

Report on the state-of-the-art of carbon capture technologies

CETP CO2RR – Deliverable 1.4 [interim]

December 2024

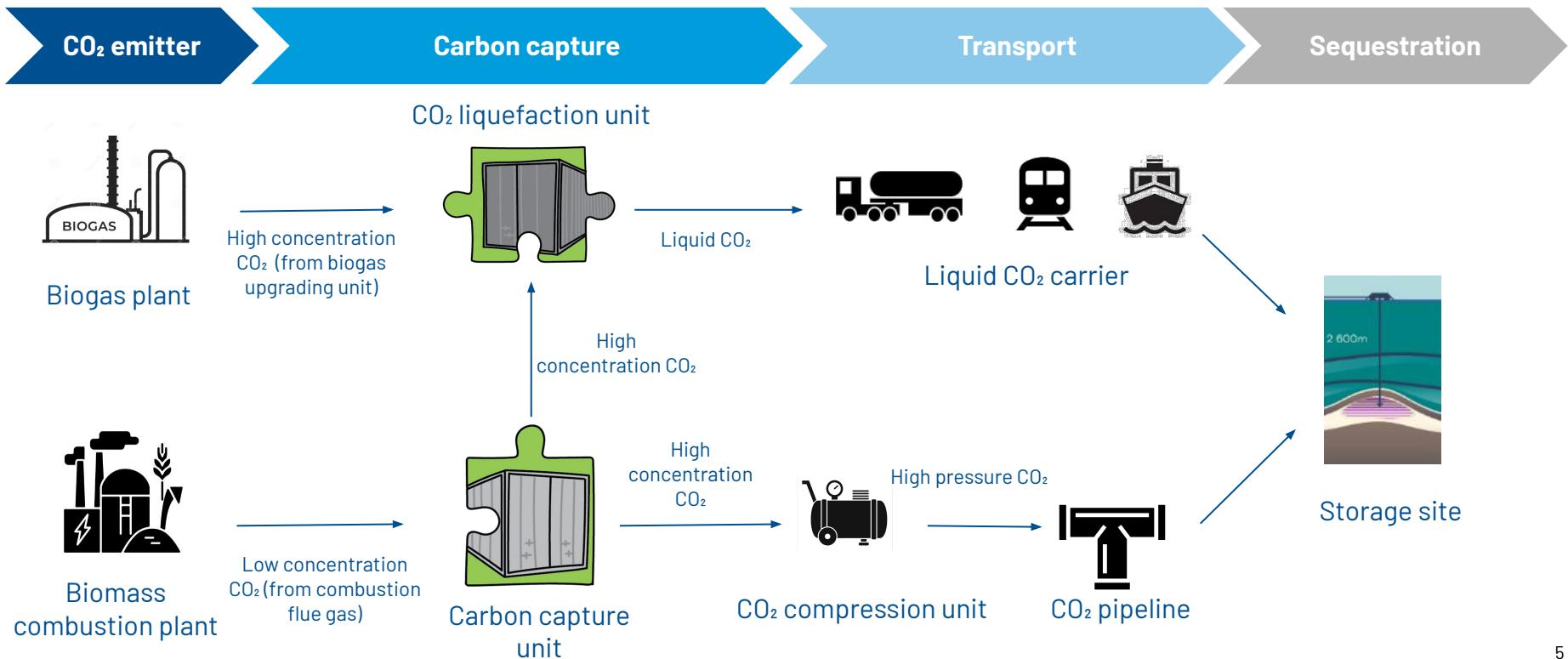
Co-funded by
the European Union

Carbon Impact

Acknowledgement

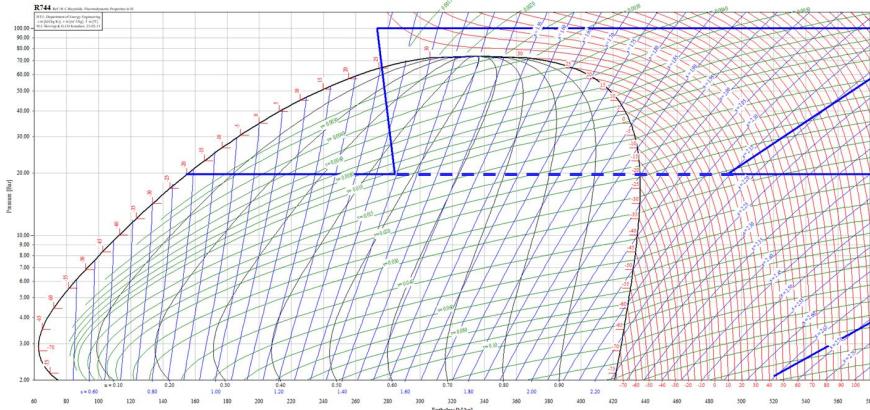
This research was funded by CETPartnership, the Clean Energy Transition Partnership under the 2022 CETPartnership joint call for research proposals, co-funded by the European Commission (GA N°101069750) and with the funding organizations detailed on <https://cetpartnership.eu/funding-agencies-and-call-modules>.

The project is supported by the French Environment and Energy Management Agency ADEME and the Swiss Federal Office of Energy SFOE.

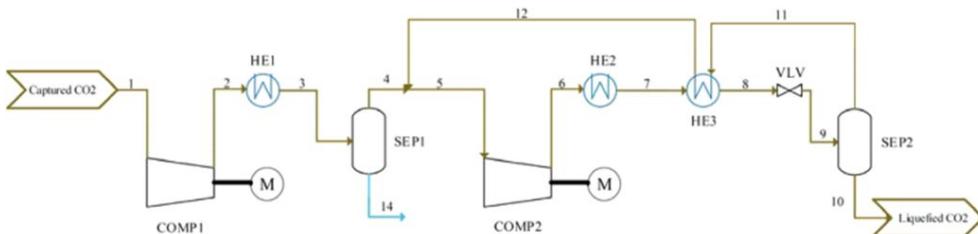

Content

- **Technology basics, value chain and deployment status**
- **Focus on CO₂ liquefaction**
- **Focus on CO₂ capture**
- **Key takeaways**

Technology basics, value chain and deployment status


Recap: the physical CCS value chain

CCS projects require integration of multiple steps



CO₂ liquefaction basics

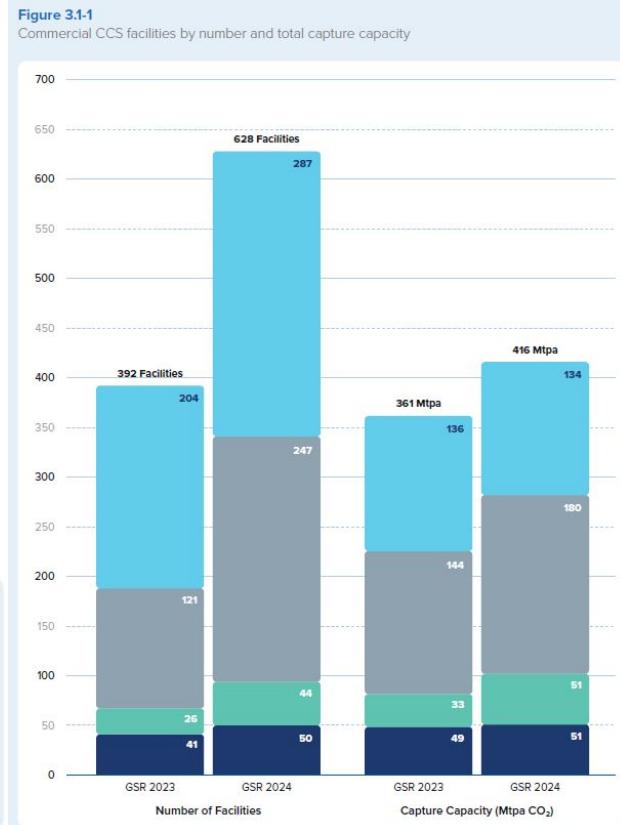
CO₂ liquefaction is a mature technology with some potential for improvement


- Cryogenic liquefaction is based on known physical principles (discovered end of 19th century by Linde & Hampson)
- These principles are applied industrially to air separation, but also other gases
- **In practice, CO₂ is dehydrated, purified and compressed up to 20 bars, then cooled to condensation temperatures**

Source: [Kasra Alyion et all, 2020](#)

CO₂ capture basics

CO₂ capture energy consumption is driven by thermodynamics



- CO₂ capture is a gas separation process, its energy consumption is driven by CO₂ concentration in the initial gas mix.
- CO₂ source (and concentration) is the main driver for energy consumption – the largest operational cost of capture.
- CO₂ capture cost is also driven by capital expenditure (CapEx), process efficiency and scale of the unit.

Source: Wilcox & all, Annual Review of Chemical and Biomolecular Engineering

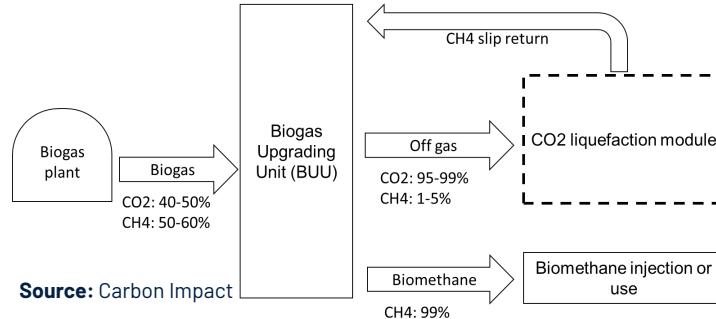
Current global CCS projects status

CCS deployment is slowly progressing

- **50 projects in operation**, representing **51 million** tons of CO₂ captured per year. **102 million tonnes of CO₂** per year operational or in construction.
- Growing pipeline of projects, with up to **365 million tonnes of CO₂** per year in construction or development.
- The majority of mature projects relate to natural gas processing and other **oil & gas applications** (refining, synfuels, etc).
- The rest of mature projects are in hydrogen/fertilizer production, bioethanol, power and industry (e.g. steel, cement, chemicals).
- Carbon removal projects (e.g. DACS, BECCS) are emerging.

Focus on CO₂ liquefaction

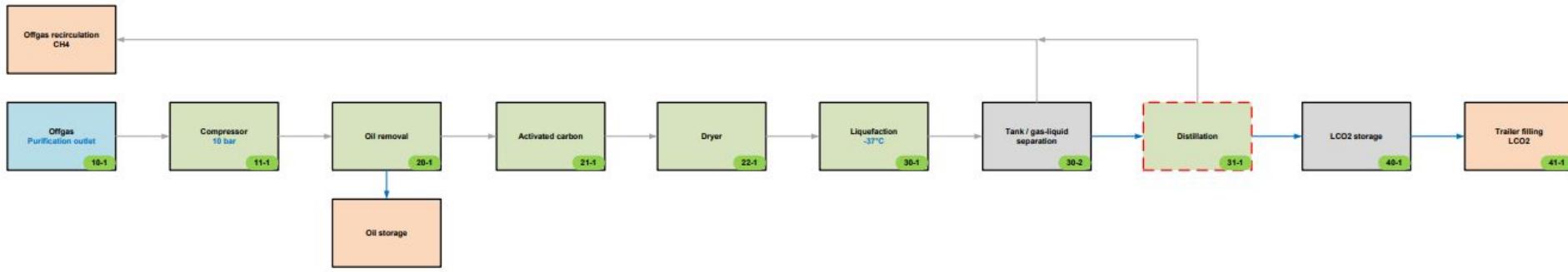
CO₂ liquefaction for biogas/biomethane


Design has to be integrated with biogas upgrading and storage processes

Liquid CO₂ (LCO₂) Quality Specifications

Component	Unit	Limit for CO ₂ Cargo within Reference Conditions ¹
Carbon Dioxide (CO ₂)	mol-%	Balance (Minimum 99.81%)
Water (H ₂ O)	ppm-mol	≤ 30
Oxygen (O ₂)	ppm-mol	≤ 10
Sulphur Oxides (SO _x)	ppm-mol	≤ 10
Nitrogen Oxides (NO _x)	ppm-mol	≤ 1.5
Hydrogen Sulfide (H ₂ S)	ppm-mol	≤ 9
Amine	ppm-mol	≤ 10
Ammonia (NH ₃)	ppm-mol	≤ 10
Formaldehyde (CH ₂ O)	ppm-mol	≤ 20
Acetaldehyde (CH ₃ CHO)	ppm-mol	≤ 20
Mercury (Hg)	ppm-mol	≤ 0.0003
Carbon Monoxide (CO)	ppm-mol	≤ 100
Hydrogen (H ₂)	ppm-mol	≤ 50
Cadmium (Cd), Thallium (Tl)	ppm-mol	Sum ≤ 0.03
Methane (CH ₄)	ppm-mol	≤ 100
Nitrogen (N ₂)	ppm-mol	≤ 50
Argon (Ar)	ppm-mol	≤ 100
Methanol (CH ₃ OH)	ppm-mol	≤ 30
Ethanol (C ₂ H ₅ OH)	ppm-mol	≤ 1
Total Volatile Organic Compounds (VOC ²)	ppm-mol	≤ 10
Mono-Ethylene Glycol (MEG)	ppm-mol	≤ 0.005
Tri-Ethylene Glycol (TEG)	ppm-mol	Not allowed
BTEX ³	ppm-mol	≤ 0.5
Ethylene (C ₂ H ₄)	ppm-mol	≤ 0.5
Hydrogen Cyanide (HCN)	ppm-mol	≤ 100
Aliphatic Hydrocarbons (C ₃ -C ₄)	ppm-mol	≤ 1,100
Ethane (C ₂ H ₆)	ppm-mol	≤ 75
Solids, particles, dust	Micro-meter (µm)	≤ 1

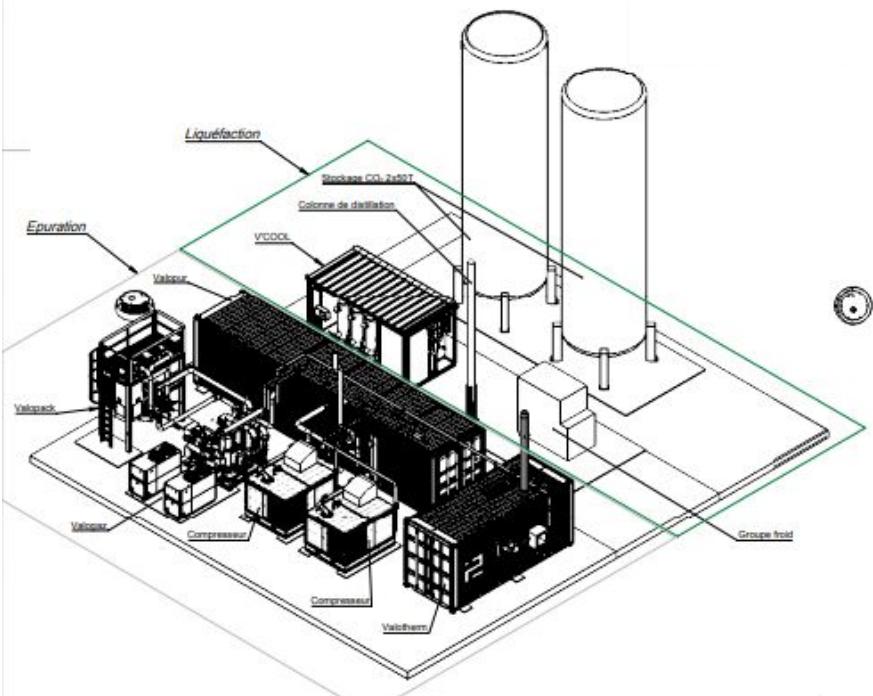
Original CO₂ spec → Clarification from original CO₂ spec → Updated component → Updated component → Moved to solids → New component


¹ Reference Conditions: given with respect to storage above the liquefied CO₂ in a storage tank, a pressure range from 10 bar(g) to 50 bar(g) and the corresponding temperature range of approximately from -25.5 degrees Celsius to -30.5 degrees Celsius, depending on the tank. The limit across the liquefied CO₂ is within Reference Conditions, both the liquefied CO₂ and the CO₂ vapour in all pressure-controlled storage tanks shall be allowed to be within Reference Conditions.

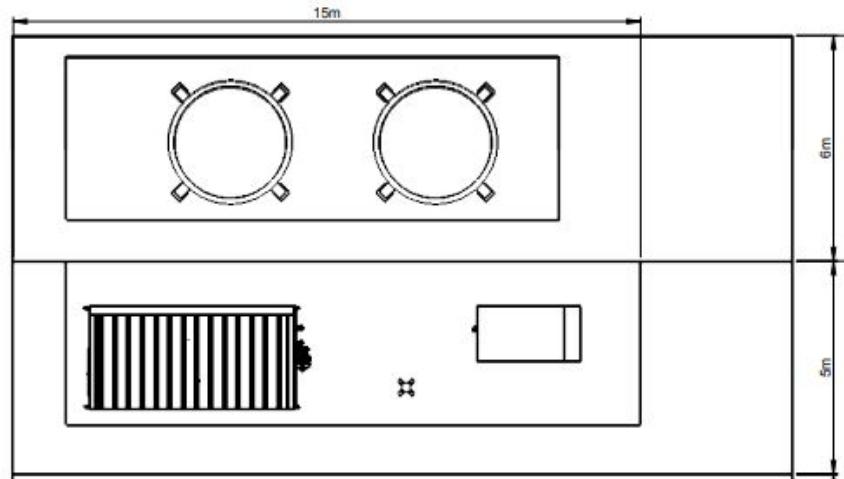
- Biogas is first purified into biomethane using a BUU (Biogas Upgrading Unit); the resulting off-gas is generally vented to the atmosphere.
- Off-gas concentration depends on biogas purification process.
 - PSA (Pressure Swing Adsorption): ~95%
 - Membranes: 98-99%**
 - Amines: 99%+
- After liquefaction, residual methane (methane slip) has to be recirculated to BUU (or biogas plant directly).
- Liquid CO₂ needs to be compliant with storage quality specifications (e.g. Northern Lights).

Liquefaction process & power consumption

Cryogenic liquefaction consumes electrical power (comparable to biogas purification)



- The process requires electrical power for compression and liquefaction (refrigeration cycle).
- Power consumption per tonne of CO₂: **250–300 kWh**


Source: Carbon Impact

The liquefaction footprint

Space requirement is manageable but must be planned early-on

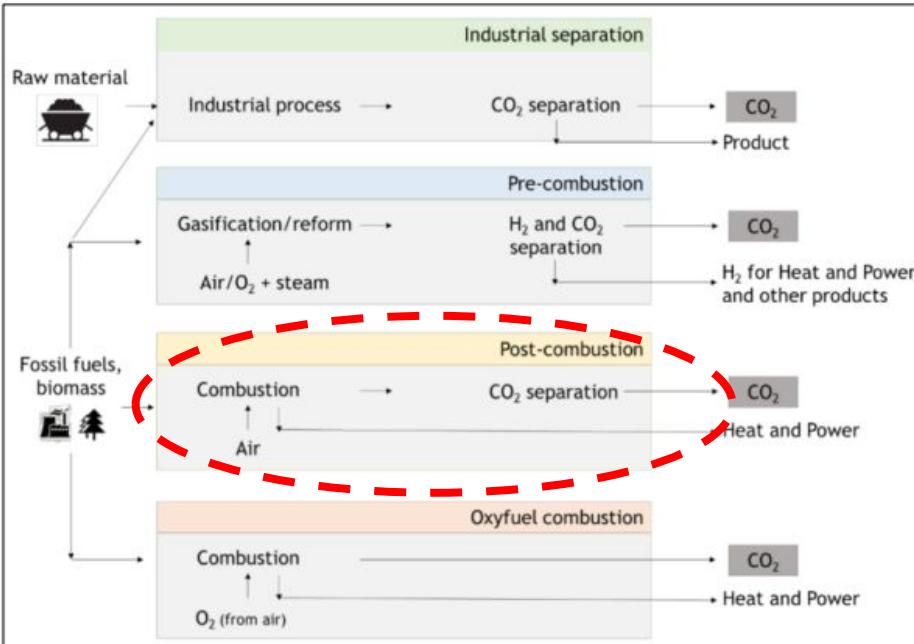
Source: Prodeval design

- Typical footprint for CO₂ liquefaction system: **150–200 m²**
- As illustrated above, approximately half the space is used for CO₂ storage tanks (in the range of one week of production)

Several CO₂ liquefaction suppliers are available

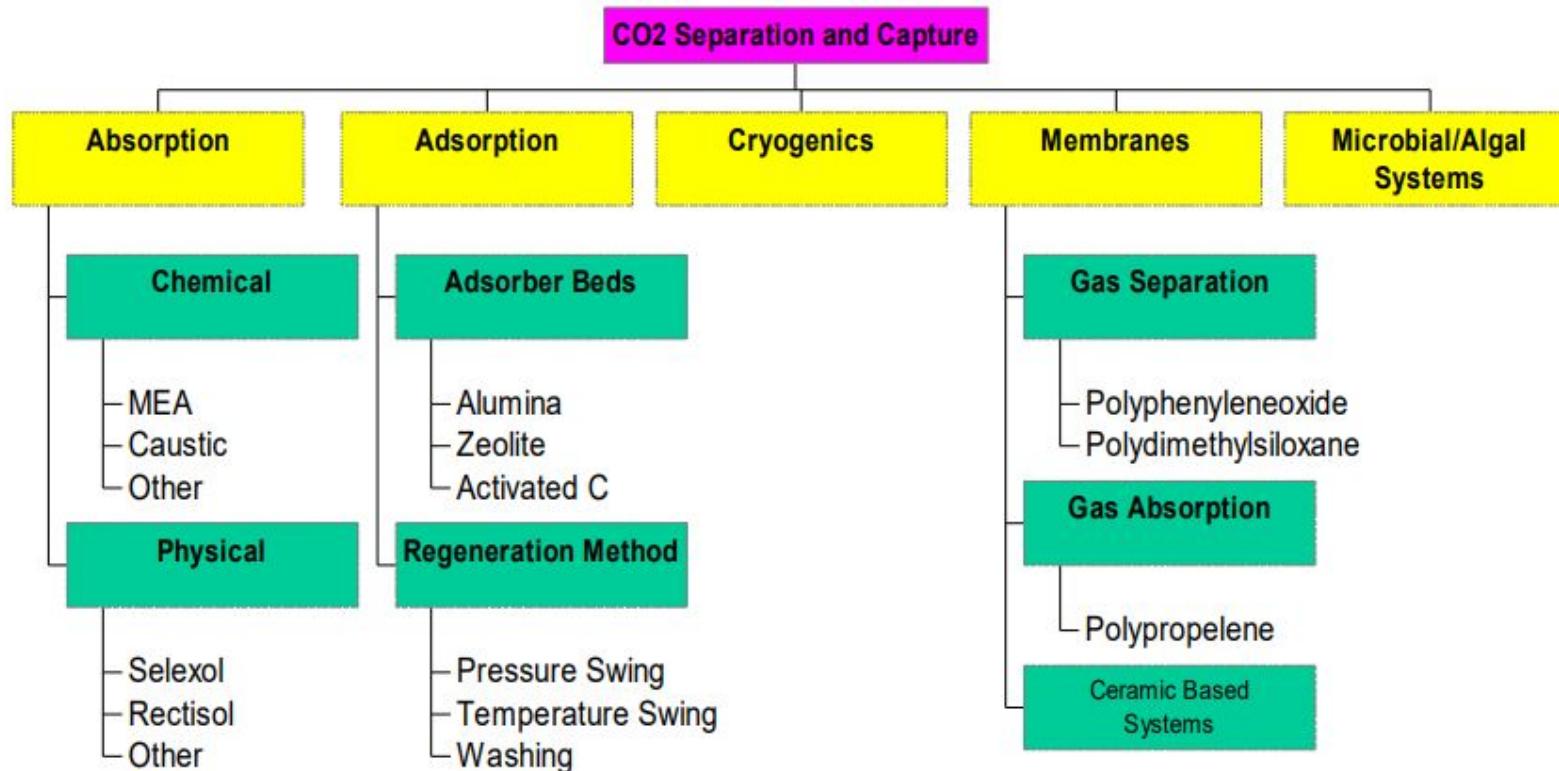
A growing units are installed allowing to get operational returns

Biogas treatment specialists


Industrial CO₂ players

Focus on CO₂ capture

Carbon capture technology landscape


Post-combustion technology dominates current developments and deployments

- **Pre-combustion** technologies are suitable for gasification processes (Integrated Gasification Combined Cycle plants or biomass gasification).
- ➔ **Early stage as there are no commercial projects in operation.**
- **Oxyfuel combustion** processes are based on combustion using oxygen instead of air.
- They require an Air Separation Unit (ASU) to produce oxygen.
- ➔ **Needs to be demonstrated on natural gas plants before being applied to biomass combustion.**

Post-combustion landscape

There are 5 main types of post-combustion technologies

Post-combustion technology maturity

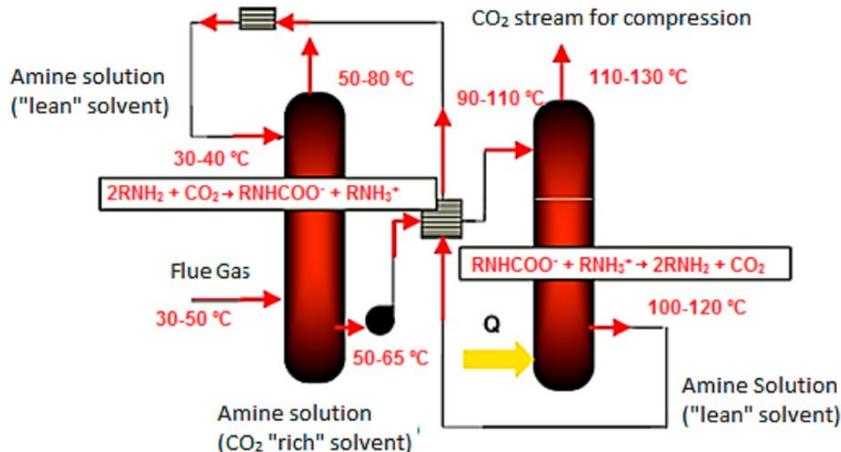
Liquid solvents are the most advanced post combustion technology

Technology		TRL	Development trend
Gas-Liquid absorption	Aqueous amines	6 – 9	→
	Amino-acid salts	6	↑
	Ionic liquids	4	↓
	Water-lean absorbents	5	↑
	Demixing solvents	4 – 5	↑
	Precipitating solvents & aqueous carbonates	4 – 6	→
Membranes	Polymeric membranes	6	↑
	Membranes contactors	5 – 6	→
	Hybrid processes	6	↑
Gas-solid adsorption	Pressure Swing Adsorption (PSA)	6	→
	Temperature Swing Adsorption (TSA)	6	↑
Calcium looping		6	→
Cryogenic processes (cooling and liquefaction)		5	→
Micro-algae based processes		4	↓

Source: IEAGHG, 2019

- **Post-combustion carbon capture is now an established technology**, based on decades of industrial deployment in the oil and gas sector
- Technology selection **depends on CO₂ concentrations and gas composition** (e.g. concentration of impurities).
- For combustion flue gas, **liquid absorption with solvents (mostly amine-based)** is reaching commercial maturity
- **Alternative solvents** are developing (e.g. hot potassium carbonates, demixing solvents), but their deployment is less mature.

Other technologies to look-out for


Current liquid solvents limitations create space for innovative approaches

- **Solid sorbents** based on porous materials (e.g. zeolites, MOFs) claim improved energy and environmental performance, but this still needs to be proven at scale.
- **Cryogenics** are mature for high-concentration applications (e.g. steam methane reforming for H₂ production); applications for flue gas are emerging.
- **Membranes materials** are developing fast (with alternatives to polymers e.g. graphene oxides).
- **Algae-based methods and calcium looping** seem less promising at this stage with a decreasing dynamic.
- Longer-term novel approaches based on **electrochemistry** (e.g. electroswing absorption) need to be monitored.

Method	Mechanisms	Advantages	Shortcomings
CO ₂ capture	Adsorption	CO ₂ capture using solid adsorbent such as activated carbon, zeolite, Na ₂ CO ₃ , CaO, etc.	<ul style="list-style-type: none"> • Low waste generation • Energy inefficient • Flue gas pre-treatment necessary before channeling to adsorber due to high moisture content and presence of contaminants (e.g., SO_x and NO_x) • Powdered MOFs have low mechanical strength and difficult handling
	Chemical absorption	CO ₂ capture using metal-organic frameworks (MOFs)	<ul style="list-style-type: none"> • High porosity crystallinity and high surface area • High solvent loss due to evaporation • React with components other than CO₂, like SO₂ resulting in irreversible degeneration of solvent • High energy consumption for solvent regeneration • Thermally unstable • Equipment corrosion • Cost intensive • Difficult to scale-up ionic liquids
	Membrane technology	Based on chemical absorption and desorption. CO ₂ dissolved/captured chemical solvents, such as monoethanolamine (MEA), amine and potassium hydroxide (KOH)	<ul style="list-style-type: none"> • Environmentally safer as substitute the use of hazardous solvents • High separation efficiency and packing density due to the small installation requirements • Energy intensive as cooling of hot flue gas is essential • High moisture content in the flue gas affects membrane performance due to competitive sorption and plasticisation of the polymer • High membrane cost, fouling of membrane and high membrane surface area requirement • High energy requirement for refrigeration • Flue gas moisture removal is required before cooling to avoid plugging by ice formation • Solidified CO₂ is continuously built up on the heat-exchanger surfaces and needs to be removed.
Cryogenic separation	Ionic liquid for CO ₂ absorption	<ul style="list-style-type: none"> • High capture efficiency (up to 99.9%) 	

Absorption with liquid solvents

Solvent-based liquid absorption is the most mature technology

1) Absorber:

Flue gas containing CO₂ enters a packed bed absorber from the bottom and contacts in counter-current with a CO₂-lean absorbent.

Basic principle (two-step cyclical process):

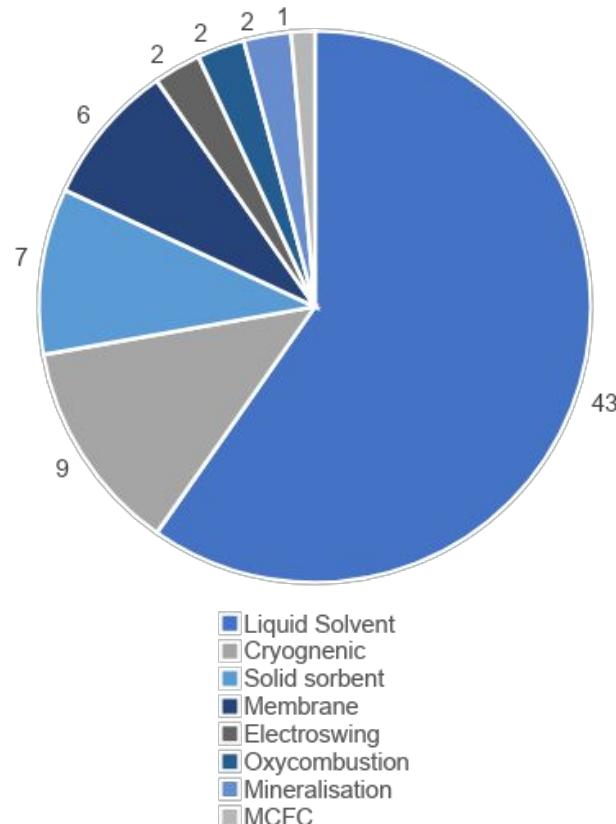
1. CO₂ from flue gas reacts with a basic solution (generically amines or R-NH₂).
2. CO₂ is then separated from the solution using energy (heat).

2) Regenerator:

- The CO₂-rich absorbent flows into a stripper for thermal regeneration.
- After regeneration, the CO₂-lean absorbent is pumped back to the absorber.

Considerations for liquid solvents

The technology faces a number of limitations


- High energy consumption: **1-1.5 MWh/tonne CO₂** (of which 80% heat)
- Requires **heat at 120°C**
- Solvent needs to be regenerated, can be degraded by heat, moisture and impurities
- **Pollutants** to be monitored (e.g. NH₃, nitrosamines) in particular for amine solvents (Hot Potassium Carbonate solvents have low toxicity)
- **High CapEx**, in particular for smaller installations
- Significant footprint: e.g. **1,500 m²** for 150,000 tonnes per year CO₂ with **tall** absorption columns (**up to 60m**)

Petra Nova CCS project in US
(240 MW coal unit, MHI technology, stand-by)

SaskPower Boundary Dam 3 CCS project in Canada
(115 MW coal unit, Shell technology, in operation)

Landscape of suppliers by technology

- We have identified close to 80 active vendors internationally.
- Different stages of maturity: from commercial offering to low TRL vendors
- The landscape is dominated liquid solvents in particular amines.
- Next categories are cryogenic solutions, solid sorbents and membranes.
- Other categories are more limited.

Sample of suppliers

By technology family

Liquid Solvents

Amines or other amine based liquids

Other solvents

Other methods

Solid sorbents

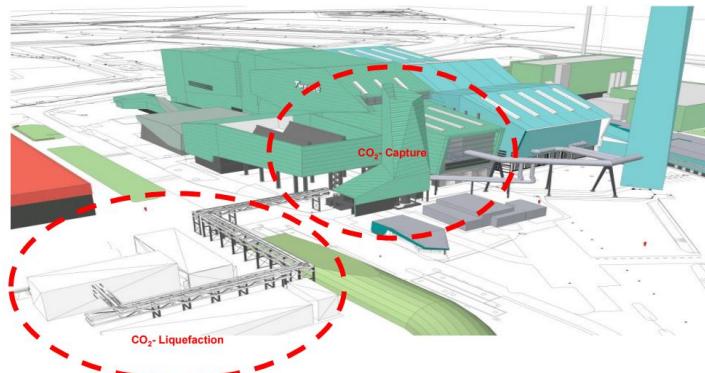
Cryogenic

Membranes

Other

Example of CCS project: AVR Duiven

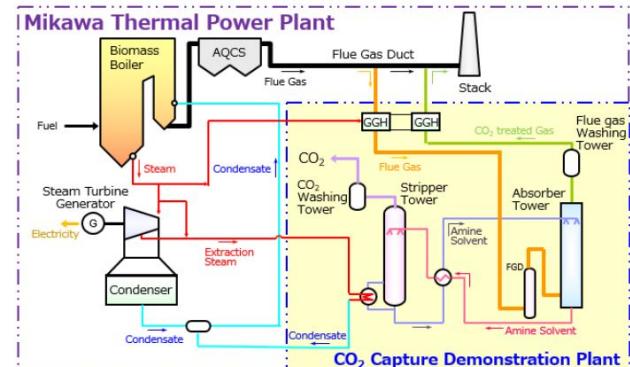
- [AVR Duiven](#), Waste to Energy plant in the Netherlands,
50,000-60,000 tCO₂ per year
- CO₂ used for greenhouses
- Solvent Technology (amines) by manufacturer TPI
- Footprint: 45 m x 37 m ~ 1700 m²



Example of CCS project: Twence

- Twence, Hengelo, Netherlands, 100,000 tCO₂ per year
- Solvent technologies (amines) by Aker (now part of SLB)
- CO₂ used for greenhouses
- Footprint : ~ 30m x 15m (450 m²)

4. CCU – Artist Impression

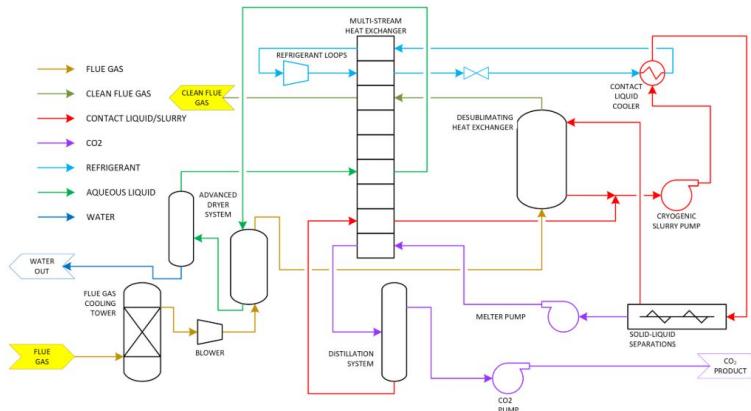

Example of CCS project: GGL (ex Frames)

- DES BV, Netherlands, 12,000 tCO₂ per year
- Commissioning in 2019 (based on Vyncke boiler), CO₂ used for greenhouses
- Amine sorbent (Green Gas Liquids has purchased Frames capture technology)
- Footprint: 15 m x 5 m (excl liquefaction)
- Energy consumption (heat): 1.6 MWh/tCO₂

Example of BECCS pilot: Mikawa, Japan

- First operational BECCS project run by **Ministry of Environment in Japan**
- CO₂ capture demonstration plant based on 49 MW biomass plant
- Operation started in October 2020
- **600 tCO₂ per day captured**
- Regeneration heat consumption: **0.7 MWh per tCO₂**
- Heat provided by steam turbine extraction
- Technology provided by **Toshiba** (proprietary TS-1 solvent)
- Footprint: **4,050 m²** (45x90m)

Example of alternative solvent: Axens


- Amine based demixing solvent developed by Axens (DMX) allowing 30% lower thermal energy consumption and less corrosive than amines
- Pilot operational in steel plant in France (4,000 tCO₂ per year) based on blast furnace gas
- Demonstration project has confirmed initial assumptions and performance in the field

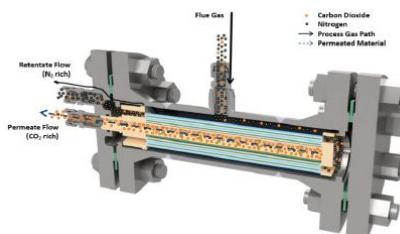
Module of DMX™ Demonstration Pilot Plant


Example of cryogenic pilot: Chart industries

- Chart acquired SES (Sustainable Energy Solutions)
- Pilot size: 10,000 tCO₂ per year (cement and thermal generation)
- Energy consumption (electrical power): 230 kWh/CO₂
- Footprint : 21 m x 9m
- Commercial scale : 100,000 tCO₂ per year

Example of solid sorbent pilot: Svante

- Solid sorbent separation technology with MOFs (Metal Organic Frameworks)
- 10,000 tCO₂ per year pilot in Canada
- Optimised energy consumption using lower temperatures heat sources than amine solvents



Example of membrane pilot: Ardent

- Modular, low pressure membrane CO₂ separation technology, tolerant to various pollutants
- High flow of gas at low pressure allows smaller footprint
- Pilot plant at an olefin and (and pilot rig at steel facility)
- Lower energy consumption than solvents: 570 kWh per tCO₂ of electrical power

↑ OPTIPERM™ CARBON PILOT RIG AT A STEEL PRODUCTION FACILITY

First learnings from early projects

- Current projects in operation and constructions are still pioneers: project complexity, large footprint, need for flue gas treatment (dust, Nox, Sox), liquefaction and storage, CO₂ purity.
- Energy consumption is still an issue at close to 1+ MWh per tCO₂ (mostly thermal energy) which imposes high losses or complex integration processes.
- With liquid solvents full capture costs are still in the 100–150 euros per tCO₂ (valid for 100,000 tCO₂ per year).
- However lots of learnings are allowing existing and new vendors to learn and improve.
- Potential electric powered solutions (e.g. solid sorbents or cryogenics) with much lower energy consumptions may be on the horizon (commercial in 2030s).

Key takeaways

Key takeaways

Learning through the first cycle of deployment

- Carbon capture is a very active field of research, innovation, pilot and increasingly commercial deployments.
- Post-combustion technologies are reaching maturity with solvents (e.g. amine-based, hot potassium carbonates and others) becoming standard and ready to deploy in the next years.
- However, solvents have areas of improvements (in particular energy penalty) which open the door for other methods slightly lower in technology maturity, potentially available in the next decade, such as cryogenic (for low concentration), solid sorbents, membranes.
- Longer-term electrochemical methods may offer an interesting fully electric alternative but it is still (very) early days.

“

**For carbon capture, the
time is now, for
learning by doing
(and improving)**

