung zurückbleibenden Holzkohle. Die Hemizellulose ist teilvernetzt. Natürliche Zellulose ist polydispers, das heisst aus Zelluloseketten mit verschiedenem Polymerisationsgrad aufgebaut. Der Polymerisationsgrad von Holz-Zellulose beträgt um 1000 bis 5000, für Baumwolle und Chinaschilf gar zwischen 5000 und 10 000. Für die Zersetzung wird die Biomasse unter Vernachlässigung der Spurenelemente beschrieben als:

 $C_xH_yO_z$

Für Holz und in der Grössenordnung auch für die meisten anderen Biomassen gilt im Mittel folgende Zusammensetzung:

x : y : z = 1 : 1,44 : 0,66

oder für das Molverhältnis somit: CH_{1.44}O_{0.66}

Die Bildung von Teer während der Pyrolyse (k₃) kann somit vereinfacht wie folgt angegeben werden:

$$C_x H_y O_z \rightarrow C_{x^*} H_{y^*} O_{z^*}$$

Die Bildung von Koks und Pyrolysegas (k 2) kann vereinfacht wie folgt angegeben werden:

$$\begin{array}{ll} CH_mO_n & \rightarrow & (1-n) \ C+n \ CO+\frac{m}{2} \ H_2 \\ CH_mO_n & \rightarrow & (1-n-\frac{m}{8}) \ C+n \ CO+\frac{m}{4} \ H_2+\frac{m}{8} \ CH_2 \end{array}$$

Aus den primären Pyrolyseprodukten können in Sekundärreaktionen Folgeprodukte gebildet werden. Im Modell nach Bild 2.1 ist die sekundäre Umsetzung von Teer zu Gas angegeben. Daneben können jedoch auch Kokse und Gase in Sekundärreaktionen weiter reagieren.

Die Zusammensetzung der Pyrolyseprodukte ist abhängig von den Reaktionsbedingungen, insbesondere der Temperatur, der Aufheizrate und der Verweilzeit. Tiefe Temperaturen und hohe Aufheizraten begünstigen die Ausbeute an Pyrolyseöl, während bei hohen Temperaturen und langen Verweilzeiten die Gasausbeute zunimmt (Bild 2.8).

Nebst den geschilderten Hauptreaktionen der Pyrolyse können grundsätzlich zwei weitere Reaktionsmechanismen zu unerwünschten Nebenprodukten und einer Reduktion der Ölausbeute führen:

- Die Bildung von Russ aus Kohlenwasserstoffen
- Die Bildung von Koks und Kohlendioxid aus Kohlenmonoxid (also der Rückreaktion der Boudouard-Reaktion).

Beide Mechanismen sind üblicherweise vor allem bei thermischen Prozessen mit partieller Sauerstoffzuhr von Bedeutung, also der Vergasung oder der Verbrennung unter lokalem Sauerstoffmangel. Unter gewissen Umständen können diese Reaktionen somit auch bei der Pyrolyse stattfinden. Allerdings ist aufgrund der bei der Flash-Pyrolyse üblichen Bedingungen davon auszugehen, dass die Russbildung in der Regel kaum relevant ist. Die Bedingungen entsprechen nicht den üblichen Russbildungsbedingungen. So ist kein Sauerstoff anwesend, welcher zu einem Kettenabbau zu Ethin führt und die Temperaturen sind für die Synthesereaktionen tendenziell zu tief, da erst über 800°C hohe Konzentrationen an Russ gebildet werden. Die Umkehrung der Boudouard-Reaktion. Dagegen ist denkbar, dass bei langer Aufenthaltszeit von Kohlenmonoxid im Reaktor eine Bildung von Koks und Kohlendioxid erfolgen kann. Nachfolgend werden die zwei Mechanismen kurz beschrieben. **Russbildung.** Bei hohen Temperaturen ist unter pyrolytischen Bedingungen, also unter Sauerstoffabschluss, eine Agglomeration von gasförmigen organischen Verbindungen zu Russ möglich. Als Verbrennungszwischenprodukt zum Beispiel von Diesel oder von Benzol entstehen nebst Kohlendioxid, Wasser und Kohlenmonoxid auch Ethin (C₂H₂, also ein Molekül mit Dreifachbindung, früher Acetylen genannt, entsteht durch Kettenspaltung und H-Entzug bei Anwesenheit von O₂ oder OH) und reaktiven Zwischenprodukten, die mit dem Brennstoff weiter reagieren können. Dadurch kommt es zum Aufbau grösserer Moleküle, darunter auch von polyaromatischen Kohlenwasserstoffen (PAK). Durch Reaktion der polyaromatischen Kohlenwasserstoffe untereinander und durch Anlagerung kleinerer Moleküle können sich dreidimensionale Strukturen aufbauen (Bild 2.3). So entstehen kleine Partikel, die mit dem menschlichen Auge noch nicht wahrnehmbar sind. Erst durch das Zusammenklumpen dieser kleinen Partikel und weitere Wachstumsprozesse bilden sich die sichtbaren Russpartikel. Aufgrund der vergleichsweise tiefen Temperaturen ist die Russbildung in technischen Pyrolyseanlagen in der Regel allerdings kaum von Bedeutung, da vor allem oberhalb von 800°C zum Beispiel aus Benzol relevante Russbildung beobachtet werden kann (Bild 2.4).

Bild 2.3 Reaktionsschema der Russbildung nach [Bockhorn 1994].

Bild 2.4 Russausbeute bei der Pyrolyse von Benzol in Abhängigkeit der Temperatur und der Verweilzeit. [Kinoshita et al. 1992].

Koksbildung nach Boudouard. Die Boudouard-Reaktion beschreibt die Gleichgewichtsreaktion der Bildung von Kohlenmoxid aus glühendem Kohlenstoff und Kohlendioxid. Hohe Temperaturen verschieben das Gleichgewicht aufgrund der endothermen Reaktion auf die Produktseite (CO), eine Erhöhung des Drucks verschiebt es auf die Seite der Edukte, da die Anzahl der gasförmigen Moleküle dadurch abnimmt (Prinzip von Le Chatelier und Braun):

$$C + CO_2 \iff 2 CO \Delta H_r = +173 \text{ kJ/mol}$$

Die Reaktion wurde lange Zeit zur Erzeugung von Generatorgas (Stadtgas) aus Kohle genutzt. Die Boudouard-Reaktion ist stark endotherm. Bei Temperaturen über 900°C liegt das Gleichgewicht praktisch vollständig auf der Seite des Kohlenmoxids, bei Temperaturen unter 400°C jedoch auf der Seite des Kohlenstoffs. Bei typischen Temperaturen in Pyrolyseanlagen von 500°C bis 600°C ist somit die Bildung von Koks aus dem in der Gasphase enthaltenen Kohlenmonoxid möglich. Dies kann zu Koksablagerungen führen und im Fall von Katalysatoren deren Oberfläche verstopfen. Bei der Methanolsynthese wird deshalb Wasserstoff im Überschuss zugeführt, um Koksablagerunen zu verhindern und es ist somit denkbar, dass die Boudouard-Reaktion auch in Pyrolyseanlagen für Koksbildung verantwortlich ist.

2.3 Einflussgrössen

Die Produktzusammensetzung bei der Pyrolyse hängt von zahlreichen Faktoren ab. Entscheidend sind vor allem folgende Betriebsparameter:

- Temperatur
- Aufheizrate (in K/s)
- Verweilzeit
- allfällige katalytische Effekte, meist heterogen an festen Oberflächen, sei es durch Zugabe von Katalysatormaterial, katalytische Oberflächen oder durch aus der Pyrolyse gebildetem Koks

sowie folgende Brennstoffparameter:

- Wassergehalt (für die schnelle Pyrolyse kommen nur trockene Ausgangsmaterialien zum Einsatz)
- Zusammensetzung (Zersetzungsverhalten, Aschegehalt usw.)
- Korngrösse, welche bei gegebenen Reaktorbedingungen die effektive Aufheizrate bestimmt (für ausreichende Aufheizraten sind entweder sehr kleine Korngrössen oder ein hoher Anpressdruck zur Erzielung eines hohen lokalen Wärmeübergangs erforderlich).

Wie aus Bild 2.5 hervorgeht, setzt der thermische Abbau der Makromoleküle bei langsamer Erhitzung von Holz zwischen ab rund 250°C ein und ist bei 500°C bereits weitgehend abgeschlossen. Der Einfluss der Aufheizrate des Reaktors ist in Bild 2.6 dargestellt. Bei hoher Aufheizrate erhöht sich die für die Pyrolyse erforderliche Reaktortemperatur bei gegebener Korngrösse um mehrere Hundert Kelvin, da der Wärmeübergang zur Erhitzung der Biomasse limitierend wird. Eine Erhöhung der effektiven Aufheizrate der zu pyrolysierenden Biomasse kann durch eine Zerkleinerung der Brennstoffpartikel oder aber durch Erhöhung des konvektiven Wärmeübergangs an der zu pyrolysierenden Fläche durch Erzeugung eines hohen Anpressdrucks zwischen dem Brennstoff und einer heissen Wand. Letzteres wird als ablative Pyrolyse oder Schmelzpyrolyse (Ablation beschreibt das Abtragen von Material durch Aufheizen durch Energiezufuhr) bezeichnet und ist vergleichbar mit dem durch Anpressdruck verstärkten Abschmelzen von Butter auf einer heissen Oberfläche. Allerdings sind die Oberflächentemperaturen bei der ablativen Pyrolyse dabei so hoch, dass durch das Abschmelzen eine direkte Umsetzung in die Dampfphase erfolgt und nur ein dünner Flüssigkeitsfilm auf der metallischen Oberfläche vorliegt. Für nicht-ablative Pyrolysereaktoren sind kleine Korngrössen von meist maximal einigen Millimetern notwendig, eine Verkleinerung auf weniger als 1 Millimeter oder gar nur 100 Mikrometer erlaubt jedoch eine weitere Erhöhung der effektiven Aufheizraten.

Bild 2.5 Abbau von Buchenholz unter Temperatureinwirkung unter Bildung gasförmiger Zersetzungsprodukte [Meier 2001].

TGA von Buchenholz in Luft *ma = 50 mg (eigene Messungen), **ma = 5 mg (Skreiberg 1997)

Bild 2.6 Feststoffumwandlung von Biomasse in Funktion der Temperatur für verschiedene Aufheizraten des Reaktors nach [Nussbaumer 2003]. Bei langsamer Aufheizung erreicht das Feststoffpartikel annähernd die (auf der x-Achse angegebene) Reaktortemperatur, während bei hoher Aufheizrate des Reaktors der Wärmeübergang auf das Partikel und die Wärmeleitung im Partikel limitierend wirken, so dass die Temperatur im Partikelinnern tiefer ist als die Umgebungstemperatur. Die höhere gemessene Umwandlungstemperatur bei hoher Aufheizrate entspricht deshalb nicht der Feststofftemperatur. Bei der Oxidation der Vergasungsprodukte (85 Gew.-%) werden rund zwei Drittel der Energie, bei der Oxidation der Holzkohle (15 Gew.-%) rund ein Drittel der Energie freigesetzt. Bild 2.7 zeigt die Ausbeute an Pyrolyseöl in Abhängigkeit der Reaktortemperatur, Bild 2.8 beschreibt die Umwandlung der Biomasse mit der resultierenden Ausbeute an Öl, Koks und Gas. Unter üblichen nicht katalytischen Bedingungen und begrenzten Verweilzeiten wird zwischen rund 450°C und 600°C eine maximale Ölausbeute erzielt (bei katalytischen Verfahren kann das Temperaturoptimuma auf 300°C bis 400°C gesenkt werden). Bei tieferen Temperaturen erfolgt erst eine unvollständige Umwandlung der Biomasse, während bei höheren Temperaturen eine zunehmende Umwandlung zu Gasen erfolgt (direkte Umwandlung zu Gasen und Folgereaktion 4 gemäss Bild 2.1 oder Bild 2.2). Die maximale Produktausbeute wird meist mit rund 50 bis 60 Gew.-% angegeben, in einigen Fällen werden Ausbeuten von 60 bis 75 Gew.-% in Aussicht gestellt. Die Angaben beziehen sich dabei auf das trockene Ausgangsmaterial.

Bild 2.7 Ausbeute an Pyrolyseöl in Gewichstprozenten des Ausgangsmaterials in Abhängigkeit der Temperatur nach [Van de Velden & Baeyens 2006].

Bild 2.8 Verteilung der Produkte aufgeteilt nach Biomasse, Pyrolyseöl, Koks und Gas in Gewichtsanteilen der trockenen Ausgangssubstanz in Abhängigkeit der Temperatur. Als Parameter ist die Aufheizzeit t angegeben, welche umgekehrt proportional zur Aufheizrate ist. Daten für Pyrolyse nach [Van de Velden & Baeyens 2006], bei Temperaturen über 650°C und unter Zufuhr von Sauerstoff erfolgt die Vergasung (gestrichelt). Die maximalen Produktausbeuten und die Temperaturoptima sind abhängig von der Aufhzeizrate, dem Wassergehalt, der Brennstoffzusammensetzung und wieteren Parametern. Für Pyrolyseöle wird meist eine maximale Produktausbeute zwischen 50% und 65% angegeben.

2.4 Reaktionsablauf

Der initiale Reaktionsablauf umfasst drei parallele Reaktionen gemäss Bild 2.2 mit verschiedenen Geschwindigkeitskonstanten k_1 , k_2 und k_3 . Die Aktivierungsenergien dieser Reaktionen steigen in der Reihenfolge von E_1 bis E_3 , das heisst $E_1 < E_2 < E_3$. Entsprechend können folgende Temperaturbereiche unterschieden werden, anhand derer auch die zwei Arten der technischen Verfahren, nämlich der **langsamen** und der **schnellen Pyrolyse (auch Flash-Pyrolyse)** zugeordnet werden:

- Bei tiefen Temperaturen oder bei geringen Aufheizraten dominiert die Reaktion k1. Dies entspricht der langsamen Pyrolyse, bei der vor allem Holzkohle, Kohlendioxid und Wasser entsteht. Sofern diese Reaktion als technischer Prozess umgesetzt wird, wird das Verfahren als Karbonisierung oder Verkohlung (im Gegensatz zur Inkohlung, welche den natürlichen Prozess der Entstehung von Kohle beschreibt) bezeichnet. Eine vorwiegend langsame pyrolytische Zersetzung resultiert auch bei hohen Temperaturen des Reaktors oder der Wärmequelle, sofern die effektive Aufheizrate des Pyrolysegutes durch den Wärmetransport limitiert wird, welcher faktisch zu einer langsamen Pyrolyse des sich erwärmenden Gutes führt. So entsprechen etwa die Bedingungen in einem Toaster einer langsamen Pyrolyse, bei der bei langer Reaktionszeit praktisch reine, schwarze Kohle übrig bleibt und aus dem Gut vorwiegend noch Wasserdampf entweicht. Daneben wird auch bei der Holzverkohlung eine langsame Pyrolyse unter weitgehendem Sauerstoffabschluss durchgeführt und so eine Produktausbeute an Holzkohle von 25 bis 35 Gew.-% oder bis über 50% bezogen auf den Energieinhalt erzielt wird, während der restliche Heizwert im Falle des Köhlers durch Dissipation und im entweichenden Gas enthaltenen Heizwert von Kohlenmonoxid und organischen Verbindungen verloren geht. Der im Köhlerprozess oder in speziellen Teeröfen anfallende Holzteer diente früher als Wagenschmiere sowie als Konservierungsmittel für Holz, Seile, Textilien usw., während Holzpech als Klebstoff Verwendung fand. Holzteer diente auch zur Behandlung von Hautkrankheiten und wird heute noch in Schampoo mit Holzteer als Antiseptikum eingesetzt, wobei allerdings die Inhaltsstoffe aufgrund ihrer Karzinogenität nicht unbedenklich sind.
- Bei mittleren Temperaturen während der Pyrolyse überwiegt Reaktion k₂, die hauptsächlich zur Bildung flüssiger Produkte führt. Dies ist der Bereich der schnellen oder der Flash-Pyrolyse. Technische Anlagen für flüssige Energieträger oder Chemierohstoffe werden in diesem Bereich betrieben. Durch anschliessende Crack-Reaktionen der kondensierbaren Stoffe nach Reaktion k₄ können nach der Initialreaktion vermehrt gasförmige Verbindungen wie CO, H₂ und CH₄ entstehen. Um dies und die damit verbundene Reduktion der Ausbeute an Pyrolyseöl zu verhindern, ist eine umgehende Entfernung und Abkühlung der Gase aus der Pyrolysezone erforderlich. Die schlagartige Abkühlung in einem Kondensator ermöglicht dabei die Auftrennung zwischen kondensierbarem und leichtflüchtigen Stoffen. Die bei der Pyrolyse unerwünschte Crackreaktion k₄ von hochmolekularen zu leichtflüchtigen Verbindungen wird durch Koks katalysiert. Um dies zu verhindern, ist auch ein rascher Austrag des Kokses aus der Pyrolysezone notwendig. Eine schnelle Pyrolyse kann trotz ausreichend hoher Reaktortemperaturen verhindert werden, wenn die effektiven Aufzeizraten der Biomasse gering sind und die pyrolytische Zersetzung somit bereits vor Erreichen der Gleichgewichtstemperatur im Reaktor abläuft.

Bei hohen Temperaturen erfolgt eine direkte Umsetzung zu Gasen nach Reaktion k₃. Die Biomasse wird also vorwiegend in leichtflüchtige Gase umgewandelt, was im Falle der Ölgewinnung unerwünscht ist. Wenn die Reaktion k₃ technisch umgesetzt und dazu Sauerstoff zugeführt wird, wird das Verfahren als Vergasung bezeichnet. Im Falle der Vergasung zur Nutzung des Produktgases wird eine hohe Ausbeute an brennbaren Gasen angestrebt, weshalb Vergaser im Temperaturbereich deutlich über 700°C betrieben werden. Da die Teere bei der Holzvergasung meist unerwünscht ist, wird bei der Vergasung die Crackreaktion k₄ durch lange Aufenthaltszeit bei hoher Temperatur im Reaktor begünstigt, was etwa bei Gleichstromvergasern der Fall ist. In Gleichstromvergasern werden die Gase zudem durch ein glühendes Glutbett geleitet, in welchem die Holzkohle die Teerumwandlung katalytisch unterstützt. Um diese bei der Pyrolyse unerwünschten Reaktionen zu vermeiden, ist ein sofortiges Entfernen der Gase aus der glühenden Zone und ein weiterer Kontakt mit dem Koks zu vermeiden.

Das Verhalten der drei Parallelreaktionen ist verantwortlich für die Temperaturabhängigkeit der Pyrolyseölausbeute, welche oben beschrieben je nach Aufheizrate und Reaktionsbedingungen ein Maximum in einem Temperaturfenster zwischen 450°C und 600°C aufweist.

Anhand der beschriebenen Reaktionen könnte die Produktzusammensetzung im Grundsatz mittels der Geschwindigkeitskonstanten der Reaktionen berechnet werden. Bis heute ist dies allerdings nicht mit befriedigender Zuverlässigkeit möglich, wofür vor allem folgende Effekte verantwortlch sind:

- Die flüchtigen, kondensierbaren Produkte sind sehr reaktiv (unter anderem, weil Biomasse und die daraus freigesetzten Verbindungen auch Sauerstoff enthalten) und sie können gemäss Reaktion k₄ weiterreagieren, was durch Anwesenheit von Kohlenstoffpartikel noch verstärkt wird.
- Da Biomasse eine beschränkte thermische Leitfähigkeit aufweist, wird die reale Reaktionsrate durch die thermisch limitierte reale Aufheizrate der Biomassepartikel bestimmt.

Beide Phänomene können grundsätzlich ebenfalls rechnerisch beschrieben werden, bis heute ist jedoch keine exakte Vorhersage der Produktzusammensetzung möglich.

Aufgrund des limitierten Wärmeübergangs ergibt sich im Pyrolysegut ein zeitabhängiger Temperaturgradient. Das insgesamt resultierende Pyrolyseprodukt ergibt sich somit als Integral des zeitlichen Abbaus der Biomasse und der dabei bei unterschiedlichen Temperaturen verlaufenden Teilreaktionen k_1 bis k_4 .

Als technische Anwendung zur Pyrolyseölherstellung kommt einerseits die reine **Flash-Pyrolyse** in Frage. Andererseits kann die Pyrolyse auch durch Anwendung von Druck, den Einsatz von Katalysatoren, die Zugabe von Wasserstoff sowie Kombinationen dieser drei Parameter unterstützt werden. Verfahren unter Zugabe von Katalysatoren werden auch als **katalytische Verflüssigung** (bei 300°C bis 400°C) bzw. katalytische Druckverflüssigung bezeichnet, während die Umwandlung in einer Wasserstoffatmosphäre (bei rund 20 bis 80 bar Wasserstoffdruck) auch als **Direktverflüssigung** bezeichnet wird.

3 Pyrolyseverfahren

3.1 Verfahrenstechnik der schnellen Pyrolyse

Bei der schnellen Pyrolyse oder Flash-Pyrolyse wird eine Maximierung der Pyrolyseölausbeute angestrebt. Randbedingungen sind dabei [Meier 2001, Bridgwater 1999, Bridgwater et al. 1999, 2000, 2001]:

- Hohe Aufheizraten von über 1000 K/s für die zu pyrolysierenden Feststoffe. Mit steigender Aufheizrate nimmt die Pyrolyseölausbeute zu.
- Pyrolysetemperatur von über 450°C, eine maximale Ausbeute wird f
 ür Holz bei rund 500 520 °C erzielt.
- Kurze Aufenthaltsdauer der Pyrolyseprodukte in der heissen Reaktionszone, d.h. unter 1 s. Da die heissen Pyrolyseöldämpfe reaktiv sind und sekundäre Reaktionen zu Gasen eingehen, muss die Verweilzeit der Dämpfe bei hohen Temperaturen möglichst kurz sein.
- Rascher Abzug des Pyrolysegasgemisches aus der Pyrolysezone zur Abkühlung und Abtrennung der kondensierbaren Phase mittels Kondensation
- Rasches Entfernen und Abtrennen der Koksfraktion zur Verhinderung des katalytischen Crackens der hochmolekularen, kondensierbaren Pyrolyseprodukte. Die Koksabscheidung erfolgt meist in zwei nacheinandergeschalteten Zyklonen. Dieser kann allerdings einen Eintrag von feinem Koks in das Pyrolyseöl nicht verhindern, so dass Pyrolyseöl meist als zweiphasige Suspension (Schlamm, Slurry) anfällt. Der suspendierte Koks kann die Alterung und Instabilität des Öls erhöhen.
- Die Brennstofffeuchte sollte unter 10% atro betragen, da der Wasserdampf mit dem Pyrolyseöl auskondensiert. Selbst bei trockenem Brennstoff mit u <10% enthält das Pyrolyseöl mindestens 15 Gew.-% Wasser, welches den Heizwert und die Eigenschaften des Öls beeinflusst. Eine destillative Entfernung von Wasser aus dem Pyrolyseöl ist nicht möglich.
- Wegen des beschränkten Wärmeübergangs werden in der Regel Korngrössen unter 2 mm, maximal jedoch bis zu 6 mm [Solantausta et al. 1996] Korngrösse verlangt. Eine Ausnahme bilden mögliche ablative Verfahren für grössere Stückigkeiten.

Um diese Randbedingungen einzuhalten, sind Reaktoren erforderlich, die eine hohe Wärmeübertragungsleistung auf die Biomasse erzielen. Dazu kommen derzeit im Wesentlichen Wirbelschichtreaktoren, ablative Reaktoren und Vakuumverfahren zum Einsatz.

Eine Reduktion der Aufheizrate, bei gegebenem Reaktor zum Beispiel durch Verwendung von gröberem Ausgangsmaterial, führt zu einer unerwünschten Erhöhung der Koksbildung, da die langsame Reaktion k₁ an Bedeutung gewinnt.

Bild 3.1 zeigt eine Übersicht der wichtigsten Pyrolyseverfahren mit Wirbelschichreaktoren sowie mit ablativen Prozessen. In Bild 3.2 sind die Reaktortypen aufgrund des Strömungsprinzips unterteilt und zusätzlich der Doppelschneckenreaktor aufgeführt. Die Verfahren werden nachfolgend separat beschrieben.

Bild 3.1 Reaktortypen für die Flash-Pyrolyse von Biomasse: a Reaktor mit stationärer Wirbelschicht, b Reaktor mit zirkulierender Wirbelschicht, c,d,e Reaktoren mit ablativer Wirkung, f Reaktor unter Vakuum [Meier 2001].

Bild 3.2 Unterteilung der Reaktortypen für die schnelle Pyrolyse mit Ergänzung des Doppelschneckenreaktors [Henrich et al. 2007].

3.2 Wirbelschichtverfahren

Bild 3.3 und Bild 3.4 zeigen zwei Beispiele für das Prinzip der schnellen Pyrolyse in einem Wirbelschichtreaktor mit Abtrennung des Koks in nachgeschalteten Zyklonen oder Strahlwäschern und Elektroabscheidern. Für Wirbelschichtreaktoren ist eine Trocknung und Aufmahlung des Brennstoffs auf Korngrössen unter 2 bis 3 Millimeter. Die katalytische Crack-Wirkung von Koks kann in der Wirbelschicht nicht verhindert werden. Entscheidend ist deshalb ein rascher Austrag des Kokses und dessen Abtrennung in Zyklonen. Der Vorteil der Wirbelschichttechnologie liegt vor allem in den hohen Wärmeund Stoffaustauschraten, die im Wirbelbett erzielt werden. Zudem ist die Technik weitgehend erprobt und erlaubt auch ein zuverlässig berechenbares Up-scaling. Zum Einsatz kommen sowohl stationäre als auch zirkulierende Wirbelschichten. Die Wärmezufuhr erfolgt durch Zuführung von heissem Sand in die Wirbelschicht. Sand wird zusammen mit dem Pyrolysekoks ausgetragen und abgeschieden und anschliessend in einem Staubbrenner oder in einem nachfolgenden Wirbelschichtreaktor verbrannt. Der dadurch erhitzte Sand wird in die den Pyrolysereaktor zurückgeführt. Im Falle von zwei Wirbelschichten wird das Verfahren auch als Prozess mit kommunizierenden Wirbelschichten bezeichnet, wie dies auch bei der Vergasung zur Anwendung kommt. Besonders hohe Aufheizraten und entsprechend kurze Produktverweilzeiten werden in zirkulierenden Wirbelschichten erreicht, weshalb dieses Verfahren auch als "Rapid Thermal Processing, RTP" vermarktet wird.

Als das am weitesten entwickelte Verfahren zur Biomassepyrolyse gilt derzeit der RTP-Prozess von Ensyn Technology Inc., Canada (Bild 3.5). Das Verfahren umfasst zwei kommunizierende, zirkulierende Wirbelschichtreaktoren, nämlich einen für die Pyrolyse und einen für die Bereitstellung der für die Pyrolyse notwendigen Wärme durch Verbrennung von Pyrolysegas und -koks. Der Aufbau des RTP-Verfahrens ist damit anolog zu dem in den späten 70er-Jahren entwickelten BCL-Verfahren. Das BCL-Verfahren wird jedoch als Vergasungsverfahren bezeichnet, da es die Maximierung der Gasausbeute zum Ziel hat. Beim RTP-Verfahren wird die getrocknete und gemahlene Biomasse über Schleusen und Schneckenförderer unter Inertgas in den Pyrolysereaktor eingebracht. Der Wirbelschichtreaktor wird bei rund 520 °C betrieben und die Aufheizrate für die Biomasse beträgt weniger als 1 Sekunde. Das erzeugte Pyrolysegas wird in einem Zyklon teilentstaubt und danach rasch abgekühlt. Die Quenchkühlung ist im Hinblick auf eine maximale Ölausbeute wichtig, da heisse Pyrolyseöldämpfe in Sekundärreaktionen Gas bilden. Das Pyrolyseöl wird in zwei in Serie betriebenen Kondensatoreinheiten kondensiert. Das Pyrolysegas wird als Brenngas in der separaten Verbrennungswirbelschicht verwendet und dient nach geeigneter Reinigung als Fluidisierungsmedium. Die im Zyklon des Pyrolysereaktors abgeschiedenen Koks-, Asche- und Sandpartikel werden teilweise in den Pyrolysereaktor zurückgeführt und teilweise in die Verbrennungswirbelschicht geleitet. Dort werden Sand und Asche auf rund 760 °C aufgeheizt und nach Abscheidung in einem Zyklon als Wärmeträgermedium in den Pyrolysereaktor geleitet.

In Italien war längere Zeit eine Demonstrationsanlage von RTP mit einem Durchsatz von 625 kg atro Brennstoff pro Stunde in Betrieb [Trebbi et al. 1997]. Die Anlage konnte Biomasse mit einem maximalen Durchmesser von 6 mm verarbeiten und weist folgende Kenndaten auf:

- Max. zulässige Holzfeuchte u: 8 Gew.-% (d.h. H_u = 16.9 MJ/kg feucht; Anforderung Ensyn)
- 70 Gew.-% Ölausbeute (Bezug auf atro Holz; Garantiewert Ensyn)
- Heizwert des Pyrolyseöls H_{u. Öl} = 16.0 MJ/kg Öl (typischer Wert bei gutem Anlagenbetrieb)

Aus diesen Angaben kann ein energetischer Wirkungsgrad für den RTP-Prozess ohne Berücksichtigung der Fremdenergie von 61% abgeschätzt werden (${}^{16,0}/{}_{16,9} \times 70\% \times {}^{1,00}/{}_{1,08}$).

Zur Zeit sind zwei kommerzielle RTP-Anlagen in Betrieb, welche pro Tag 2 bzw. 25 Tonnen getrocknete Biomasse umsetzen. Die Wirtschaftlichkeit dieser Anlagen ist dadurch gegeben, dass eine Fraktion des Pyrolyseöls zu einem sehr hohen Preis als Aromastoff in der Lebensmittelindustrie (Flüssigrauch, Raucharoma) abgesetzt werden kann.

3.3 Pyrolyse im Doppelschneckenreaktor

Bei der Pyrolyse im Doppelschneckenreaktor erfolgt die Wärmezufuhr durch Zumischung eines erhitzten Wärmetragers wie Sand, Stahlkugeln oder Siliziumcarbid zum Brennstoffgranulat (Bild 3.6). Die Pyrolysegase werden im Querstrom zum Brennstoff nach oben aus dem Reaktor ausgetragen und abgekühlt. Dieser Reaktor wurde als erster Verfahrensschritt eines zweistufigen Umwandlungsverfahrens entwickelt. Ziel der Pyrolyse ist nicht die Gewinnung eines Flüssigtreibstoffs, sondern die Herstellung eines Schlamms aus Pyrolyseöl und -koks (Bio-Slurry). Die Herstellung des Bio-Slurry soll in mittelgrossen, dezentralen Anlagen erfolgen und den Transportaufwand zur Bereitstellung der Biomasse für die nachfolgende, grosstechnische Flugstromvergasung unter Druck verringern, welche zu einem Produktgas zur Synthese von Flüssigtreibstoffen dient.

3.4 Pyrolyse unter Vakuum

Nebst konventionellen Verfahren zur schnellen Pyrolyse kommt auch die Erhitzung unter Vakuum (Bild 3.1) in Frage, was als Sonderform der Flash-Pyrolyse eingeordnet werden kann. Das Pyrolysegut wird dabei auf ein mit einer Salzschmelze belegtes und auf rund 500°C beheiztes Förderband eingebracht, auf dem das Pyrolysegut während rund einer halben Stunde verbleibt. Die freigesetzten Gase werden jedoch mittels Vakuumpumpe bei einem Druck von rund 15 kPa rasch aus der heissen Reaktionszone entfernt und abgekühlt.

3.5 Ablative Pyrolyse

Ablation beschreibt den Abtrag eines festen Materials durch Abschmelzen. Im Falle der Pyrolyse erfolgt dies durch Anpressung und direkten Kontakt des Pyrolyseguts mit einer heissen Oberfläche. Im Gegensatz zu Wirbelschichtreaktoren spielt die Korngrösse bei diesem Verfahren keine wesentliche Rolle, so dass je nach Verfahren grundsätzlich auch grobstückiges Material eingesetzt werden kann.

Reaktor mit rotierender Scheibe. Bild 3.7 und Bild 3.8 zeigt den Aufbau eines ablativen Reaktors mit heisser Scheibe, in welchem die Anpressung des Pyrolysegutes durch eine Federwirkung erzielt wird und der Brennstoff im Reaktor auf einer rotierenden Scheibe transportiert wird.

Bild 3.7 Prinzip der ablativen Pyrolyse an einer heissen rotierenden Scheibe (oben nach [Meier 2001] unten nach Colorado School of Mines in [Bridgwater & Peacocke 2000] mit Darstellung der Anpressung durch Federkraft)

Reaktor mit rotierendem Konus. Bild 3.9 zeigt den Aufbau eines Konusreaktors, bei welchem die Biomasse mit heissem Sand vermischt wird und nach dem Einbringen in den Reaktor durch die Zentrifugalkraft in einem rotierenden Konus transportiert und umgesetzt wird. Wie bei den Wirbelschichtverfahren werden Sand und Koks ausgeschleust und zum Beispiel und verbrannt und der heisse Sand in den Reaktor zurückgeführt. Die Wärmezufuhr erfolgt also auch hier durch externe Verbrennung des Kokses.

Bild 3.8 Verfahrensschema der ablativen Pyrolyse in einem Konusreaktor [Meier 2001].

Reaktor mit rotierendem Zylinder (Vortex-Reaktor). Bild 3.10 zeigt den Aufbau eines Vortex-Reaktors zur ablativen Pyrolyse. Die Arbeitsweise entspricht einem horizontal liegenden Zyklon. Holzpartikel von etwa 5 Millimeter werden über eine Dosierschnecke in den heissen Gasstrom des Systems eingebracht. Mit zusätzlich eingespeistem Dampf oder Stickstoff, der auf Überschallgeschwindigkeit beschleunigt wird, werden die Holzpartikel tangential mit einer Geschwindigkeit von rund 400 m/s in den Reaktor hineingeschossen. Durch die hohe Geschwindigkeit und die Strömungsumlenkung ergeben sich hohe Zentrifugalkräfte (rund 2,5 10⁵ g), wodurch die Partikel an die heisse Reaktorwand gepresst und pyrolysiert werden. Grobe Partikel werden tangential aus dem Reaktor ausgeschleust und zurückgeführt, während kleine Partikel mit Korngrössen unter 50 Mikrometer axial zusammen mit dem Gasstrom ausgetragen und in einem Zyklon abgeschieden werden. Das Gas wird danach direkt dem Kondensator zur Pyrolyseölabtrennung zugeführt.

Bild 3.9 Verfahrensschema der ablativen Pyrolyse mittels Vortex-Reaktor [Meier 2001].

3.6 Druckverflüssigung

Die Druckverflüssigung erfolgt in der Regel unter hohem Wasserstoffdruck und in Gegenwart von Katalysatoren und ist an die Verfahren zur Verflüssigung von Kohle angelehnt. Bild 3.10 zeigt das Prinzip der batchweisen Druckverflüssigung, Bild 3.11 den Aufbau einer kontinuierlichen Laboranlage. Die Umwandlung der Biomasse erfolgt dabei ebenfalls durch pyrolytische Zersetzung. Allerdings werden bei diesem Verfahren geringe Aufheizraten erreicht, was längere Verweilzeiten im Reaktor zur Folge hat. Um den Abbau der Pyrolyseprodukte zu leichtflüchtigen Gasen zu reduzieren, werden die bei der Spaltung der langkettigen organischen Moleküle freiwerdenden Radikale durch katalytisch aktivierten Wasserstoff gesättigt. Dies verhindert ausbeutemindernde sekundäre Reaktionen und fördert Deoxygenierungs-Reaktionen (also die Abtrennung von Sauerstoff aus den Molekülen). Dadurch wird der Sauerstoffgehalt des Pyrolyseöls reduziert, was erwünscht ist, da dadurch dessen Reaktivität vermindert und der massenspezifische Heizwert erhöht wird. Der Sauerstoffentzug durch Wasserstoff führt zur Bildung von Wasser und ist mit dem Verbrauch an Wasserstoff verbunden, der dem Reaktor zugeführt werden muss.

Bei der Druckverflüssigung werden zwei Varianten unterschieden:

- Wird die Druckverflüssigung unter Verwendung eines Lösemittels durchgeführt, wird das Verfahren als Hydrocracking bezeichnet, wie es beispielsweise zum Aufspalten von Kohle, schwerem Erdöl oder dem Destillationsrückstand von Raffinerien eingesetzt wird.
- Erfolgt die Druckverflüssigung ohne ein solches Anmaischöl, wird das Verfahren als Hydropyrolyse bezeichnet.

Bis anhin wurden verschiedene Prozessvarianten untersucht, wobei Drücke bis über 200 bar und verschiedene Katalysatoren zur Anwendung kamen. Durch Einsatz von Katalysatoren können die Prozesstemperaturen auf ein tieferes Niveau verschoben werden, weshalb auch von Niedertemperaturverfahren gesprochen wird.

Bei katalytischen Verfahren besteht allerdings die Gefahr der Verkokung der Katalysatoroberfläche. Die Verkokung kann in erster Linie durch Reaktion K₁ nach Reaktionsschema in Bild 2.2 erfolgen.

Die Zugabe von Feststoff-Katalysatoren kann bei Wirbelschichtverfahren durch Verwendung entsprechender Bettmaterialien erfolgen, während bei anderen Reaktorarten eine Zugabe von Katalysatorgranulat zum Brennstoff erfolgen oder der Katalysator in Anmaischöl suspendiert vorgegeben werden kann. Das Anmaischöl wird auch als Grundöl bezeichnet. Als Grundöl wird schwer siedendes und thermisch stabiles Öl verwendet, das im Pyrolysereaktor nur langsam zersetzt werden sollte. Wenn der Prozess einmal gestartet ist, sollte auf eine weitere Zugabe von Grundöl verzichtet werden können, da durch die fortlaufend Pyrolyseölproduktion dauernd ausreichend Flüssigphase im Reaktor vorhanden sein sollte.

Weitere Sondervarianten der Druckverflüssigung sind Verfahren unter überkritischen Bedingungen. Aufgrund der hohen Komplexität wurden allerdings in den letzten Jahren verstärkt die einfacheren Verfahren der Flash-Pyrolyse untersucht.

Bild 3.10 Prinzip der Druckverflüssigung von Biomasse in einem Autoklavensystem [Meier 2001].

Bild 3.11 Laboranlage zur katalytischen Verflüssigung bei Atmospärendruck [Willner et al 2004].

3.7 Eigenschaften und Nutzung von Pyrolyseöl

Motivation. Mit Verfahren zur schnellen Pyrolyse wird in der Regel die Herstellung eines Pyrolyseöls angestrebt, das mit möglichst geringem Aufbereitungsaufwand als Treibstoff für Motoren und Gasturbinen genutzt werden kann. Daneben besteht auch die Möglichkeit zum Einsatz von Pyrolyseöl zur Substitution von Heizöl. Dieser Anwendung ist allerdings eine direkte thermische Verwertung der Ausgangsbiomasse in Holzheizungen gegenüber zu stellen. Dank dem Wegfall des initialen Umwandlungsverlusts wird dadurch eine höhere Substitutionswirkung erzielt. Die Herstellung von Heizölersatz ist teilweise allerdings auch dadurch motiviert, dass am Ort der Nutzung geringere Lagervolumen notwendig werden, dass die Transportvolumina verkleinert werden (etwa für den Überseetransport von Nordamerika nach Europa) oder auch und dass durch die Aufbereitung eine Verbrennung mit geringeren Schadstoffemissionen insbesondere an Feinstaub erzielt werden kann.

Charakterisierung. Bei der Pyrolyse von Biomasse fallen vier Produktgruppen an, deren Anteil je nach Brennstoffart und Prozessbedingungen variiert können:

- Eine **organische Flüssigkeit**, die aus vorwiegend sauerstoffhaltigen Verbindungen besteht und in einen Aneil aus niedrigviskosem Pyrolyseöl und hochviskosem Teer besteht
- **Wasser**, das sich je nach Dichte, Viskosität und Polarität der organischen Phase mit dieser mischt oder getrennt anfällt
- **Gas**, das überwiegend aus CO₂, CO und CH₄ besteht
- Holzkohle zusammen mit Ascheanteilen.

Pyrolyseöle aus der Flash-Pyrolyse sind niedrigviskose Flüssigkeiten mit einer dunkelroten bis dunkelbraunen Farbe, die bis zu 38% Wasser enthalten können. Sie bestehen hauptsächlich aus Alkoholen, Furanen, Aldehyden, Phenolen, Säuren sowie Kohlehydraten und Ligninprodukten. Pyrolyseöle sind mischbar mit Alkoholen, jedoch nicht mit Kohlenwasserstoffen wie Benzin und Diesel. Wenn Wasser zugefügt wird, tritt ab rund 50% Wasseranteil eine Phasentrennung ein und es fällt Teer aus. Der ph-Wert der Pyrolyseöle liegt im sauren Bereich.

Vor allem aufgrund des hohen Sauerstoffgehalts von 44 bis 60 Gew.-% sind Pyrolyseöle sehr reaktiv und deshalb unbeständig und können insbesondere Polymerisationsreaktionen eingehen, wodurch die Viskosität stark ansteigen kann. Durch Zugabe von Alkoholen kann diese Neigung eingeschränkt werden. Ohne Vorbehandlung sind Pyrolyseöle jedoch nur bedingt lagerfähig und insbesondere sollten die Lagertemperaturen 30°C nicht überschreiten, was für übliche Anwendungen im Transportsektor nicht ausreichend ist.

Der Heizwert von Pyrolyseöl beträgt meist rund 16 bis 19 MJ/kg und damit rund 40% des Heizwerts von Heizöl oder Diesel, bei RTP-Verfahren werden auch Werte bis zu 22 MJ/kg ausgewiesen. Auch der unterschiedliche Heizwert ist in erster Linie auf den hohen Sauerstoffgehalt zurückzuführen, da Heizöl und Diesel lediglich rund 0,01 Gew.-% Sauerstoff enthalten.

Vor allem wegen der beschränkten Lagerfähigkeit und teils auch wegen weiterer Nachteile der Pyrolyseöle ist davon auszugehen, dass Pyrolyseöle entweder umgehend genutzt oder weiter aufbereitet werden müssen, was auch als Upgrading bezeichnet wird. Da Pyrolyseöle thermisch nicht stabil sind und zu Polymerisation neigen, lassen sie sich allerdings nur bedingt direkt destillieren. Es gibt Hinweise, dass durch Sprayverfampfung der Öle eine anschliessende destillative Aufarbeitung möglich ist. Daneben kommt zur Weiterverarbeitung von Pyrolyseöl auch die oben beschriebene Anwendung der Druckvergasung in Frage, bei welcher im Genteil zu einer Destillation eine Zerlegung in die Grundmoleküle (Wasserstoff und Kohlenmonoxid) erfolgt, aus denen in der Folge neue Produkte synthetisiert werden können.

4 Aufbau der KDV-Anlage

4.1 Ursprüngliche Laboranlage (Batch-Prozess)

Die ursprüngliche Laboranlage besteht aus folgenden Komponenten:

- Vorratsbehälter mit Austragung durch Schneckenförderer
- einstufiger Reaktor (Pyrolyse und Katalyse) mit Rührer
- Kühler.

Der zylindrische Vorratsbehälter (Durchmesser 0.48 m) wird durch eine Öffnung von oben manuell mit Biomasse befüllt. Am Boden des Behälters wird die Biomasse durch Schneckenförderung in einem zylindrischen Rohr ausgetragen. Ein Motor am Deckel des Behälters treibt die Schnecke an. Drei Mitnehmer an der Welle stellen das Nachrutschen der Biomasse im Behälter sicher. Die Drehzahl des Antriebs ist stufenlos steuerbar. Der einstufige Reaktor ist isoliert und beheizbar. Er enthält ein Grundöl, dem ein pulverförmiger Katalysator beigemischt wird. Wenn der Reaktor auf Reaktionstemperatur geheizt ist, wird die Biomasse von oben zugeführt. Ein Rührer stellt eine gleichmässige Durchmischung von Grundöl, Katalysator und Biomasse sicher. Die zugeführte Biomasse wird im heissen Grundöl rasch pyrolysiert, die gasförmigen Pyrolyseprodukte werden abgeführt und anschliessend im Kühler kondensiert und gesammelt. Die Laboranlage wird via Vorratsbehälter mit Stickstoff inertisiert, wodurch auch das Aufsteigen von Pyrolysegasen in den Vorratsbehälter verhindert wird.

Bild 4.1 Ursprüngliche Laboranlage (links), Biomassebehälter (rechts)..

Im einstufigen Reaktor der bestehenden Laboranlage wird feste Biomasse (Sägemehl) bei Umgebungsdruck und vergleichsweise niedrigen Temperaturen (350°C bis 400°C) pyrolysiert. Gleichzeitig werden die entstandenen Pyrolyseprodukte (langkettige organische Moleküle) mittels Katalysatoreinsatz gekrackt um als immer noch gasförmiges Zielprodukt Diesel zu erhalten. Die aufsteigenden Produktgase werden in einer Kühlstufe kondensiert und so verschiedene hochwertige Produktstoffe (Diesel, Benzin) gewonnen. In ersten Versuchen wurde ein Diesel ähnliches Produktöl mit vergleichsweise guter Qualität gewonnen. Allerdings fand im Reaktor eine unerwünschte Akkumulation von Kohlenstoff statt, so dass kein kontinuierlicher, sondern nur ein Batch-Betrieb möglich war. Aus diesem Grund wurden die Prozesse von Pyrolyse und Katalyse auf zwei separate Reaktoren aufgetrennt und aus dem ersten Pyrolysereaktor die Ausschleusung von festem Kohlenstoff vorgesehen.

4.2 Technikumsanlage (kontinuierlicher Prozess)

Die bestehende Laboranlage wurde zu einer kontinuierlich betreibbaren Technikumsanlage erweitert, in der Pyrolyse und Katalyse in zwei separaten Reaktoren ablaufen. Die Technikumsanlage besteht aus folgenden Komponenten (Bild 4.2):

- Vorratsbehälter mit Austragung durch Schneckenförderer
- Reaktor für schnelle Pyrolyse und Ausschleusung der festen Reaktionsprodukte (Kohlenstoff)
- Katalysereaktor zum Cracken langkettiger organischer Moleküle
- Rektifikationskolonne zur Auftrennung der kondensierbaren Reaktionsprodukte in Diesel, Benzin und Wasser

Bild 4.1 Verfahrensfliessbild der Technikumsanlage mit Mess- und Regelgrössen. Die Hauptkomponenten umfassen die Brennstoffzuführung, einen ersten Reaktor für die schnelle und ablativ unterstützte Pyrolyse in einem Kugelreaktor, einen nachgeschalteten Katalysreaktor mit Grundöl und dispergiertem Katalysator sowie eine nachgeschaltete Rektifikationskolonne und der nachgeschalteten Kondensationsstufe zur Abtrennung des flüssigen Pyrolyseöls in einem Diesel ähnlichen Siedebereich.

Bild 4.2 Technikumsanlage.

Vorratsbehälter

Es wird der bestehende Vorratsbehälter mit Austragung durch Schneckenförderer verwendet. Die Biomasse wird direkt in den heissen Pyrolysereaktor gefördert. Der Förderkanal ist thermisch isoliert, damit die Biomasse erst im Pyrolysereaktor aufgeheizt wird. Alle Anlagekomponenten werden vom Deckel des Biomassebehälters her mit Stickstoff beströmt bzw. inertisiert. Der Stickstoff verhindert ein Aufsteigen von gasförmigen Pyrolyseprodukten in den Biomassebehälter.

Pyrolysereaktor

Der beheizbare Pyrolysereaktor besteht aus einer Pyrolysekammer und einer Absetzkammer für die festen Pyrolyseprodukte (Kohlenstoff). Die Biomasse wird in der Pyrolysekammer bei Temperaturen von 450°C bis 500°C rasch pyrolysiert, wobei durch Ausgestaltung einer Art Kugelmühle eine ablativ unterstützte Pyrolyse angestrebt wird. Die festen Pyrolyseprodukte verbleiben in der Absetzkammer und werden periodisch, mechanisch ausgetragen Die gasförmigen Pyrolyseprodukte gelangen in den nachfolgenden Katalysereaktor.

Katalysereaktor

Der beheizbare Katalysereaktor besteht aus dem Reaktor der ursprünglichen Laboranlage. Er wird mit Grundöl und pulverförmigem Katalysator befüllt. Ein mechanischer Rührer stellt eine gute Durchmischung von Grundöl und Katalysator sicher. Die organischen gasförmigen Pyrolyseprodukte, also langkettige organische Moleküle, gelangen in das Grundöl und werden bei Umgebungsdruck und vergleichsweise niedrigen Temperaturen von 350°C bis 400°C gecrackt. Die gasförmigen Katalyseprodukte gelangen anschliessend in eine Raktifikationskolonne.

Rektifikationskolonne

Die Katalyseprodukte werden in einer Rektifikationskolonne kontrolliert abgekühlt, so dass eine Fraktionierung der verschiedenen kondensierbaren Reaktionsprodukte nach Siedepunkt erfolgt. Die Rektifikationskolonne weist mehrere 10 Trennböden auf, an denen die kondensierten Gase als flüssiges Produkt (Siedetemperatur ca. 250°C bis 350°C) abgezogen werden können. Alle Trennböden sind mit Temperaturfühlern ausgerüstet, damit die Zusammensetzung und Eigenschaften der flüssigen Reaktionsprodukte in Abhängigkeit der Temperatur untersucht werden können. Die Rektifikationskolonne ist isoliert und im unteren Drittel beheizbar. Schwerflüchtige Produktgase (Schweröle, Siedetemperatur > 350°C) werden in den Katalysereaktor zurückgeführt und nochmals katalytisch behandelt. Leichtflüchtige Produktgase (Wasser, Benzin, Siedetemperatur \leq 100°C) verlassen die Kolonne und werden weiter abgekühlt. Sie kondensieren und werden in einem Phasenabscheider aufgetrennt. Der organische Anteil (Benzin) wird in die Rektifikationskolonne rückgeführt. Das Wasser wird über einen Überlauf ausgeschleust und gesammelt. Die übrigen, nichtkondensierbaren gasförmigen Produkte werden ins Freie geleitet.

Nachfolgende Bilder zeigen eine Übersicht der Anlage, den eingesetzten Brennstoff und die anfallenden Produkte.

Bild 4.2 Technikumsanlage zur katalytischen Direkt-Verflüssigung von Biomasse mit nachgerüsteter Rektifikationskolonne

Bild 4.4 Brennstoff: Sägemehl

Bild 4.3 Gaskühler und Phasenabscheider nach der Rektifikationskolonne

Bild 4.5 Aus Pyrolyse anfallender fester Kohlenstoff

Bild 4.6 Aus der Rektifikationskolonne anfallendes flüssiges Produkt

4.3 Mess- und Regeltechnik

4.3.1 Anlagensteuerung

Alle elektrischen Komponenten der Anlage sind in einem Schaltschrank verdrahtet. Mit einer speicherprogrammierbaren Steuerung (OMRON Sysmac) werden Motoren ein- und ausgeschaltet, Drehzahlen verändert und Heizungen angesteuert bzw. auf gewünschte Sollwerte geregelt. An einem PC werden die Anlagedaten online visualisiert und Steuer- und Regelparameter können verändert werden. Sämtliche Daten der Anlagensteuerung werden kontinuierlich aufgezeichnet. Dazu gehören:

- Temperaturen sämtlicher Anlagekomponenten
- EIN/AUS, Drehzahl oder Intervalldauer/Laufzeit der entsprechenden Antriebe
- Energieverbrauch sämtlicher Heizungen
- Massenstrom Stickstoff und Wasserstoff.

4.3.2 Temperaturen

Sämtliche Temperaturen werden mit Thermoelementen (Typ K, NiCr-Ni) erfasst. Zulässiger Messbereich: -270°C ... 1370°C, effektiver Messbereich: 0°C ... 600°C Messunsicherheit: ca. +/- 1°C

4.3.3 Zugeführte elektrische Energie

Die zugeführte elektrische Energie wird separat erfasst für Heizungen, Antriebe und Kühlung. Heizungen bzw. Heizregler: Die zugeführte elektrische Energie für sämtliche Heizungen bzw. Heizregler wird direkt mittels Energiezähler gemessen; Elektronischer Wirk- und Blindenergiezähler, Berg, Typ BZ 40, Genauigkeit Klasse 2 nach IEC (± 2% auf Momentanwert).

Die Aufzeichnung der momentanen Energieanzeige erfolgt automatisch via PC der Anlagensteuerung.

Antriebe:

Die zugeführte elektrische Energie wird für sämtliche Antriebe mittels Messung des Stroms bestimmt: Strommesszange ACA 40/300 A, Genauigkeit $\pm 1\% + 3$ dgt. – 10 mA

Ablesung und Protokollierung des Stroms erfolgen manuell. Die zugeführte Wirkenergie wird wie folgt berechnet:

Mittlere Wirkleistung [W] \approx Mittelwert Strom [A] * Spannung [V] * cos(phi1 - phi2) Mittlere zugeführte Wirkenergie [Wh] \approx Mittlere Wirkleistung [W] * delta Zeit [h]

$P = U^*I\cos\left(\phi_1 - \phi_2\right)$	U,I: Effektivwerte	ϕ_1, ϕ_2 : Phasenlage
$U = \hat{U}/\sqrt{2} I = \hat{I}/\sqrt{2}$	Û,Î: Scheitelwerte	

Energiezähler für Kühlung:

Die zugeführte elektrische Energie für Kühlung wird direkt mittels Energiezähler bestimmt: Leistungsmessgerät EMU 1.24, Genauigkeit Klasse 2 nach IEC (± 2% auf Momentanwert) Ablesung und Protokollierung erfolgen manuell.

4.3.4 Gasanalytik

Die Volumenkonzentration der nicht kondensierbaren Produktgase CO, CO₂, CH₄, H₂ und O₂ wird mit Hilfe von on-line Gasanalytik gemessen (Tabelle 4.1). Höherwertige Kohlenwasserstoffe (ab C₂H_y) werden nicht analysiert und in der ersten Bewertung vernachlässigt, weil ihre Volumenkonzentration als gering (< 2 Vol.-%) angenommen wird. Stickstoff N₂ wird als Differenz zu 100 Vol.-% berechnet. Das Produktgas ist nach dem Kühler und Phasenabscheider auf ca. 10 °C abgekühlt und enthält neben Wasserdampf auch ölartige Aerosole aus nichtkondensierten organischen Kohlenwasserstoffen. Den Gasanalysegeräten ist deshalb eine Messgasaufbereitung vorgeschaltet. Diese besteht aus einem Aerosolabscheider (Koaleszenzfilter, Bühler GmbH, Ratingen, Typ K-AGF-PV-30-A) und einem Messgaskühler mit intergrierter Membranpumpe, Kondensatabscheider und Feinfilter (Insat). Das Messgas wird dabei auf ca. 5 °C abgekühlt, wodurch der Partialdruck des gesättigtem Wasserdampfs auf unter 10 mbar gesenkt wird. Die Volumenkonzentration von Wasserdampf H₂O im Messgas beträgt somit weniger als 1 Vol.-% und wird vernachlässigt.

Nach dem Kühler und Phasenabscheider beträgt der Partialdruck des gesättigtem Wasserdampfs im auf rund 10 °C abgekühlten Produktgas ca. 12 mbar. Die Volumenkonzentration von Wasserdampf H₂O im abgekühlten Produktgas beträgt somit ca. 1 Vol.-% und wird ebenfalls vernachlässigt.

Gaskomponente	Bezeichnung	Hersteller	Messbereich Vol%	Messprinzip	Messunsicherheit (bez. auf Endwert?)
СО	Binos 100	Leybold	0–2	NDIR ¹	±2%
CO ₂	Binos 100	Leybold	0–20	NDIR	±2%
СО	Uras 10E	Hartmann&Braun	(0–10) 0–50	NDIR	±2%
CH₄	Uras 10E	Hartmann&Braun	(0-5) 0-20	NDIR	±2%
O ₂	Uras 10E	Hartmann&Braun	(0–10) 0–25	Paramagnet. ²	±2%
NO	Uras 10E	Hartmann&Braun	0–1000 ppm	NDIR	±2%
H ₂	Thermor 6N	Maihak	0–20	WLD ³	±2%

Tabelle 4.1	Gasanalysegeräte.

¹: Nicht-dispersive Infrarotdetektion, ²: Paramagnetismus, ³: Wärmeleitfähigkeitsdetektion

4.3.5 Masse und Volumen

Alle festen Stoffe (Biomasse, Katalysatorpulver, Kohle) und alle flüssigen Stoffe (Wasser, Benzin, Diesel, Schweröl, Grundöl), die die Bilanzgrenze des Prozesses überschreiten, werden gewogen und ihr Volumen bestimmt. Die Wägung erfolgt mittels einer Präzisionswaage: Mettler Toledo, Typ PM34-K DeltaRange, Bereich 32'000 g ± 0.5 g ($\pm 0.015\%$), Bereich 4'000 g ± 0.2 g ($\pm 0.05\%$).

4.3.6 Massenstrom

Dem Prozess wird quasi-kontinuierlich Biomasse zugeführt. Der Massenstrom der zugeführten Biomasse wird aus der während der Versuchsdauer verbrauchten Biomasse bestimmt.

Dem Prozess wird kontinuierlich Stickstoff N₂ zugeführt. Der Massenstrom des zugeführten Stickstoffs wird mit einem thermischen Massemesser vorgegeben und geregelt: Vögtlin Instruments AG, red-y

smart series, smart controller GSC-C, Medium N_2 , 0 ... 50 ln/min, Genauigkeit ± 1.5% vom Endwert (±1.5 ln/min)

Optional kann dem Prozess kontinuierlich Wasserstoff H_2 zugeführt werden. Der Massenstrom des zugeführten Wasserstoffs kann mit einem thermischen Massemesser vorgegeben und geregelt werden: Vögtlin Instruments AG, red-y smart series, smart controller GSC-C, Medium N_2 , 0 ... 50 In/min, Genauigkeit ± 1.5% vom Endwert (±1.5 In/min).

4.3.7 Wassergehalt

Die Bestimmung des Wassergehalts erfolgt durch wägen einer feuchten Probe, trocknen der Probe und wägen der trockenen Probe. Eine exakte Bestimmung des Wassergehalts erfolgt durch Trocknung in einem Trockenschrank während ca. 24 Stunden bei 102°C bis 105°C.

5 Berechnungen

Zugeführte Biomasse

Die während eines Versuchs zugeführte Biomasse wird wie folgt bestimmt:

$$m_{Biomasse IN} = m_{Vorrat_Start} + m_{Nachfüllen} - m_{Vorrat_Ende}$$
 [kg] (GI. 5-1)

mit:

m _{Biomasse IN}	Zugeführte Menge Biomasse	[kg
m _{Vorrat_Start}	Restmenge Biomasse im Vorratsbehälter bei Versuchsbeginn	[kg
$m_{_{Nachfüllen}}$	während des Versuchs im Vorratsbehälter nachgefüllten Menge Biomasse	[kg
m _{Vorrat Ende}	Restmenge Biomasse im Vorratsbehälter bei Versuchsende	[kg

Die Restmenge Biomasse im Vorratsbehälter wird bestimmt aus dem Durchmesser des Behälters, der geschätzten Höhe der Biomasse im Behälter und der Schüttdichte:

$$m_{Vorrat} = \pi \left(\frac{\phi}{2}\right)^2 H \rho_{Biomasse} \quad [kg]$$
(GI. 5-2)

mit:

m_{Vorrat}	Restmenge Biomasse im Vorratsbehälter	[kg]
Ø	Durchmesser Vorratsbehälter	[m]
Η	geschätzten Höhe der Biomasse im Vorratsbehälter	[m]
$ ho_{\scriptscriptstyle Biomasse}$	Schüttdichte der Biomasse im Vorratsbehälter	[kg m ⁻³]

Stickstoff N₂

Die dem Prozess pro Zeiteinheit zugeführte Stickstoffmenge wird mit einem thermischen Massemesser geregelt. Die Angabe des Massemessers erfolgt allerdings in Volumen pro Zeiteinheit, d.h. in Normliter pro Minute [I_n/min] bei 0°C und 1013 mbar. Die Umrechnung auf Masse pro Zeiteinheit erfolgt über die Dichte von Stickstoff bei Normbedingungen:

$$\dot{m}_{N_2} = \rho_{N_2} V_{N_2} \, 60/1' \, 000 \quad [\text{kg h}^{-1}]$$
 (GI. 5-3)

mit:

\dot{m}_{N_2}	Zugeführter Stickstoffmassenstrom		[kg h ⁻¹]
$ ho_{\scriptscriptstyle N_2}$	Dichte von Stickstoff bei Normbedingungen (0°C und 1013 mbar) =	= 1.25	1 kg m ⁻³
\dot{V}_{N_2}	Stickstoffmassenstrom (angegeben als Liter pro Minute bei Normbedingunge	en)	[l _n min ⁻¹]

Wasserstoff H₂

Die dem Prozess pro Zeiteinheit zugeführte Wasserstoffmenge wird mit einem thermischen Massemesser geregelt. Die Angabe des Massemessers erfolgt allerdings in Volumen pro Zeiteinheit, d.h. in Normliter pro Minute [I_n/min] bei 0°C und 1013 mbar. Die Umrechnung auf Masse pro Zeiteinheit erfolgt über die Dichte von Wasserstoff bei Normbedingungen:

$$\dot{m}_{H_2} = \rho_{H_2} V_{H_2} \, 60/1'000 \, [\text{kg h}^{-1}]$$
 (GI. 5-4)

mit:

6 Resultate

Während der Testperiode ab Winter 2005 bis Frühling 2006 erfolgte während mehrerer Wochen ein Testbetrieb der Technikumsanlage.

In den ersten Versuchsreihen wurde getrocknetes Sägemehl mit einer Schüttdichte ab Packeinheit von rund 180 kg/m³ eingesetzt. Im Vorratsbehälter wurde eine Schüttdichte von ca. 130 kg/m³ abgeschätzt. Diese Schüttdichte ist gering und unterhalb derjenigen, welche zum Beispiel für einen einwandfreien Betrieb von Festbettvergasungsanlagen empfohlen wird, welche ohne Kompaktierung im Reaktor betrieben werden und in denen der Brennstoff von oben nach unten bewegt wird. Der Wassergehalt des verwendeten Sägemehls beträgt 10 ± 0.4 Gew.-%. Das verwendete Sägemehl stammt von entrindetem Nadelholz. Der Aschegehalt des Sägemehls wird für die Berechnungen auf $0,4 \pm 0.05$ Gew.-% geschätzt. Die Zusammensetzung von Kohlenstoff (C), Wasserstoff (H), Schwefel (S), Stickstoff (N) Sauerstoff (O) und Asche des Sägemehls bezogen auf Trockensubstanz (TS) wird für grobe Bilanzbetrachtungen wie folgt angenommen:

C _c = 50 Gew% (TS)	$C_{S} = 0.05 \text{ Gew}\% \text{ (TS)}$
C _H = 6 Gew% (TS)	C _N = 0.06 Gew% (TS)
C _o = 44 Gew% (TS)	C _{Asche} = 0.4 Gew% (TS)

In ersten Versuchsreihen zeigte sich, dass in der nicht beheizten Brennstoffzuführung eine unerwünschte Verdichtung sowie eine langsame, partielle Pyrolyse des Brennstoffs einsetzte. In der Folge wurde die Brennstoffzuführung modifiziert und im Bereich der Beschickung des Pyrolysereaktors mussten Verbesserungen an der Wärmedämmung vorgenommen werden, damit die Biomasse erst im Reaktor aufgeheizt wird. Der Austrag von festem Kohlenstoff aus dem Pyrolysereaktor erfolgte während der Versuche manuell bei kaltem Anlagenzustand. Inzwischen kann der staubförmig vorliegende Kohlenstoff auch bei laufendem Betrieb der Anlage ausgetragen werden.

Um den Betrieb und die Ausbeute vorerst ohne Crack-Wirkung des Katalysators zu testen, erfolgte die Inbetriebnahme mit leerem Katalysereaktor. Aufgrund der Fraktionierungswirkung der Rektifikationskolonne wurde eine Akkumulation des Sumpfes von schwersiedendem Öl im zweiten Reaktor erwartet, das in der Folge durch Zugabe von Katalysator für eine mögliche Erhöhung der Ausbeute gecrackt werden könnte.

Die Anlage wurde in vier Versuchen während insgesamt 24 Stunden mit Sägemehl betrieben. In einem Versuch wurde die Anlage während rund 10 Stunden relativ stationär auf Betriebstemperatur betrieben (siehe Bild 6.1 und Bild 6.2). Dabei wurden im Pyrolysegas Kohlenmonoxidgehalte bis zu über 30 Vol.-% erzielt, der Methangehalt betrug bis zu 15 Vol.-% und der Wasserstoffgehalt bis zu rund 10 Vol.-%. Gleichzeitig betrug der Kohlendioxidgehalt während der ungestörten Betriebsphasen über 20 Vol.-%, während der Sauerstoffgehalt wie gewünscht praktisch 0 betrug. Im Pyrolysereaktor wurde dabei eine Betriebstemperatur von rund 480°C eingestellt und im nachfolgenden, noch leeren Katalysereaktor stellte sich eine rund 100°C tiefere Temperatur ein.

Die Massen- und Energiebilanz konnte wegen der kurzen Versuchszeiten nicht in stationärem Betrieb aufgenommen und wegen der geringen Mengen an Produkt nur ungenau bestimmt werden. In Bild 6.3 ist die Massen- und Energiebilanz eines Versuchstags im Sinne einer Grobabschätzung dargestellt. Bild 6.4 zeigt das Berechnungsschema mit den detaillierten Angaben dazu.

Die Auswertung zeigt, dass die Bilanz nur mit einer grossen Unsicherheit abgeschätzt werden kann. So ergibt die Auswertung, dass aus der Pyrolyse rund die 1,4-fache Masse an Kohlenstoff ausgetragen wird wie zugeführt wird, was auf die grosse Ungenauigkeit der Messung und/oder auf den noch instationären Betrieb zurückzuführen ist und es zeigt auf, dass die abschätzungsweise ausgewerteten Messungen keine exakten Aussagen erlauben. Dennoch weisen die geringen Ausbeuten an flüssigem Produkt darauf hin, dass der Hauptteil der Energie nicht wie angestrebt in Diesel ähnlichem Öl, sondern in leicht flüchtigem Pyrolysegas anfällt. So zeigt die Grobbilanz eine Aufteilung des Energienhalts an rund 60% im Holzgas, rund 4% im Wasserdampf und knapp je 20% im Pyrolyseöl und im Pyrolysekoks auf.

Da die Ausbeute an flüssigem Pyrolyseöl trotz zahlreicher Anstrenungen nicht gesteigert werden konnte und die Flüssigausbeute teilweise kaum nachweisbar war, wurde der Meilenstein des Projekts nicht erreicht und das Projekt deshalb nach den ersten Testreihen abgebrochen. Versuche mit Katalysator zum Cracken des hochsiedenden Sumpfprodukts wurden nicht durchgeführt, da zu erwarten ist, dass dies die Ausbeute an kondensierbaren Verbindungen nicht erhöhen, sondern im Gegenteil zu Gunsten von leichtflüchtigen Gasen noch reduzieren würde.

Bild 6.1 Zeitverlauf verschiedener Temperaturen. Oben: Pyrolysereaktor; Mitte: Katalysereaktor; Unten: Rektifikationskolonne (Versuch am 7.3.2006)

Bild 6.2 Zeitverlauf der Konzentration verschiedener Gaskomponenten des Produktgases nach der Rektifikationskolonne (Versuch am 7.3.2006)

Bild 6.3 Grobschätzung der Massen- und Energiebilanz an einem Versuchsstag.

INPUT		OUTPUT				12 bered H	2 Therr C	Uras C	H4 Ura	2H4 C	2 Uras C	O2 Bin H	O feudH	loizgas Hoizg	asHolz at Ko	hle D	ieselő V	asser K	ohlensWa	sser Sai
Datum	23.6.2006					/ol% V	ol% Vo	N% V	/ol% V	/ol% \	ol% V	'ol% Ve	N%		CH1.4400.	66 C	хНу Н	20 C	н	0
Zeitfenster	10:17 15:05				-															
Dauer	4.80 h			aus Gasanalvse	Vol% tr	26.58	3.32	28.33	12.77	5.00	0.00	24.00		100.0	00					
		Wasser			Vol-% 1	25.25	3 15	26.91	12 13	4.75	0.00	22.80	5.00	100.00	-					
		Wassermence	4 391 kg	Dichte norm	ka/m3	1.251	0.090	1.25	0.717	1.26	1.429	1.977	0.88	1 297						
		Massenstrom Kohlenstoff	0.000 kg/b	Molmasse	ka/kmol	28	2	28	16	28	32	44	18		24	12		18	12	1 16
		Massanstrom Sauarstoff	0.813 kg/h	Volumenstrom	m3/h	0.809	0.101	0.863	0.389	0.152	0.000	0.731	0 160	3 205		142		10		1 10
		Massenstrom Wasserstoff	0.813 kg/h	Macconstrom	kalb	1.012	0.000	1.079	0.369	0.102	0.000	1 445	0.100	4.150						
Holz		Massenstrom Wasserston	0.915 kg/h	Kohlenstoffanteil	Gew -%	1.012	0.003	42.9	75.0	85.7	0.000	27.3	0.141	29.6	50	100	80	0.0		
Reschieleung		massensu oni wasser	0.813 Kg/II	Massanation C	kalb			42.0	0.200	0.164		0.204		1 220	50	100	80	0.0		
Deschickung.	0.40			Causate#entell	Ng/II			0.402	0.208	0.104	400.0	70.7	00.0	1.230		~		00.0		
Durchmesser	0.48 m	W-61-		Saberstoffanteil	Gew%			57.1			100.0	12.1	00.9	43.1	44	0	U	66.9		
verbrauchte Hone	0.55 m	Konie		Massenstrom_O	Kg/m			0.010			0.000	1.051	0.125	1.792	-					
Beschicktes Volumen	0.100 m3	Koniemenge	1.684 Kg	wasserstottanteil	Gew%		100.0		25.0	14.3		0.0	11.1	2.9	6	0	20	11.1		
Schuttvolumen	0.015 m3	Konleanteil aus Holz atro	14 Gew%	Massenstrom_H	кg/n		0.009		0.070	0.027		0.000	0.016	0.122				_		
Schüttgewicht	2 kg	Massenstrom Kohlenstoff	0.351 kg/h												Holz feucht					
Schuttaichte	134 kg/m3	Massenstrom Kohle	0.351 kg/n	Heizwert	мыжд		119.97	10.1	50.01	47.15				8.4	16.2	33	41.8			
Beschickte Holzmasse	13.4 kg				kWh/kg		33.3	2.8	13.9	13.1				2.3	4.5	9.2	11.6			
Wassergehalt w	10 %				MJ/m3n		10.78	12.63	35.88	36.88				9.8						
Holzfeuchtigkeit u	11 %	Diesel/Benzin	geschätzt		kWh/m3n		3.0	3.5	10.0	10.2				2.7						
Massenstrom Wasser	0.278 kg/h	Dieselmenge	1.190 kg	Brennwert	MJ/kg		141.8	10.1	55.5	50.28				9.0	20.0	33	44.7	2.5		
Massenstrom Holz atro	2.506 kg/h	Massenstrom Kohlenstoff	0.198 kg/h		kWh/kg		39.4	2.8	15.4	14.0				2.5	5.5	9.2	12.4	0.7		
Massenstrom Kohlenstoff	1.253 kg/h	Massenstrom Sauerstoff	0.000 kg/h		MJ/m3n		12.745	12.63	39.82	40.82				32.9						
Massenstrom Sauerstoff	1.350 kg/h	Massenstrom Wasserstoff	0.050 kg/h		kWh/m3n		3.5	3.5	11.1	11.3				9.1						
Massenstrom Wasserstoff	0.181 kg/h	Massenstrom Diesel	0.248 kg/h																	
Massenstrom Holz feucht	2.785 kg/h																			
	-			Kohle gesamt	kg	4.4														
		Holzgas		Holzmenge feucht	kg	36.0														
		via N2-Massenbilanz		Wassergehalt w	%	10														
		N2-Konzentration	26.6 Vol%	Wasser	kg/h	3.6														
Stickstoff		Dichte@Normbed, tr	1.251 kg/m3	Holz atro	kg/h	32.4														
via Massenstrommesser		N2-Massenstrom	1.012 ko/h	Kohleanteil	96	13.6														
Volumenetrom	19 3 In/min	N2-Volumenenstrom	0.809.m3/b																	
Volunt durch Lindichtiekeiter	20 %	Volumonstrom Holtrass tr	2.045 m2/h																	
N2 Volumononation	12 E lo/min	Wasserschalt	5.045 Mah																	
Nz-Volumenension	13.5 Intrinit	Wassergenan	0.000 000-%																	
Dichlerwinormbed	1.251 Kg/m3	volumenstrom holzgas i	3.205 ma/n																	
Temperatur	0 °C	Dichte Holzgas	1.297 kg/m3																	
Druck	1013 mbar	Massenstrom Kohlenstoff	1.230 kg/h																	
Dichte@Messbed	1.251 kg/m3	Massenstrom Sauerstoff	1.792 kg/h																	
N2-Volumenenstrom	0.809 m3/h	Massenstrom Wasserstoff	0.122 kg/h																	
N2-Volumenenstrom Massenstrom N2	0.809 m3/h 1.012 kg/h	Massenstrom Wasserstoff Massenstrom Holzgas	0.122 kg/h 4.156 kg/h																	
N2-Volumenenstrom Massenstrom N2	0.809 m3/h 1.012 kg/h	Massenstrom Wasserstoff Massenstrom Holzgas	0.122 kg/h 4.156 kg/h																	
N2-Volumenenstrom Massenstrom N2	0.809 m3/h 1.012 kg/h	Massenstrom Wasserstoff Massenstrom Holzgas	0.122 kg/h 4.156 kg/h																	
N2-Volumenenstrom Massenstrom N2	0.809 m3/h 1.012 kg/h	Massenstrom Wasserstoff Massenstrom Holzgas	0.122 kg/h 4.156 kg/h																	
N2-Volumenenstrom Massenstrom N2 Masse IN	0.809 m3/h 1.012 kg/h	Massenstrom Wasserstoff Massenstrom Hotzgas Masse OUT	0.122 kg/h 4.156 kg/h		1	Energie	IN				E	Energie	оит							
N2-Volumenenstrom Massenstrom N2 Masse IN	0.809 m3/h 1.012 kg/h	Massenstrom Wasserstoff Massenstrom Holzgas	0.122 kg/h 4.156 kg/h		I	Energie Basis: Heizy	IN wert				E	Energie	OUT							
N2-Volumenenstrom N2 Massenstrom N2 Masse IN Gesamtmasse via:	0.809 m3/h 1.012 kg/h	Massenstrom Wassenstoff Massenstrom Holzgas Masse OUT Gesamtmasse via:	0.122 kg/h 4.156 kg/h		I E F	Energie Basis: Heizy Holz feuc!	IN wert 12.6 kV	v			E B K	Energie lasis: Heizv	OUT	3.2 kW						
N2-Volumenenstrom Massenstrom N2 Masse IN Gesamtmasse via: Holz atro	0.809 m3/h 1.012 kg/h 2.506 kg/h	Massenstrom Wassenstoff Massenstrom Holzgas Masse OUT Gesamtmasse via: Kohle	0.122 kg/h 4.156 kg/h 0.351		I E F	Energie Basis: Heize Holz feucl Heizungei	IN wert 12.6 kV 8.6 kV	v			E B K	Energie asis: Heizw cohle Hesel/Benzi	OUT eert	3.2 kW 2.9 kW						
N2-Volumenenstrom N2 Massenstrom N2 Masse IN Gesamtmasse via: Holz atro Wasser	0.809 m3/h 1.012 kg/h 2.506 kg/h 0.278 kg/h	Massenstrom Wassenstoff Massenstrom Holzgas Masse OUT Gesamtmasse via: Kohle Wasser	0.122 kg/h 4.156 kg/h 0.351 0.915		I F F	Energie Basis: Heizi Holz feuct Heizunger Motoren	IN vert 12.6 kV 8.6 kV 1.5 kV	v v	(A * I * Wu	rzel(3))	E B K D H	Energie kasis: Heizw ichle kiesel/Benzi kolzgas	OUT ert	3.2 kW 2.9 kW 9.7 kW						
N2-Volumenenstrom Massenstrom N2 Masse IN Gesamtmasse via: Holz atto Wasser	0.809 m3/h 1.012 kg/h 2.506 kg/h 0.278 kg/h	Massenstrom Wassenstoff Massenstrom Holzgas Masse OUT Gesamtmasse via: Kohle Wasser Diese/Benzin	0.122 kg/h 4.156 kg/h 0.351 0.915 0.248		I F F M	Energie Basis: Heizi Hoiz feuci Heizungei Motoren Kühlung	IN vert 12.6 kV 8.6 kV 1.5 kV 8.6 kV	v v v	(A * I * Wu	rzel(3))	Е В И Н У	Energie lasis: Heizw lohle kiesel/Benzi loizgas Vasser	OUT rent	3.2 kW 2.9 kW 9.7 kW 0.0 kW						
N2-Yolumenentrom N2 Massen IN Gesamtmasse via: Holz atro Wasser Stickatoff	0.809 m3/h 1.012 kg/h 2.506 kg/h 0.278 kg/h 1.012 kg/h	Massenstrom Wassensbill Massenstrom Hotzgas Masse OUT Gesantmasse via: Kote Wasser Deselferatin Hotzgas	0.122 kg/h 4.156 kg/h 0.351 0.915 0.248 4.156		I F F M	Energie Basis: Heizt Holz feuct Heizunger Motoren Kühlung V2	IN 12.6 kV 8.6 kV 1.5 kV 8.6 kV	V V V V	(A * I * Wu	rzel(3))	E B K D H V	Energie lasis: Heizw ichle liesel/Benzi loizgas Vasser	OUT eert	3.2 kW 2.9 kW 9.7 kW 0.0 kW						
N2-Volumenenstrom Massenstrom N2 Masse IN Gesantimasse via: Hoiz atro Wasser Stickatoff Gesantimasse	0.809 m3/h 1.012 kg/h 2.506 kg/h 0.278 kg/h 1.012 kg/h 3.797 kg/h	Massenatrom Vessenatori Massenatrom Hotzas Masses OUT Gesantimasse via: Kohe Waser Deeeldenzin Hotzas Gesantimasse <	0.122 kg/h 4.156 kg/h 0.351 0.915 0.248 4.156 5.5670 kg/h	149.3% 67.0%	 	Energie Basis: Heizr Holz feuci Heizunger Motoren Kühlung K2 H2	IN vert 12.6 kV 8.6 kV 1.5 kV 8.6 kV	v v v	(A * I * Wu	rzel(3))	Е в к и н	Energie Iasis: Heizw Johle Hesel/Benzi Iolzgas Vasser	OUT rent	3.2 kW 2.9 kW 9.7 kW 0.0 kW						
N2-Yolumenentrom Massentrom N2 Masse IN Gesamtmasse via: Hoiz atro Wasser Stickstoff Gesamtmasse	0.899 m3h 1.012 kgh 2.506 kgh 0.278 kgh 1.012 kgh 1.012 kgh	Massenatrom Vassenstoff Massenstrom Holzgas Masses OUT Gesantmasse via: Kohe Waser DieselBenzin Holzab Gesantmasse <	0.122 kg/h 4.156 kg/h 0.351 0.915 0.248 4.156 5.670 kg/h	149.3% 67.0%	6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Energie Basis: Heizi Holz feuci Heizunger Motoren Kühlung N2 H2 Leistung	IN vert 12.6 kV 8.6 kV 8.6 kV 8.6 kV	v v v v	(A * I * Wu	rzel(3))	E B H W	Energie Isasis: Heizw Johle Nesel/Benzi Nasser Vasser eistung	OUT rent	3.2 kW 2.9 kW 9.7 kW 0.0 kW	_					
N2-Volumenentrom N2 Massen IN Gesamtmasse via: Hola atro Wasser Stickatoff Gesamtmasse Kohlenstoff 'C' via:	0.859 m3h 1.012 kgh 2.506 kgh 0.278 kgh 1.012 kgh 3.787 kgh	Massenstrom Vassenstoff Massenstrom Hotzpas Masses OUT Gearntmasse va: Kotle Waser DeedStatin Gearntmasse Kotlenstoff Cy Va:	0.122 kg/h 4.156 kg/h 0.351 0.915 0.248 4.156 5.670 kg/h	142.3% 67.0%	= = = = = = = = = = = = = = = = = = =	Energie Basis: Heizh Hoiz feucl Heizunger Motoren Gühlung H2 Leistung Basis: Bren	IN 12.6 kV 8.6 kV 8.6 kV 8.6 kV 31.3 kV	v v v v	(A * I * Wu	rzel(3))	Е В К D H Ч Ц В 8	Energie iasis: Helzw Johle liesel/Benzi lolzgas Vasser elstung iasis: Brenr	OUT n wert	3.2 kW 2.9 kW 9.7 kW 0.0 kW 15.8 kW	_					
N2-Volumenenstrom Masser IN Masse IN Gesamtmasse via: Holz atro Stickstoff Gesamtmasse Kohlenstoff "C' via: Holz atro	0.859 m3h 1.012 kgh 2.506 kgh 0.276 kgh 1.012 kgh 1.012 kgh 1.787 kgh	Massenatori Viassenatori Massenatori Nologa Massenatori Nologa Gesantmasse via: Kolle Waser Dieselfencia Hotoas Gesantmasse <	0.122 kgh 4.156 kgh 0.351 0.915 0.248 4.156 5.670 kgh 0.351	142,3% 67,0%		Energie Basis: Heizh Hoiz feuci Heizunger Motoren Kühlung K2 Leistung Basis: Bren Hoiz atro	IN 12.6 kV 8.6 kV 8.6 kV 8.6 kV <u>31.3 kV</u> nwert 13.9 kV	v v v v v	(A * I * Wu	rzel(3))	Е в н ч <u>ц</u> в	Energie lasis: Helzw Johle liesel/Benzi lolzgas Vasser <u>eistung</u> lasis: Brenr Johle	OUT n wert	3.2 kW 2.9 kW 9.7 kW 0.0 kW <u>15.8 kW</u> 3.2 kW	-					
N2-Yolumenenstrom Massenstrom N2 Masse Masse Masser Hoiz atro Wasser Stickstoff Gesamtmasse Vi2: Hoiz atro Wasser	0.859 m3h 1.012 kgh 2.506 kgh 0.278 kgh 1.012 kgh 3.787 kgh 0.000 inh	Massenstrom Velaserstoff Massenstrom Holzpas Masses OUT Gesantmasse via: Kolle Wasser Cesantmasse Kollenatoff 'C via: Kolle	0.122 kg/h 4.156 kg/h 0.351 0.915 0.248 4.156 5.670 kg/h 0.351 0.000	148.3% 87.0%		Energie Sasis: Heizt Hoiz feuct Heizunger Motoren Cühlung H2 H2 H2 H2 H2 H2 H2 H2 H2 H2	IN 12.6 kV 8.6 kV 1.5 kV 8.6 kV 31.3 kV rwert 13.9 kV 0,19 kV	v v v v v	(A * I * Wu	rzel(3))	Е в к р н у ш в к с	Energie iasis: Heizw johle liesel/Benzi loizgas Vasser eistung iasis: Brenr johle liesel/Benzi	OUT n wvert	32 kW 29 kW 9.7 kW 0.0 kW <u>158 kW</u> 3.2 kW 3.1 kW	_					
N2-Volumenenstrom Massenstrom N2 Masse IN Gesamtimasse via: Hoiz atro Wasser Stickatoff Gesamtimasse Kohlenstoff "C'via: Hoiz atro Wasser	0 859 mSh 1.012 kgh 2 506 kgh 0.278 kgh 1.012 kgh 1.012 kgh 1.78 kgh 0.000 kgh	Massenstrom Veissenstoff Massenstrom Hotzas Masses OUT Gesantmasse via: Kotie Waser DesetSeruin Hotzas Gesantmasse < Kohenstoff V via: Kotie Waser Ducudement	0.122 kgh 4.156 kgh 0.351 0.915 0.248 4.156 5.670 kgh 0.351 0.351 0.351 0.351 0.000 0.99	142.3% 67.0%		Energie Basis: Helzn Holz feucl Helzunger Motoren Kühlung H2 Leistung Basis: Bren Holz atro Nasser	IN 12.6 kV 8.6 kV 1.5 kV 8.6 kV 31.3 kV 0.19 kV 0.19 kV 0.9 kV	v v v	(A * I * Wu	rzel(3))	Е В Н Ш В В К С О В В К С О	Energie asis: Heizw johle Nesel/Benzi lotzgas Vasser elstung asis: Brenr johle Nesel/Benzi	OUT rent n wert	3.2 kW 2.9 kW 9.7 kW 0.0 kW <u>15.8 kW</u> 3.2 kW 3.1 kW						
N2-Volumenenstrom Massentrom N2 Masse IN Gesamtmasse via: Hoiz atro Stickatoff <u>Gesamtmasse</u> Kohlenstoff 'C' via: Hoiz atro Wasser	0.859 m3h 1.012 kg/h 2.506 kg/h 0.278 kg/h 1.012 kg/h 3.797 kg/h 1.253 kg/h 0.000 kg/h	Massenatori Viasaestoli Massenatrom Holzas Masses OUT Gesantmasse via: Kohe Wasser DieselBeruin Hotzas Gesantmasse < Kohenstoli 'Ti via: Kohenstoli 'Ti via: Kohenstoli 'Ti via: Kohenstoli 'Ti via:	0.122 kg/h 4.156 kg/h 0.351 0.915 0.	149.3% 67.0%		Energie Basis: Heizi Hoiz teuci Heizungei Wotoren Cühlung Viz Heizung Hoiz atro Wasser Heizungei	IN 12.6 kV 8.6 kV 1.5 kV 8.6 kV <u>31.3 kV</u> 0.19 kV 8.6 kV 0.19 kV	v v v v	(A * I * Wu	rzel(3))	Е в к о н у ш в к о с н ч	Energie sals: Heizw ichle liesel/Benzi lotzgas Vasser eistung asis: Brenr ichle liesel/Benzi lotzgas	OUT n wert n	3.2 kW 2.9 kW 9.7 kW 0.0 kW <u>15.8 kW</u> 3.2 kW 3.1 kW 10.4 kW						
N2-Volumenenstrom Massenstrom N2 Masse IN Gesantmasse via: Hoiz atro Wasser Stickstoff Gesantmasse Kohlenstoff 12 via: Hoiz atro Wasser Kohlenstoff 12 via:	0 889 m3h 1.012 kgh 2.506 kgh 0.278 kgh 1.012 kgh 1.012 kgh 1.012 kgh 1.028 kgh 0.000 kgh	Massenstrom Vessenstoff Massenstrom Hotzas Masses OUT Gesantmasse Va: Kotle BesetBenzin Hotzas Kotlerantmasse < Kotlerantmasse Kotlerantmasse BasetBenzin Hotzas	0.122 kgh 4.196 kgh 0.351 0.915 0.248 4.196 5.5670 kgh 0.351 0.000 0.198 1.220 kgh	149.3% 67.0%		Energie Sasis: Heizt teizunger votoren Kühlung v2 teistung sasis: Bren toiz atro Nasser teizunger votoren Köhlung	IN 12.6 kV 8.6 kV 1.5 kV 8.6 kV <u>31.3 kV</u> nwert 13.9 kV 0.19 kV 8.6 kV 1.5 kV	v v v v	(A * I * Wu	rzel(3))	Е в н ч в в к с о н ч ч ч	Energie iasis: Helzw iohle liesel/Benzi lotzgas Vasser eistung iasis: Brenr iohle liesel/Benzi lotzgas Vasser	OUT n wwert	3.2 kW 2.9 kW 9.7 kW 0.0 kW 15.8 kW 3.2 kW 3.1 kW 10.4 kW 0.6 kW		ingsentl	halpie)			
N2-Volumenenstrom Massentrom N2 Masse IN Gesamtmasse via: Hoiz atro Wasser Stickstoff Gesamtmasse Kohlenstoff "C'ia: Hoiz atro Wasser Kohlenstoff "C'	0.859 m3h 1.012 kgh 2.506 kgh 0.276 kgh 1.012 kgh 1.012 kgh 1.253 kgh 1.253 kgh	Massenatori Viasaestoli Massenatori Notigas Massenatori Notigas Gesantmasse via: Kolle Waser DiesetBeruin Hotgas Coleantmasse < Kolle Waser DiesetBeruin Hotgas Kohlenstoff 'C' <	0.122 kgh 4.156 kgh 0.351 0.915 0.248 4.156 5.670 kgh 0.351 0.000 0.351 0.000 0.188 1.230 5.779 kgh	142.3% 67.0%		Energie Sasis: Heizi Hoiz feuci Hoiz feuci Motoren Kühlung K2 H2 Leistung Sasis: Bren Hoiz atro Nasser Heizungei Motoren Cühlung I	IN 12.6 kV 8.6 kV 1.5 kV 8.6 kV 31.3 kV 13.9 kV 0.19 kV 8.6 kV 1.5 kV 8.6 kV	v v v v v v v v v v	(A * I * Wu	rzel(3))	Е В Н Ч Ч Ч Ч В В В В В В В В В В В В В В	Energie iasis: Heizw Johe liesel/Benzi loizgas Vasser <u>eistung</u> iasis: Brenr Johe liesel/Benzi loizgas Vasser	OUT n wert	3.2 kW 2.9 kW 9.7 kW 0.0 kW 15.8 kW 3.2 kW 3.1 kW 10.4 kW 0.6 kW	 (Verdampfu	ingsentl	halpie)			
N2-Volumenenstrom Massentrom N2 Masse IN Gesamtmasse via: Holz atro Wasser Stickstoff Gesamtmasse Kohlenstoff 'C' via: Holz atro Wasser Kohlenstoff 'C'	0 859 m3h 1.012 kgh 2.506 kgh 0.278 kgh 1.012 kgh 1.012 kgh 1.012 kgh 0.000 kgh 1.283 kgh	Massenstrom Velaserstoff Massenstrom Holzpas Massenstrom Holzpas Cesantimasse via: Korle Wasser DieselBenzin Hotzas Casantimasse	0.122 kg/h 4.156 kg/h 0.351 0.915 0.248 4.156 5.670 kg/h 0.351 0.000 0.198 1.230 1.779 kg/h	149.3% 67.0% 142.0% 70.4%		Energie Basis: Heizi Hoiz feuci Heizungei Motoren Kühlung Va Jasis: Bren Hoiz atro Wasser Hoizaroe Motoren Kühlung Va	IN vert 12.6 kV 8.6 kV 1.5 kV 8.6 kV 31.3 kV 0.19 kV 8.6 kV 1.5 kV 8.6 kV	v v v v v v	(A * 1 * Wu	rzei(3))	Е в к он м в к он м	Energie kasis: Heizw johle kiesel/Benzi loizgas vasser eistung kiesel/Benzi loizgas vasser	OUT n wwert	3.2 kW 2.9 kW 9.7 kW 0.0 kW 15.8 kW 3.2 kW 3.1 kW 10.4 kW 0.6 kW	(Verdampt.	ingsentit	halpie)			
N2-Volumenenstrom Massenstrom N2 Masse IN Gesamtimasse via: Hoiz atro Wasser Stickstoff Gesamtimasse Kohlenstoff 'C'a: Hoiz atro Wasser Kohlenstoff 'C' Sauerstoff 'O' via:	0 859 m3h 1.012 kg/h 2 556 kg/h 0.278 kg/h 1.012 kg/h 1.012 kg/h 0.000 kg/h 1.253 kg/h	Massenstrom Veissenstoff Massenstrom Notigue Massenstrom Notigue Gesamtmasse via: Kotle Massen Deesefferscrin Hotopas Contention ff via: Kotle Massen Deesefferscrin Hotopas Kothlenstoff "C" <	0.122 kgh 4.156 kgh 0.351 0.351 0.248 4.156 2.248 4.156 0.248 4.156 0.351 0.248 4.156 0.351 0.248 4.156 1.200 0.351 0.200 1	149.3% 87.0% 142.0% 70.4%		Energie Basis: Heiz Holz feucl Heizunger Kühlung K2 La Leistung Heizunger Kühlung K4 Kuhung K2 La La La La La La La La La La La La La	IN 12.6 kV 8.6 kV 1.5 kV 8.6 kV 31.3 kV 13.9 kV 8.6 kV 1.5 kK 8.6 kV	v v v v v v v	(A * I * Wu	rzeł(3))	E B K U U H W W U U H H W W	Energie ohle lesel/Benzi lolzgas vasser elstung asis: Brenn ohle lesel/Benzi vasser	OUT n wwert	3.2 kW 2.9 kW 9.7 kW 0.0 kW 15.8 kW 3.2 kW 3.1 kW 10.4 kW 0.6 kW	(Verdampft	ungsenth	halpie)			
N2-Volumenenstrom Masser IN Masse IN Gesantmasse via: Hoiz atro Wasser Stickstoff Gesamtmasse Kohlenstoff 'C' Kohlenstoff 'C' Sauerstoff 'O' via: Hoiz atro	0.859 m3h 1.012 kgh 2.506 kgh 0.278 kgh 1.012 kgh 1.012 kgh 1.028 kgh 0.000 kgh 1.253 kgh 1.038 kgh	Massenatori Viasaestoli Massenatrom Nolzas Massenatrom Alazas Kohe Dieselfencio Hotzas Kohenstoff 'O' Via: Kohenstoff 'O' via: Kohenstoff 'O' via: Kohenstoff 'O' via:	0.122 kg/h 4.156 kg/h 0.351 0.915 0.248 4.156 5.670 kg/h 0.351 0.000 0.188 1.230 c 1.779 kg/h 0.000	148.3% 87.0% 142.0% 70.4%	1 3 4 4 4 4 1 2 3 4 7 7 4 8 4 4 1 2	Energie Basis: Heiz Heizuget Motoren Köhlung kiz te elektung Motoren Köhlung kis: Bren Heizunget Motoren Köhlung te kis: Bren Heizunget Köhlung te kis: Bren Heizunget Köhlunget Kö	IN 12.6. kV 8.6. kV 1.5. kV 8.6. kV 0.19. kV 8.6. kV 1.5. kV 8.6. kV 1.5. kV 8.6. kV	v v v v v v v v	(A * I * Wu	rzel(3))	프 프 프 프 프 프 프 프 프 프 프 프 프 프 프 프 프 프 프	Energie asis: Heizw Able Hiese/Benzi Asser eistung asis: Brenr Asser Hiese/Benzi Asser eistung	OUT n wert n	3.2 kW 2.9 kW 9.7 kW 0.0 kW 15.8 kW 3.1 kW 10.4 kW 0.6 kW 17.3 kW	 (Verdampfu	ingsenth	halpie)			
N2-Volumenenstrom Massenstrom N2 Masse IN Gesantimasse via: Holz atro Wasser Stickstoff Gesantimasse Kohlenstoff 'C' via: Holz atro Wasser Sauenstoff 'O' via: Holz atro Wasser	0 889 mSh 1.012 kgh 2.506 kgh 0.278 kgh 1.012 kgh 1.012 kgh 1.012 kgh 1.253 kgh 1.253 kgh 1.253 kgh	Massenstrom Veissenstoff Massenstrom Hotzus Massenstrom Hotzus Gesantmasse via: Kotle Wasser Kotleanstoff 'C' via: Kotle Diseseffersnin Hotzus Kotleanstoff 'C' via: Kotleanstoff 'C' via: Kotleanstoff 'C' via: Kotleanstoff 'C' via: Kotleanstoff 'C' via: Kotleanstoff 'C' via: Kotleanstoff 'C' via:	0.122 kgh 4.156 kgh 0.351 0.915 0.248 4.156 5.5670 kgh 0.351 0.000 0.188 1.230 c 1.779 kgh	149.3% 67.0% 142.0% 70.4%		Energie Basis: Heizi Hoiz feuch Hoizoren Kühlung 12 eletung Motoren Kühlung 12 eletung Hoizatro Wasser Kohoren Kühlung 12 eletung	IN 12.6. kV 8.6. kV 1.5. kV 8.6. kV 1.5. kV 1.5. kV 1.5. kV 8.6. kV 1.5. kV 8.6. kV	<u>v</u> v v v v v v v v v v v v v	(A * 1 * Wu	rzel(3))	8 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Energie asis: Heizwie ohie elesel/Banzi vasser elstung asis: Brenn asis: Brenn asis: Brenn asis: Brenn asis: Brenn elstung vasser	OUT n wert n	3.2 kW 2.9 kW 9.7 kW 0.0 kW 15.8 kW 3.2 kW 3.2 kW 3.1 kW 0.6 kW 10.4 kW 0.6 kW	 (Verdampfu	ingsentl	halpie)			
N2-Volumenenstrom Massen IN Masse IN Gesamtmasse via: Holz atro Wasser Stickstoff Colessforf 'C' via: Holz atro Wasser Sauerstoff 'O' via: Holz atro Wasser	0 859 m3h 1.012 kgh 2 556 kgh 0 278 kgh 1.012 kgh 1.012 kgh 1.012 kgh 0.000 kgh 1.253 kgh 1.103 kgh 0.248 kgh	Massenatrom Velaseratori Massenatrom Notigue Massenatrom Notigue Gesantmasse via: Kohle Wasser DiesetBenzin Kohle Wasser DiesetBenzin Kohle Sauerstoff 'O' via: Kohle Sauerstoff 'O' via: Kohle DiesetBenzin	0.122 kgh 4.156 kgh 0.351 0.915 0.248 4.156 2.248 4.156 0.248 4.156 0.248 1.250 0.351 0.000 0.198 1.220 5.1779 kgh	148.3% 67.0% 142.0% 70.4%		Energie Basis: Heizinger Heizinger Gühung 12 12 12 13 3asis: Bren Hoiz atro Wasser Heizinger Kühung 12 Leistung 12	IN 12.6 kV 8.6 kV 8.6 kV 31.3 kV 0.19 kV 8.6 kV 8.6 kV 32.8 kV	V V V V V V V V V V V V V	(A * 1 * Wu	rzei(3))	В В И И И И И И И И И И И И И И И И И И	Energie asis: Heizwie keisel/Benzi kasser eistung asis: Brenn able eistung Alasser eistung eistung eistung	OUT n wwert	3.2 kW 2.9 kW 9.7 kW 0.0 kW 3.2 kW 3.1 kW 10.4 kW 0.8 kW 17.3 kW	(Verdampfu	ngsent	nalpie)			
N2-Volumenenstrom Massenstrom N2 Masse IN Gesantimasse via: Holz atro Stickstoff <u>Gesantimasse</u> Kohlenstoff 'C' via: Holz atro Sauerstoff 'O' via: Holz atro Wasser	0 889 m3h 1.012 kgh 2.506 kgh 0.278 kgh 0.278 kgh 1.012 kgh 1.028 kgh 0.000 kgh 1.253 kgh 0.000 kgh 1.253 kgh	Massenstrom Veissenstoff Massenstrom Hotrgan Massenstrom Hotrgan Gesamtmasse via: Kohe Massen Deselferutin Hotrgas Kohenstoff 'G' ia: Kohenstoff 'G' ia: Kohenstoff 'G' ia: Kohenstoff 'G' ia: Saversfor Deselferutin Hotrgas	0.122 kgh 4.156 kgh 0.351 0.915 0.248 4.156 5.248 4.156 5.248 4.156 0.248 4.156 5.276 kgh 0.351 0.000 0.188 1.230 5.779 kgh 0.000 0.813 0.000 1.792	149.3% 67.0% 142.0% 70.4%	8 3 4 4 4 4 <u>4</u> <u>8</u> 3 4 7 4 7 4 <u>8</u> 4 <u>8 4 8 4 <u>8 8 8 8 8 8 8 8 8 8 8 8 8 8</u></u>	Energie Basis: Heiz koloren Gühung 42 <u>ekitung</u> ekitung Masser Heizunger Koloren Gühung 12 2 <u>ekitung</u>	IN 12.6 kV 15.6 kV 8.6 kV 8.6 kV 15. kV 8.6 kV 13.9 kV 8.6 kV 15. kV 8.6 kV 32.8 kV	v v v v v v v v v v v v v v	(A * I * Wu	(3))	В В Н Ч Ч В В К С Ц В В В В В В В В В В В В В В В В В В	Energie Ante esel/Benzi bitgas asses Termo elstung elstung bitgas asses remo elstung	OUT n wwert	3.2 kW 2.9 kW 9.7 kW 0.0 kW 15.8 kW 3.2 kW 3.1 kW 10.4 kW 0.6 kW	(Verdampft	ingsentl	halpie)			
N2-Volumenenstrom Masser IN Masse IN Gesamtimasse via: Hoiz atro Wasser Stickstoff Gesamtimasse Kohlenstoff 'C' via: Hoiz atro Wasser Sauerstoff 'O' via: Hoiz atro Sauerstoff 'O'	0 859 mSh 1.012 kgh 2 556 kgh 0.278 kgh 1.012 kgh 1.012 kgh 0.000 kgh 1.253 kgh 0.248 kgh 1.360 kgh	Massenstrom Veissenstoff Massenstrom Notigue Massenstrom Notigue Gesamtmasse via: Kohle Wasser Dees/Beruin Hotogas Kohlenstoff 'O via: Kohle Sauerstoff 'O via: Kohle Sauerstoff 'O' via:	0.122 kgh 4.156 kgh 0.351 0.351 0.248 4.156 2.248 4.156 0.351 0.000 0.198 1.200 1.779 kgh 0.000 0.813 0.000 1.792 2.2695 kgh	142.3% 67.0% 142.0% 70.4%		Energie Basis: Heizz koloren Koloren Kolnung 12 elatung kasis: Bren kolz atro Wasser Holz atro Wasser Holz atro Wasser Leizunget Koloren Kolnung 12 elatung	IN wert 12.6 kV 8.6 kV 1.5 kV 8.6 kV 0.19 kV 0.19 kV 8.6 kV 32.8 kV	v v v v v v v v v v v v v v v	(A *] * Wu	zel(3))	E B K C H W B K C H H W H H W - 브	Energie asis: Heizv ohle Hesel/Benzi Vasser asis: Brenr asis: Bren	OUT n wert n	3.2 kW 2.9 kW 9.7 kW 0.0 kW 15.8 kW 3.2 kW 3.1 kW 10.4 kW 0.6 kW	 (Verdampft. 	ingsenti	halpie)			
N2-Volumenenstrom Masser IN Gesamtmasse via: Holz atro Wasser Stickstoff Gesamtmasse Kohlenstoff 'C' Kohlenstoff 'C' Sauerstoff 'O' via: Holz atro Wasser Sauerstoff 'O'	0.859 m3h 1.012 kgh 2.506 kgh 0.278 kgh 1.012 kgh 1.012 kgh 1.023 kgh 1.253 kgh 1.030 kgh	Massenationi Viasaestoli Massenationi Nologas Massenationi Nologas Cesantinasse via: Kohe Masser Dieselfenzin Hologas Kohenstoff 'C' via: Kohe Saverstoff 'C' via: Kohe Baseffenzin Hologas Saverstoff 'C' via:	0.122 kgh 4.156 kgh 0.351 0.915 0.248 4.156 5.670 kgh 0.351 0.000 0.188 1.230 c 1.779 kgh 0.000 0.188 1.230 c 1.779 kgh	148.3% 67.9% 142.0% 70.4% 183.0% 51.8%		Energie Basis: Heizz Motoren Kühlung 12 42 42 42 43 43 43 43 44 44 44 44 44 44 44 44 44	IN went 12.6 kV 1.5 kV 1.5 kV 1.5 kV 0.19 kV 8.6 kV 1.5 kV 8.6 kV 1.5 kV	<u>v</u> v v v v v v v	(A * I * Wu	rzel(3))	E B H H W U U H H K K U U H H H H H H H H H H H H	Energie asis: Heizv ohle Hesel/Benzi vasser elstung asis: Brenn ohle Hesel/Benzi kasser elstung	OUT n wert n	3.2 kW 2.9 kW 9.7 kW 0.0 kW 15.8 kW 3.2 kW 3.1 kW 10.4 kW 0.6 kW	 (Verdampf: 	ingsent/	halpie)			
N2-Volumenenstrom Massenstrom N2 Masse IN Gesantimasse via: Hoiz atro Wasser Stickatoff Gesantimasse Kohlenstoff 'C' via: Hoiz atro Wasser Sauverstoff 'O' via: Hoiz atro Sauverstoff 'O' Wassersfill Sauverstoff 'O' Wassersfill Sauverstoff 'Y via:	0 889 mSh 1.012 kgh 2 506 kgh 0 278 kgh 1.012 kgh 1.012 kgh 0.000 kgh 1.253 kgh 1.033 kgh 0.248 kgh 1.1350 kgh	Massenstrom Veissenstoff Massenstrom Notigue Massenstrom Notigue Gesantimasse via: Kothe Waser DieselSenzin Hotopas Kohlenstoff 'O' via: Kothe Waser DieselSenzin Hotopas Kohlenstoff 'O' via: Kothe Waser DieselSenzin Hotopas Sauerstoff 'O' via:	0.122 kgh 4.156 kgh 0.351 0.915 0.248 4.156 5.750 kgh 0.351 0.000 0.196 1.230 1.230 1.779 kgh 0.000 0.813 0.000 0.813 0.000 1.779 kgh	142.3% 67.0% 142.0% 70.4% 183.0% 51.8%		Energie Basis: Heizi tolz feuci telz feuci koloren koloren dolz atro Wasser dolz atro dolz atro do	IN 12.6 kV 8.6 kV 1.5 kV 8.6 kV 31.3 kV 1.5 kV 0.19 kV 1.5 kV 8.6 kV 32.8 kV	v v v v v v v	(A * I * Wu	(3)	Е В К О Н V — Ц	Energie asis: Heizv able lese/Benzi Asser elstung asis: Brenc asis: Brenc asis	OUT n wert	3.2 kW 2.9 kW 9.7 kW 0.0 kW 3.2 kW 3.1 kW 10.4 kW 0.6 kW	 (Verdamptu	ingsentl	halpie)			
N2-Volumenenstrom Masser IN Masse IN Gesamtmasse via: Hoiz atro Wasser Stickstoff Gesamtmasse Kohlenstoff 'C' via: Hoiz atro Kohlenstoff 'C' via: Hoiz atro Sauerstoff 'O' via: Hoiz atro	0.859 m3h 1.012 kgh 2.506 kgh 0.276 kgh 1.012 kgh 1.012 kgh 1.253 kgh 1.253 kgh 1.253 kgh 1.103 kgh 0.248 kgh 0.3150 kgh	Massenation Viasaestoff Massenation Holgas Gesantinasse via: Kotle Waser Dieseffersin Hotgas Gesantinasse « Kotlenstoff "C" « Sauerstoff "O" via: Kotle Waser Dieseffersin Hotgas Sauerstoff "O" «	0.122 kgh 4.156 kgh 0.351 0.915 0.248 4.156 5.670 kgh 0.351 0.000 0.188 1.230 c 1.779 kgh 0.001 1.792 c 2.605 kgh	142.3% 67.0% 142.0% 70.4% 193.0% 51.8%		Energie Basis: Heizi Iolz feucl Heizunge Basis: Bren Holz atro Masser Heizunge Heizunge Heizunge Heizunge Heizunge Heizunge Heizunge	IN 12.6 kV 8.6 kV 1.5 kV 8.6 kV 1.3 kV 8.6 kV 8.6 kV 8.6 kV 32.8 kV	A A A A A A A A A A A A A A A A A A A	(A * 1 * Wu	vzei(3))	е в к л с н н м и е в к л с н н м и е в к л с е н ч ч	Energie asis: Heizv ohte Heise/Benzi Vasser asis: Bren asis: Bren	OUT n wwert	3.2 kW 2.9 kW 9.7 kW 0.0 kW 15.8 kW 3.2 kW 3.2 kW 10.4 kW 0.6 kW	 (Verdampt. 	ngsent	halpie)			
N2-Volumenenstrom Massenstrom N2 Masse IN Gesantmasse via: Holz atro Wasser Kohlenstoff 'C' via: Holz atro Wasser Sauerstoff 'O' via: Holz atro Wasser Sauerstoff 'O' via: Holz atro Wasser	0 889 m3h 1.012 kgh 2.506 kgh 0.278 kgh 1.012 kgh 1.012 kgh 1.012 kgh 1.253 kgh 1.253 kgh 1.253 kgh 1.350 kgh 1.350 kgh	Massenstrom Veissenstoff Massenstrom Hotzus Gesantmasse Va: Kohle Wasser DesetBeruin Hotzus Kohlerabolf 'C' 42: Kohlerabolf 'C' 42: Kohlerabolf 'C' 42: Swarstoff 'C' 42: Kohlerabolf 'C' 42: Kohlerabolf 'C' 42: Masser DesetBeruin Hotzus Sauerstoff 'C' 42: Kohle Wasser	0.122 kgh 4.156 kgh 0.351 0.915 0.248 4.156 5.5670 kgh 0.351 0.000 0.188 1.230 c 1.779 kgh 0.000 0.813 0.000 1.792 c 2.605 kgh	149.3% 67.0% 142.0% 70.4% 193.0% 51.8%		Energie Basis: Heiz kotoren Kotoren Kothing 12 12 13 3asis: Bren tolz atro Wasser Heizunger Heizunger Heizunger 12 2 elstung	IN 12.6 kV 8.6 kV 1.5 kV 8.6 kV 1.5 kV 8.6 kV 1.3 kV 1.5 kV 8.6 kV 1.5 kV 32.8 kV		(A * I * Wu	776I(3))	Е В К К Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц	Energie asis: Heizwi elese/Benzi asis: Brenn elstung asis: Brenn elstung asis: Brenn elstung elstung elstung	OUT n www.t	3.2 kW 2.9 kW 9.7 kW 0.0 kW 3.2 kW 3.1 kW 0.6 kW 17.3 kW	— (Verdamph.	ingsent	halpie)			
N2-Volumenenstrom Masser IN Masse IN Gesamtmasse via: Hoiz atro Wasser Stickatoff Gesamtmasse Kohlenstoff 'C' va: Hoiz atro Wasser Sauerstoff 'O' via: Hoiz atro Sauerstoff 'O' Wassers Sauerstoff 'O' Wassers	0 859 m3h 1.012 kgh 2 556 kgh 0.278 kgh 1.012 kgh 1.012 kgh 0.278 kgh 1.253 kgh 0.268 kgh 1.360 kgh 0.3150 kgh	Massenstorn Veissenstori Massenstrom Notigue Massenstrom Notigue Gesamtmasse via: Kohle Wasser DeextBeruin Motgas Sauerstoff O'via: Kohle Wasser DeextBeruin Motgas Sauerstoff O'via: Kohle Wasser DeextBeruin	0.122 kgh 4.156 kgh 0.351 0.915 0.248 4.156 c 5.670 kgh 0.000 0.198 1.230 c 1.779 kgh 0.000 0.813 0.000 1.792 c 2.606 kgh	149.3% 87.0% 142.0% 70.4% 183.0% 51.8%		Energie Basis: Heiz Holz feud Heizunger Wolsen 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	IN 12.6. kV 8.6 kV 1.5. kV 8.6 kV 0.19 kV 8.6 kV 1.5. kV 8.6 kV 1.5. kV 8.6 kV	<u>a</u> a a a a a a a a	(A *] * Wu	rzel(3))		Energie iasis: Heizu hite isese/Benzi asis: Brenz asis: Brenz asis: Brenz asis: Brenz eistung eistung	OUT n www.	3.2 kW 2.9 kW 9.7 kW 0.0 kW 15.8 kW 3.2 kW 3.2 kW 10.4 kW 0.6 kW		ingsent	halpie)			
N2-Yolunenenstrom Massenstrom N2 Masse IN Gesantimasse via: Holz atto Wasser Stickstoff Gesantimasse Kohlenstoff 'C' Via: Holz atto Wasser Sauerstoff 'O' Wasser Sauerstoff 'O' Wasser	0 889 m3h 1.012 kgh 2.506 kgh 0.278 kgh 1.012 kgh 1.012 kgh 1.023 kgh 1.253 kgh 0.200 kgh 1.350 kgh 0.248 kgh 0.248 kgh	Massenatori Viasaestoli Massenatori Viasaestoli Cesantinasse via: Kohe Wasser Dieselfenzin Hotogas Kohenstoff 'O' via: Kohenstoff 'O' via: Kohe BaserBenzin Hotogas Sauerstoff 'O' via: Kohe	0.122 kgh 4.136 kgh 0.351 0.915 0.248 4.156 5.248 4.156 5.248 0.351 0.000 0.188 1.230 5.351 0.000 0.188 1.230 5.351 0.000 0.813 0.000 1.792 5.2665 kgh 0.000 1.792 5.2665 kgh	142.3% 67.0% 142.0% 70.4% 183.0% 51.8%		Energie Basis: Heiz Heizungei koloren Cihlung 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	IN wert 12.6 kV 8.6 kV 8.6 kV 8.6 kV 13.9 kV 0.19 kV 8.6 kV 8.6 kV 8.6 kV		(A * I * Wu	(3))	8 8 8 시 시 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Energie asis: Heizv hile elest/Ban2i asis: Bren ohie elest/Bass Vasser elstung elstung	OUT n wwert	3.2 kW 2.9 kW 9.7 kW 0.0 kW 15.8 kW 3.1 kW 0.6 kW 17.3 kW	 (Verdampts 	ungsenth	halpie)			
N2-Volumenenstrom Massenstrom N2 Masse IN Gesantimasse via: Hoiz atro Wasser Kohlenstoff 'C' via: Hoiz atro Wasser Sauvratoff 'O' via: Hoiz atro Wassers Sauvratoff 'O' Wasserstoff 'H'	0 889 mSh 1.012 kgh 2 506 kgh 0 278 kgh 1 012 kgh 1 012 kgh 0 200 kgh 1.253 kgh 0 208 kgh 1.253 kgh 0 248 kgh 1.105 kgh 0 248 kgh 0 248 kgh	Massenstrom Veissenstoff Massenstrom Notigue Massenstrom Notigue Gesantmasse via: Kotie Wasser Dieselfenzin Hotogas Kohlenstoff 'O' via: Kotie Wasser Dieselfenzin Hotogas Sauerstoff 'O' via: Kotie Wasser Dieselfenzin Hotogas Sauerstoff 'O' via: Kotie Wasserstoff 'O' via: Kotie K	0.122 kgh 4.156 kgh 0.351 0.351 0.248 4.156 5.248 4.156 0.351 0.248 4.156 0.351 0.000 0.198 1.200 1.200 2.405 kgh 0.000 0.413 0.000 0.413 0.000 0.413 0.000 0.413 0.000 0.413 0.000 0.413 0.000 0.413 0.000 0.172 2.605 kgh	142.3% 67.0% 142.0% 70.4% 1933.0% 51.8%		Energie Basis: Heiz Hoiz feuci Kühlung Ki ekistung ekistung Ki Körzen Kühlung Ki Ki Körzen Kühlung Ki Ki Leistung Ki Körzen Ki Ki Ki Ki Ki Ki Ki Ki Ki Ki Ki Ki Ki	IN vert 12.6. kV 8.6 kV 1.5. kV 8.6 kV 0.19 kV 0.19 kV 8.6 kV 8.6 kV 32.8 kV		(A * I * Wu	rzei(3))	ЕВ К К D H V — Ц В К К D H V V – Ц В К К D H V V – Ц	Energie asis: Heizv hile liese/Benzi asis: Brenn asis: Brenn asis: Brenn hile liese/Benzi asis: Brenn hile liese/Benzi lie	OUT n weet n	3.2 kW 2.9 kW 9.7 kW 0.0 kW 3.2 kW 3.1 kW 10.4 kW 0.6 kW	 (Verdampt. 	ingsentit	halpie)			
N2-Volumenenstrom Masser IN Masse IN Gesamtmasse via: Hoiz atro Wasser Stickstoff Gesamtmasse Kohlenstoff 'C' via: Hoiz atro Wasser Sauerstoff 'O' via: Hoiz atro Wasser Sauerstoff 'O' Wasserstoff 'H'	0.809 m3h 1.012 kgh 2.506 kgh 0.276 kgh 1.012 kgh 1.012 kgh 1.012 kgh 0.000 kgh 1.253 kgh 1.253 kgh 1.103 kgh 0.248 kgh 0.031 kgh 0.031 kgh	Massenation Visasenation Massenation Holgas Gesantinasse via: Kohle Waser Dieselfberain Holgas Kohlenstoff 'C' via: Kohlenstoff 'C' via: Kohlenstoff 'C' via: Kohlenstoff 'C' via: Kohle Baseratoff 'O' via: Kohle Waser Dieselfberain Holgas Sauerstoff 'O' via: Kohle Waser Dieselfberain Holgas	0.122 kg/h 4.156 kg/h 0.351 0.915 0.248 4.156 5.770 kg/h 0.351 0.000 0.198 1.230 c 1.779 kg/h 0.000 0.413 0.000 1.792 c 2.605 kg/h 0.000 0.102 0.000 0.102 0.000 0.102 0.000 0.122 c 0.273 kg/h	142.3% 67.0% 142.0% 70.4% 193.0% 51.8%		Energie Basis: Heiz Kotoren Gihlung 12 elaitung Asis: Bren Kotz atro Wasser Leizunge Kotoren 22 12 elaitung 12 22 12 elaitung	IN vert 12.6 kV 8.6 kV 8.6 kV 8.6 kV 31.3 kV 7.5 kV 7.5 kV 1.5 kV 1.5 kV 8.6 kV 1.5 kV 8.6 kV 1.5 kV 8.6 kV		(A * I * Wu	rzel(3))	8 8 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Energie asis: Heizv ichie iese/Banzi Kasser asis: Bren asis: Bren chie iese/Banzi kese/Banzi kese/Banzi kese/Banzi kese/Banzi kese/Banzi	OUT n wwert n	3.2 kW 2.9 kW 9.7 kW 0.0 kW 15.8 kW 3.2 kW 3.1 kW 10.4 kW 0.6 kW	 (Verdampt.	ingsenti	halpie)			
N2-Volumenenstrom Masser IN Masse IN Gesantimase via: Holz atho Wasser Stickstoff Gesantimase Gesantimase Gesantimase Kohlenstoff 'C' via: Holz atho Wasser Sauerstoff 'O' via: Holz atho Wasserstoff 'O' Wasserstoff 'H' Holz atho	0 889 mSh 1.012 kgh 2.506 kgh 0.278 kgh 1.012 kgh 1.012 kgh 1.012 kgh 1.253 kgh 1.253 kgh 1.253 kgh 1.103 kgh 0.248 kgh 0.248 kgh 0.248 kgh	Massenstrom Veissenstof Massenstrom Notrgas Gesantmasse via: Kohe DesetBenzin Notrgas Gesammasse via: Kohe Waser DiesetBenzin Hotzgas Kohemstoff 'C' via: Kohe BaserBenzin Hotzgas Sauerstoff 'O' via: Kohe DiesetBenzin Hotzgas Sauerstoff 'O' via: Kohe DiesetBenzin Hotzgas	0.122 kgh 4.196 kgh 0.351 0.915 0.248 4.196 2.48 4.196 0.351 0.248 4.196 0.351 0.000 0.198 1.230 c 1.779 kgh 0.000 0.813 0.000 0.813 0.000 1.792 c 2.605 kgh 0.000 0.102 0.000 0.000 0.102 0.000 0.102 0.000 0.102 0.000 0.102 0.000 0.102 0.000 0.102 0.000 0.000 0.102 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000000 0.00000 0.00	142.3% 67.0% 142.0% 70.4% 193.0% 51.8%		Energie Basis: Heiz Idol feucl Heizungei Moloren 22 23 24 24 24 25 25 26 26 26 26 26 26 26 27 26 26 26 27 27 26 26 27 27 27 28 28 29 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	IN 12.6 kV 8.6 kV 1.5 kV 8.6 kV 1.5 kV 8.6 kV 1.5 kV 8.6 kV 32.8 kV	<u>a</u> a a a a a a a a a a a a a a a a a a	(A * I * Wu	rzel(3))	88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Energie asis: Heizo ohie esel/Benzi Vasser eistung asis: Brenc asis: Brenc asi	OUT n wert n	3.2 kW 29 kW 97 kW 0.0 kW 3.2 kW 3.1 kW 10.4 kW 0.8 kW	— (Verdanpli	ingsenti	halpie)			
N2-Volumenenstrom Masser IN Masse IN Gesamtmasse via: Hoiz atro Wasser Stickatoff Gesamtmasse Kohlenstoff 'C' va: Hoiz atro Wassers Sauerstoff 'O' via: Hoiz atro Wasserstoff 'O' Wasserstoff 'H' via: Hoiz atro Wasserstoff 'H' Wasserstoff 'H'	0 869 m3h 1.012 kgh 2 506 kgh 0.278 kgh 1.012 kgh 1.012 kgh 1.012 kgh 0.000 kgh 1.253 kgh 0.248 kgh 1.160 kgh 0.248 kgh 1.160 kgh 0.3180 kgh 0.031 kgh 0.031 kgh	Massenstorn Veissenstor Massenstrom Notigue Massenstrom Notigue Gesammasse via: Kothe Vaser Dieselfbersin Motgas Massen Dieselfbersin Motgas Sauerstoff V via: Kothe Vaser Dieselfbersin Motgas Sauerstoff V via: Kothe Vaser Masser Dieselfbersin Motgas Sauerstoff V via: Kothe Vaser Masser Dieselfbersin Motgas	0.122 kgh 4.156 kgh 0.351 0.915 0.248 4.156 2.248 4.156 0.000 0.981 1.200 5.1.779 kgh 0.000 1.792 2.260 kgh 0.000 0.122 0.000 0.122 2.000	142.0% 77.0% 142.0% 70.4% 183.0% 51.8%		Energie Basis: Heiz Holz feud Holz feid Holz feid Holz feitzungel 22 23 24 24 25 25 25 26 26 26 26 26 27 26 26 26 27 27 26 26 27 27 26 26 27 27 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	IN 12.6.KV 3.6.KV 3.1.5.KV 3.6.KV 3.3.3.KV 0.19KX 3.6.KV 3.5.KV 3.6.KV		(A * 1 * Wu	(3))	а а и и и и и и и и и и и и и и и и и и	Energie asis: Heizv ohle iese/Benzi kasser elstung asis: Brenc heies/Benzi kes/Benzi kasser	OUT ert wwert	3.2 kW 2.9 kW 9.7 kW 0.0 kW 15.8 kW 3.2 kW 3.2 kW 10.4 kW 0.6 kW	 (Verdamptu 	ingsentt	halpie)			

Bild 6.4 Berechnungsschema für Massen- und Energiebilanz.

7 Schlussfolgerungen

Die Ausbeute an potenziell als Flüssigtreibstoff verwertbarem Produkt erreichte in den durchgeführten Versuchen mit Sägemehl aus Holz nicht annähernd die Werte, welche mit dem untersuchten Verfahrenskonzept erwartet wurden. Die durchgeführten Messungen ermöglichen keine zuverlässige Bewertung der erzielbaren Ausbeute, sie weisen aber darauf hin, dass mit den untersuchten Betriebsbedingungen (rund 480°C Pyrolysetemperatur im Kugelreaktor zur Pyrolyse und rund 380°C Temperatur im nachgeschalteten, jedoch leeren Crackreaktor) eine Ausbeute an kondensierbarem, Diesel ähnlichem Flüssigreibstoff von lediglich rund 20% bezogen auf den Energieinhalt erzielt wurde, während rund 60% des Energieinhalts in der leichtflüchtigen Gasphase und der Rest im Pyrolysekoks enthalten war. Da trotz zahlreicher Anstrengungen kein langfristiger, stationärer Betrieb mit höherer Ausbeute erzielt wurde, wurde das Projekt nach den ersten Testreihen abgebrochen.

Die Gründe für die tiefen Ausbeuten können nicht sicher beurteilt werden und es ist davon auszugehen, dass mehrere Faktoren zu den geringen Flüssigausbeuten beigetragen haben. Grundsätzlich kommen in erster Linie folgende Gründe in Frage:

- 1. Der Pyrolysereaktor erzielt als initiale Umwandlung nicht die gewünschte Ausbeute an zwar gasförmigen, aber nicht leichtflüchtigen, sondern hochmolekularen und somit kondensierbaren organischen Verbindungen. Mögliche Gründe sind:
 - a. Die Aufheizrate der in den Reaktor eingetragenen Feststoffe ist zu gering und/oder die Pyrolysetemperatur ist ohne Zugabe von Katalysator zu tief.

Das Reaktorprinzip erfüllt weder die Anforderungen an eine reine Flash-Pyrolyse mit hohen Aufheizraten durch konvektive Wärmeübertragung wie zum Beispiel in einer Wirbelschicht, noch erzielt es die notwendige ablative Wirkung durch Anpressung des Brennstoffs an die heissen Reaktorwände oder die heissen Stahlkugeln im Reaktor. In den Vorversuchen ohne Zugabe von Katalysator in den Crack-Reaktor lag die Temperatur mit rund 480°C im Bereich des von Untersuchungen mit Flash-Pyrolyse dokumentierten Optimums. Da die Aufheizrate tendenziell zu gering ist, ist auch die korrespondierende Reaktortemperatur vermutlich an der unteren Grenze, die Ausbeute könnte durch Erhöhung der Temperatur möglicherweise noch gesteigert werden, entscheidend für die geringe Ausbeute ist aber wahrscheinlich eher die zu geringe Aufheizrate.

- b. Die Trennung zwischen Kohlenstoff und Pyrolysegasen erfolgt nicht rasch genug, d.h. der Abzug des Kohlenstoffs erfolgt zu langsam bzw. die Verweilzeit der Gase im Kohlenstoff haltigen Umfeld im Reaktor ist zu lange, wodurch ein Abbau zu leichtflüchtigen Komponenten stattfindet. Die im Reaktor freigesetzten Pyrolysegase verbleiben in Kontakt mit Kohlenstoff und werden dadurch bereits im Reaktor vor deren Entnahme gecrackt. Ein weiteres cracken ist auf dem mit Koks beladenen Filterkuchen möglich, welchen das Pyrolysegas nach Austritt aus dem Reaktor passiert.
- c. Sofern die Pyrolyseölausbeute im ersten Reaktor erhöht werden könnte, sei es durch eine verstärkte ablative Wirkung oder durch Verbesserung der Bedingungen analog einer schnellen Pyroylse, bleibt unklar, ob der im zweiten Reaktor verwendete Katalysator die gewünschte selektive Wirkung zur Beschleunigung des Abbaus schwersiedender zu kondensierbaren

Stoffen ohne direkten Abbau zu leichtflüchtigen Stoffen erzielen würde, denn kritisch ist weniger ein zu hoher Anteil an schwersiedenden als vielmehr die Erzielung eines hohen Anteils kondensierbarer Stoffe ohne deren Abbau zu leichtflüchtigen Gasen. Insbesondere kann die Zugabe von Katalysator ohne Umgebung eines hohen Wasserstoffdrucks zur Absättigung der freiwerdenden Radikale den Abbau des Holzes zu leichtflüchtigen Komponenten bewirken. Soweit der Katalysator potenziell die gewünschte Crackwirkung erzielen kann ist im Weiteren eine rasche, innert Minuten sich einstellende Verkokung der Katalysatoroberfläche möglich, welche die Katalysatorwirkung drastisch reduziert.

Zusammengefasst ist somit davon auszugehen, dass das Verfahren der Pyrolyse im untersuchten Kugelreaktor weder die Bedingungen einer schnellen Pyrolyse, noch diejenigen einer ablativen Pyrolyse, noch diejenigen einer Direktverflüssigung mit Katalysator und unter hohem Wasserstoffdruck erfüllt. Aus diesem Grund wird auch die für alle drei genannten Verfahren lediglich unter idealen Bedingungen erzielbare Ausbeute an kondensierbaren organischen Substanzen nicht erreicht.

2. Obwohl nicht davon auszugehen ist, dass die initiale Pyrolyse die angestrebte Ausbeute an Kondensat erreicht, ist auch wahrscheinlich, dass die nachfolgende Weiterbehandlung des Gases die initiale Ausbeute an Kondensat weiter reduziert und somit die geringe Ausbeute an Kondensat noch unterstützt. Möglicher Grund:

Im Versuchsaufbau fehlt ein sofortiges quenchen der Pyrolysegase direkt nach dem Reaktor, wie dies für die Holzpyrolyse zur Erzielung einer hohen Ausbeute an Pyrolyseöl üblicherweise vorausgesetzt wird. Die kondensierbaren Verbindungen im Gas gelten als (thermisch) instabil, weshalb ohne quenchen eine unerwünschte Weiterreaktion zu Gas und Koks erfolgen kann. Die thermische Instabilität ist hauptsächlich auf den in der Molekülstruktur enthaltenen Sauerstoff zurückzuführen, was Pyrolyseöle auch von fossilem Öl unterscheidet, welches für destillative Auftrennung gut geeignet ist. Weil die kondensierbaren Pyrolyse-Verbindungen thermisch nicht stabil sind, gelten Pyrolyseöle als nicht oder höchstens bedingt geeignet für eine direkte Destillation. Bei Erhitzen oder – im vorliegenden Fall – bei Halten auf hoher Temperatur in der Rektifikationskolonne kann eine Umsetzung zu Gas und Koks erfolgen, was die Ausbeute an Pyrolyseöl entsprechend reduziert. Je nach Verfahrensaufbau kann der dabei gebildete Koks zudem zu einer unerwünschten Verkokung zum Beispiel von Oberflächen in der Anlage (in diesem Fall vorerst in der Rektifikationskolonne) oder eines allfälligen Katalysators (sofern dieser im zweiten Reaktor vorhanden wäre) führen.

Die Ausbeute an Pyrolyseöl wäre somit ohne anschliessende Rektifikationskolonne vermutlich höher als in den Versuchen mit Kolonne ermittelt, es würde allerdings die bei der Zielformulierung vorgegebene Bedingung einer Diesel ähnlichen Flüssigkeit nicht erfüllen.

8 Literatur

- Bockhorn, H.: Soot Formation in Combustion: Mechanisms and Models, Springer, Berlin (1994), ISBN-10: 354058398X, ISBN-13: 978-3540583981
- Boerrigter, H.: Expert meeting on transportation fuels from biomass, ThermalNet Kick-off Meeting, Heidelberg 12th May 2005
- Bridgwater, A.: Principles and practice of biomass fast pyrolysis processes for liquids, J. of Analytical and Applied Pyrolysis, 51 (1999), 3–22
- Bridgwater, A.; Czernik, S.; Pistkorz, J.: An Overview on Fast Pyrolysis, Progress in Thermochemical Biomass Conversion, Volume II, Blackwell Science, Oxford 2001, 977–997
- Bridgwater, A.; Meier, D.; Radlein, D.: An overview of fast pyrolysis of biomass, Organic Geochemistry, 30 (1999), 1479–1493
- Bridgwater, A.; Peacocke, G.: Fast pyrolysis processed for biomass, Renewable and Sustainalbe Energy Reviews 4 (2000) 1–73
- Henrich, E.; Dahmen, N.; Dinjus, E.: Das FZK-Projekt, Int. Tagung Thermochemische Biomassenutzung KUBUS, Leipzig 27.-28.2.2007]
- Kinoshita, C. M.; Wang, Y.; Zhou, J.: Tar formation under different biomass gasification conditions, J. Anal. Appl. Pyrolysis 29 (1992) 169-181, zitiert in: Rosemann, R.: Substantielle Charakterisierung von Produkten einer Abfallpyrolyseanlage, Dissertation Technische Universität Carolo-Wilhelmina, Braunschweig 1998
- Mann, C.: The Real Dirt on Rainforest Fertility, Science, 9 August 2002, Vol. 297, 920-922, www.sciencemag.org
- Meier, D.: Pyrolyse. In: Kaltschmitt. M., Hartmann, H. (Hrsg.): Energie aus Biomasse, Springer, Berlin 2001, ISBN 3-540-64853-42001, 477–493
- Nussbaumer, T.: Combustion and Co-combustion of Biomass: Fundamentals, Technologies, and Primary Measures for Emission Reduction, Energy & Fuels, Vol. 17, No 6, 2003, 1510–1521
- Solantausta, Y., Bridgwater, T., Beckman, D.: Electricity production from advanced biomass power systems, VTT Research Notes 1729, VTT Technical Research Centre of Finland, Espoo, 1996
- Trebbi, G., Rossi, C., Pedrelli, G.: Plans for the Production and Utilization of Bio-oil from Biomass Fast Pyrolysis. In: A. Bridgwater and D. Boocock (Eds.): Developments in Thermochemical Biomass Conversion, Blackie Academic and Professional, Chapman and Hall, London 1997, ISBN 0 7514 0350 4, 378 – 387
- Van de Velden, M.; Baeyens, J.: Fast Pyrolysis of Biomass in a Circulating Fluidised Bed (CFB), Thermalnet, Dec.r 2006, Issue 03, ISSN 1750-8383, 4–8.
- Willner, Th.: Entwicklungsstand und Perspektiven der katalytischen Direktverflüssigung fester Biomassen, eingereicht zur Veröffentlichung im Marktfrucht-Report 2005 der Landwirtschaftskammer Schleswig-Holstein (D), 2005
- Willner, Th.: Thermische Holzumwandlung unter dem Einfluss von Wasserstoff und Wasser, Dissertation Universität Hamburg-Harburg, Hamburg 1993
- Willner, Th.; Brunner, G.: Umwandlung von Holz unter dem Einfluss von Wasserstoff und Wasser unter erhöhtem Druck, Chem.-Ing.-Tech. 66 (1994), Nr. 1, S. 72–74