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ARTICLE INFO ABSTRACT

Keywords: Combined sewer overflows (CSOs) discharge organic micropollutants (MPs) into open water bodies, posing
Temporal dynamics potential environmental threats. Knowledge of the numbers, sources, and dynamics of MPs during CSOs is scarce
LC-HRMS

but crucial for assessing their impact and developing mitigation strategies. To shed light on the dynamics of
dissolved organic MPs in CSOs, we conducted high-temporal-resolution sampling (10 min composite samples)
followed by liquid chromatography high-resolution mass spectrometry analysis, both target (60 substances) and
nontarget, at two CSO sites in a small [17 hectares reduced (ha,eq)] and a large (368 ha,eq) catchment for over 10
events each. We observe similar patterns among indoor substances in the large catchment and among tire-
associated compounds in both catchments, indicating source-specific behavior. Due to high and diverse con-
centration variability, no temporal correlations were found among indoor substances in the small catchment or
among pesticides in either catchment. A random forest classifier was applied to assign nontarget time series to
indoor and road sources in the large catchment. The results indicate that CSOs discharge several thousand
substances from indoor sources, followed by a few hundred from outdoor sources with continuous leaching.
These high numbers substantially surpass the scope of traditional target lists and underscore the importance of
broad-spectrum screening methods when assessing MP contamination.

Source allocation
Urban drainage
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1. Introduction

A large number of synthetic chemicals reach the aquatic environ-
ment, and organic micropollutants (MPs) are prevalent in rivers, lakes,
and oceans (Bradley et al., 2017; Lara-Martin et al., 2020). From urban
areas, organic MPs enter open water bodies mainly through wastewater
treatment plant (WWTP) and during rain events through combined
sewer overflows (CSOs) or stormwater outlets (SWOs). While WWTPs
have been extensively studied and can now reduce organic MPs through
enhanced treatment, CSO discharges remain a less understood source.
CSOs release a mixture of poorly or not treated raw waste- and storm-
water into the environment and they are not designed to remove dis-
solved compounds at all. In Europe, about 75 % of sewer systems are
combined, with a rough estimate of 650,000 CSO sites (EurEau, 2020).
With increasing urbanization and climate change, the frequency and

volume of CSOs is expected to increase in the near future, with pre-
dictions of up to a 256 % increase in annual CSO discharge volume by
the end of this century (Abdellatif et al., 2015; Cavadini et al., 2024;
Rodriguez et al., 2024). Therefore, CSOs are an increasingly important
pathway for organic MPs, potentially causing adverse effects on the
ecosystem and human health (Mutzner et al., 2022; Phillips et al., 2012).

CSOs contain a large variety of organic MPs originating from various
urban sources (Launay et al., 2016). Raw wastewater carries various
indoor-applied chemicals, such as pharmaceuticals, artificial sweet-
eners, and biocides (mainly in cosmetics and detergents) (Eggen et al.,
2014; Michael et al., 2013; Patel et al., 2019). Additionally, stormwater
washes off organic MPs from urban areas, including biocides from
construction material, pesticides from urban greens and agriculture, and
tire wear leachates (Burkhardt et al., 2012; Chibwe et al., 2022; Spahr
et al., 2020). Among this broad range of substances, some may be
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harmful to aquatic environments, as was illustrated recently with the
compound 6PPD-quinone, which causes acute mortality among salmon
populations during storm events (Tian et al., 2020). To mitigate the risks
that organic MPs pose to ecological and human health, an improved
understanding of their temporal dynamics throughout CSO events is
crucial. Knowledge on concentration dynamics would enable: (1)
modelling MP concentrations not only on the spatial but also temporal
scale, (2) developing real-time control for effective pollution reduction,
(3) evaluating effective in-sewer measures, such as retention basins or
onsite treatments (e.g. filtration), or catchment-wide strategies, such as
the integrated management of sewer system and WWTP. However,
high-temporal-resolution data of organic MP in CSOs is currently lacking
because most studies only report event mean concentrations.

To address this gap, we collected high-temporal resolution data on
dissolved organic micropollutants at two sites over several CSO events to
explore the dynamics of substance from different sources. In order to
further enlarge our dataset, we incorporate a nontarget analysis, where
we leverage temporal information of targets coupled with classification
algorithm to allocate nontarget MPs to target time series (Hollender
et al., 2017). This approach has gained traction in various fields, such as
source allocation of nontargets in streams (Carpenter et al., 2018), his-
torical accumulation of organic MPs in lake sediments
(Chiaia-Hernandez et al., 2017), and persistence of organic MPs in
natural drinking water sources (Albergamo et al., 2019). In our study,
we use this approach to quantify the number of nontarget substances per
source and uncover dynamics that are not captured by target time series
but can be crucial for improving management of CSOs.

In order to achieve those goals, we conduct a two-step process:

(1) Dynamics of target MPs: First, we use the 10 min interval time
series of 60 target compounds from 10 CSO events at each of the
two sites (2700 and 159,000 people) to characterize the temporal
patterns of MPs from three sources, i.e. indoors, roads, and pesti-
cides. Also, we look for further parameters, such as discharge,
ammonium, and dissolved organic carbon (DOC), to identify
proxies that are easier to measure.

Source allocation of nontarget MPs: In the second step, we
conduct a nontarget analysis on two CSO events and assign
nontarget time series to sources based on the temporal dynamics
with a random forest classifier that was trained with targets from
Step 1. This allows quantifying the number of unknown sub-
stances per source and to uncover further temporal patterns.

(2

—

2. Material and methods
2.1. Data acquisition

Site and events. Two CSO sites in Switzerland were investigated
(see catchment scheme in SI Figs. 1 and 3). The first CSO site is situated
in a small rural village characterized by predominantly residential areas
and roads, with agriculture on the outskirts of the urban area and little
industry. In its sub-catchment, 2700 permanent residents (in this study
referred to as “people”) are connected to the sewer system. The second
CSO site lies in a much larger catchment, with 159,000 people con-
nected, that also consists primarily of residential areas, roads, agricul-
ture, and a small amount of industry. Table 1 provides an overview of
the key characteristics of the two sampling sites and the overflow events
sampled. The overflow events are also depicted in SI Fig. 5. More
detailed information on the study sites, sampling method, analytical
procedure, and additional measurements can be found in our previous
study (Furrer et al., 2023).

Sampling. A detailed description of the sample storage, preparation
and analysis procedure can be found in our previous study (Chapter 4.4)
(Furrer et al., 2023). In brief, we collected 10 min composite samples
(750mL) consisting of five 2 min grab samples (150mL) using an auto-
mated sampler (MAXX TP5C) with integrated cooling system and 24
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Table 1
Key characteristics of the two sampling sites and the overflow events sampled.

Parameter Small catchment Large catchment
Effective hydraulic area [hayeq] 17 368

People connected 2700 159,000
Volume retention basin [m®] 280 3000

Max. dry-weather flow [L/s] 20 600

Sampling period Sep 2021-Jun 2022 Aug 2022-Jun 2023
# of events 14 10

# of samples 320 240

Overflow duration [h/event]* 2.8 (17.9) 6.8 (23.5)
Overflow volume [m?/event]* 996 (8684) 15,316 (47,004)
Rain intensity [mm/h] * 2.6 (45) 3.2 (52)

*mean (max)

glass bottles. Two samplers in series enabled us to sample up to 8 h.
Samples were collected at the inflow channel a few meters upstream of
the CSO, to be able to start measuring at the beginning of the storm event
and independently of the CSO characteristics (retention basin, weir
height) (see CSO schemes in SI Fig. 2 and 4). The sampler started
automatically once the water level reached a certain threshold above
dry-weather flow (CSO small catchment: > 80 L/s, CSO large catchment:
> 1’500 L/s), which is the discharge of raw wastewater in the sewer
during periods with no precipitation. Sampling the MP concentration
transition from dry to wet weather proved infeasible due to clogging of
the suction hose within a few minutes. Therefore, we sampled two
events in the large catchment after the WWTP screen (20 m and 40 s
downstream the original sampling point), which facilitated capturing 1
h dry-weather periods prior to the overflow events and a 24 h
dry-weather pattern.

Analytics. A detailed description of the sample storage, preparation
and analysis procedure can be found in our previous study (Chapter 4.4)
(Furrer et al., 2023). Briefly, the samples were analyzed for organic MP
with liquid chromatography (water—methanol gradient) followed by
high-resolution mass spectrometry (Q-Exactive, Thermo Fischer) with
electrospray ionization in two separate runs for positive and negative
mode. Full-scan MS1 spectra at a resolution ® of 140,000 (at m/z 200)
were acquired over the mass range m/z 100-1000 followed by five
data-dependent MS2 scans (R = 17,500 at m/z 200; triggered by target
analyte masses) (also see SI Section 3.3). In total, we screened for 60
target substances, of which we found 57 substances (list in SI Table 1)
above the level of quantification (LOQ) at least once (concentration
ranges in SI Fig. 7). In total, we spiked 159 isotopic-labelled standards
(ILS). For a precise quantification of the 60 target compounds, 61
structural identical ILS and 2 structural similar ILS with similar retention
time from the 159 spikes ILS were used as internal standards (see SI
Table 1). In brief, the relative recoveries for the 57 targets are 103 + 15
% (median =+ std), the precision 4 + 6 %, and the LOQ ranges from 5 to
250 ng/L (see details in SI Table 1, 2 & 3). Lab and field blank samples
were used to check that no substance carryover during sampling and in
the laboratory was present. In each sample, we also analyzed ammo-
nium (NHZ-N) using either ion chromatography (930 Compact IC Flex,
Methrom), photometry (Lachat QC8500), or Dr. Lange LCK304/05),
depending on the expected concentration levels and numbers of samples
to be analyzed at a time. All ammonium measurements were
cross-validated before use. Additionally, we measured DOC using a total
organic carbon analyzer (Shimadzu TOC-L). There is a data gap for DOC
from August to December 2022 due to technical issues with the
measuring instrument. Furthermore, we have data on precipitation,
inflow, and overflow discharge of both CSO sites.

2.2. Dynamics of target substances

We calculated the Pearson correlations between the concentrations
of the substances from the same source over all events in each catchment
to assess their suitability for source allocation. A source is considered
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suitable for source allocation when the median correlation of all com-
pounds of this source exceeds 0.6, indicating strong linear correlation.
Furthermore, we analyzed the Pearson correlation between the MPs of
each substance class, defined as substances from the same source, with
the parameters discharge, ammonium, and DOC. For better comparison
of the dynamics independent of absolute concentration levels, we
normalized each time series by the mean value of the corresponding
substance over the entire event. For each source, we also conducted
additional analyses:

Indoors. Due to the high correlation of indoor MPs with discharge
and ammonium in the large catchment (see Fig. 1B and Section 3.1.1),
we explored the potential to estimate concentrations of MP from indoor
sources during rain events using measured dry-weather concentrations
and dry-to-wet discharge ratios (SI Eq. 1). We further tested whether we
could derive the daily dry-weather pattern for MP from the mean dry MP
concentrations and the daily ammonium pattern (SI Eq. 2). Then, we
calculated the mean average percentage error (MAPE) to compare the
estimated MP concentrations with the measured MP concentrations
during overflow events.

[ — Cpr
MAPE — mean (M)
Ctrue

MAPE: Mean absolute percentage error

Crue: Measured MP concentration during overflow event

Cpred: Predicted MP concentration during overflow event

Roads. The three substances originating from tire wear leachates,
6PPD-quinone, 1,3-diphenylguanidine and hexa(methoxymethyl)mel-
amine (HMMM), were investigated in their relationship with antecedent
dry-weather days and discharge within events. The antecedent dry-
weather days were defined as number of days before the event where
the discharge did not exceed a maximum flow of 70 L/s for the small and
1000 L/s for the large catchment. To test whether the tire-associated
compounds show a first flush, the mass vs. volume [M(V)] curves
were derived for each substance and event with which the cumulative
mass of an MP is depicted over the cumulative discharged volume of an
overflow event (Bertrand-Krajewski et al., 1998).

Pesticides. We categorized pesticides into plant protection products
(PPPs) and biocides (SI Tab. 4) and analyzed their seasonal trends and
first-flush dynamics. The seasonality was evaluated by calculating the
ratio of maximum monthly concentrations to the overall maximum
concentration. The first-flush dynamics were investigated as tire wear
leachates with M(V) curves.

2.3. Nontarget analysis

Nontarget analysis was conducted with Compound Discoverer (CD)
version 3.3 software from ThermoFisher. The CD workflow can be found
in SI Fig. 22. A first evaluation of both positive and negative mode
revealed that over 70 % of the nontarget compounds were detected in
positive mode. Therefore, we present here only the results of the positive
mode. Two events in the large catchment, from 09.05.2023 and
22.06.2023, were selected due to their large number of samples per
event and distinctive source-specific dynamics (Fig. 2). Each event was
analyzed separately in CD. The results, consisting of mass, retention
time, and peak area intensity in each sample, were exported from CD
and further processed with the Python coding language. To ensure high
quality time series, the initial datasets were reduced with two filter
criteria: (1) only keep time series with at least four samples with peak
area > 10% and 10 times larger than the maximal blank area, and (2) the
retention time must fall within the range of 2.8 to 22 min. After filtra-
tion, only a minority of the nontarget time series remained, although
these still number several thousands.

A comprehensive overview of the filtered nontarget time series was
obtained through three prioritization steps: (1) comparing the cumula-
tive intensity over all samples of a compound to the total cumulative
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intensity over all samples and compounds, (2) ordering the maximal
intensity of each compound among all samples by magnitude, and (3)
calculating the percentage of samples for a compound exceeding the
area intensity threshold 10°.

We validated the CD software’s peak-picking process by estimating
the recall (True Positive (TP) / (TP + False Negative (FN))) as the
portion of spiked ILS and detected targets which were identified by the
CD software compared to the total amount of spiked ILS and detected
targets. The recall was assessed for 159 ILS and 29 quantified targets in
the 1000 ng/L calibration point and all wastewater samples. Recall
values for ILS and targets lie above 85 % for the calibration point and
above 79 % for the wastewater samples (SI Fig. 24). The filtration pro-
cess efficiently reduces the total number of time series in the wastewater
samples by 55 % without impacting the recall values. As False Positives
(FP) per se cannot be derived from the spiked substances in wastewater
samples, we assessed the precision (TP / (TP + FP)) by manually
inspecting the chromatographic shape of 300 randomly selected peaks
and distinguished between peaks with good (gaussian) shape (TP) and
poor (noisy) shape (FP). This analysis revealed 83 % TPs and 17 % FPs
independent of intensity levels, leading to a precision of 0.83.

A comparison of the results from CD with those from Tracefinder
demonstrated strong correspondence in targets’ areas (SI Fig. 25). To
assess the impact of the matrix effect on the relative dynamics of the
nontarget time series, we examined the peak area variation of 60 ILS,
which we also used for target analysis. All ILS displayed a maximum
variation of + 20 % within the time series (SI Fig. 26). These un-
certainties lie within the range of analytical precision, and therefore the
matrix effect is negligible when calculating the relative dynamics of the
nontargets.

2.4. Machine learning analysis

The filtered nontarget time series were allocated to a source based on
their temporal behaviors. For this, we evaluated three classifiers
commonly used for time series classification: random forest, nearest
neighbor, and Gaussian. We trained the classifiers with the time series of
targets exhibiting source-specific dynamics. As evident from the results
in Section 3, only targets from the indoor and road sources display high
correlation (> 0.6) with each other; thus, we solely consider these for
source allocation. The random forest classifier was chosen as it yielded
the best performance metrics and is known as a robust algorithm
(Fernandez-Delago et al., 2014; Genuer et al., 2008).

The classification was performed with three Python packages: SciPy,
scikit-learn, and tslearn. The training set consisted of the normalized
time series (see Section 2.2) of two classes: indoors with 30 target time
series and roads with 3. From each class, the entire time series of 70 % of
the substances were used for training and 30 % for validating the clas-
sifier by applying a stratified splitter. The trained classifier reached an
accuracy of 1, which might be surprising but can be attributed to the
very distinct patterns exhibited by the two classes in the training set. To
better assess the goodness of classification for individual compounds by
the trained classifier, we calculated the probability of each nontarget
time series being assigned to its class. Thereby, a higher probability
indicates a better match of the time series with the target substances. We
decided to only display and proceed with those having at least 50 %
probability. Detailed description of the classification analysis can be
found in SI Chapter 6.

Subsequently, nontarget time series that could not be assigned to
either source, were clustered to identify further patterns beyond these
two target classes. This was conducted with a hierarchical cluster
analysis using the Ward’s method, which performed better than KMeans
and DBSCAN. The Ward’s method is often used to cluster environmental
data (Carpenter and Helbling, 2018; Chiaia-Hernandez et al., 2017; Yun
et al., 2023). For this clustering, we considered only the top 2000
prioritized nontarget time series (described in Section 2.3) to obtain
distinct clusters. We chose a cluster number of 20, as this resulted in a
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variety of temporal patterns while grouping similar time series together.
Detailed description of the clustering analysis can be found in SI Chapter
7.

An overview of the method workflow can be found in the SI (Fig. 9).

3. Results and discussion
3.1. Dynamics of target substances

The per-event normalized MP concentrations are displayed for each
substance class in three events per catchment in Fig. 1 (for all events see
SI Fig. 10-14). The substances were divided according to expert
knowledge into two main sources: indoors and outdoors, each
comprising distinct substance classes. Indoor sources contain the sub-
stance classes pharmaceuticals, nutrition, and indoor biocides. Outdoor
sources comprise road-runoff related compounds and pesticides
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(encompassing PPPs and biocides). The substances from indoors enter
the sewer system mainly via toilet flushes, with a few exceptions of
substances from other uses such as dishwashers, washing machines and
showers, whereas the road-related substances and pesticides are washed
off from urban surfaces and transported to the sewer network by
stormwater. In the subsequent analysis, indoor substance classes are
evaluated jointly, given their uniform entry into the sewer system.
Conversely, the outdoor classes roads and pesticides are considered
separately due to their different application and wash-off behaviors.
For each substance class (indoors, roads, pesticides), we assessed the
Pearson correlation between the substances within each class to deter-
mine their potential usefulness in allocating nontarget time series to
target substances (wherever median correlation > 0.6). Then, we
examined correlations with additional parameters that could be used to
explain and ultimately predict the observed concentration dynamics.
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3.1.1. Indoors

The substances from indoor sources can be divided into pharma-
ceuticals with many consumers, Pharma I, pharmaceuticals with few
consumers, Pharma II; nutrition, such as artificial sweeteners and
caffeine; and indoor-applied biocides.

Source selectivity. For the indoor substances, substantial differ-
ences can be observed between the Pearson correlation coefficients for
the small and large catchments (Fig. 1B). In the small catchment, no
correlation can be observed among the indoor substances, but the indoor
substances in the large catchment are strongly correlated with each
other. In the large catchment, a few substances, such as clarithromycin,
erythromycin, and iopamidol, show lower correlations. This may be
because they are consumed by fewer people. Clarithromycin and
erythromycin, antibiotics for respiratory infections, are likely less
common during the study period which excludes winter season, while
iopamidol, an X-ray contrast agent, is excreted in high concentrations
and by only a small number of individuals. The substance DEET also
shows a lower correlation with ammonium in some events, which can be
explained by the fact that the substance has many different applications
and can therefore originate from different sources. Hence, allocating the
sources of indoor substances for nontarget time series is possible for the
large catchment but not for the small catchment.

The weak correlation among indoor MPs in the small catchment can
be attributed to the catchment’s small population size (2700 people),
resulting in higher concentration fluctuations during dry and conse-
quently wet weather periods. An example comparing 15 pharmaceuti-
cals in the small and large catchments during an overflow event,
illustrates this disparity (SI Fig. 15). Despite stronger dilution (max.
17x) in the small catchment than in the large one (max. 5x), concen-
tration variations relative to the event mean concentration are much
higher and more random in the small catchment. This indicates that
concentration variations of indoor substances during wet weather are
not solely driven by dilution but also by the inherent fluctuations in the
raw wastewater, which is particularly more pronounced in smaller
catchments. Although our sampling campaigns were conducted during a
period impacted by the COVID-19 pandemic, we expect this to have
minimal impact on the results, as our focus is mainly on relative
variations.

Additional parameters. Indoor MPs in the large catchment exhibit
strong positive correlations with ammonium and DOC, and strong
negative correlation with discharge (Fig. 1B). This negative correlation
facilitates the estimation of wet-weather concentrations using dry-
weather concentrations and discharge measurements. This is illus-
trated with the example of cyclamate, where wet-weather concentra-
tions can be predicted fairly accurately (SI Fig. 16). The mean absolute
percentage error (MAPE) for all indoor substances is generally low (< 40
%) across events (SI Fig. 18). However, accurate predictions require a
high-resolution daily pattern for the dry-weather concentrations, as
using daily mean concentrations leads to higher errors. Hence, wet-
weather concentrations of indoor substances not only depend on dilu-
tion but also on the time of day. Previous research has shown similar
strong daily variations in the inflow to a WWTP during dry weather
(Koke et al., 2022). The high correlation (median corr. coeff.: 0.61) of
ammonium with indoor MP also during dry weather (SI Fig. 17) suggests
that the daily pattern of ammonium can serve as a proxy for daily MP
variation. Calculating wet-weather concentrations based on the daily
ammonium pattern and the daily mean MP concentration only slightly
increases the MAPE. The strong correlation between indoor substances
and ammonium primarily applies to substances, such as pharmaceuti-
cals, excreted by humans. This correlation may be weaker for substances
originating from other indoor sources, such as washing machines,
dishwashers, or showers.

Two events included a one-hour dry-weather period prior to the
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event, which slightly increased correlation of indoor MP with discharge,
as dilution effects are more pronounced. However, as sampling dry-
weather discharge is challenging due to clogging and the correlation
did not improve significantly, it is recommended to start sampling
during the first stormwater discharge.

3.1.2. Outdoors

3.1.2.1. Road substances. Source selectivity. The substances leaching
from tire and road wear particles (TRWPs), 6PPD-quinone, 1,3-diphe-
nylguanidine and HMMM, exhibit strong correlations with each other
across all the events and in both catchments (Fig. 1B). The high corre-
lation allows us to assign nontarget time series with similar patterns to
this source.

Additional parameters. There is no correlation of road substances
with ammonium, DOC, or discharge (Fig. 1B). The lack of correlation
with ammonium and DOC is expected, because these parameters
represent raw wastewater, whereas road substances are transported
with stormwater. Although stormwater does contain DOC, its concen-
trations are much lower (4 — 16 mg/L from (Kalev and Toor, 2020; Lin
et al., 2022; McElmurry et al., 2014)) compared to raw wastewater (40
mg/L, see SI Fig. 8). Therefore, DOC correlates well with indoor sub-
stances but not with road substances. The relationship between
discharge and concentration shows a complex picture: initial concen-
trations increase at low discharge levels, then decrease at higher dis-
charges due to stronger dilution effects (SI Fig. 19). Therefore, a
minimum discharge is required to mobilize these tire-associated com-
pounds, and above a certain discharge, dilution effects become more
pronounced. Interestingly, concentration ranges and median concen-
trations of each compound are similar for both catchments (SI Fig. 7),
suggesting independence from catchment size.

Analysis of mass vs. volume distribution [M(V)] curves in Fig. 2 re-
veals constant wash-off of tire-associated compounds during storm
events without following a first-flush pattern, defined as 80 % of the
cumulative mass transported in the first 30 % of discharge
(Bertrand-Krajewski et al., 1998). Furthermore, concentrations remain
consistently above the LOQ. Thus, the wash-off process appears to be
transport-limited rather than source-limited. Similar patterns have been
observed in urban streams, where concentrations of tire-associated
compounds remained elevated throughout and even after rain events
(Johannessen et al., 2022; Peter et al., 2020; Rauert et al., 2022).
Moreover, no clear correlation emerges between maximum event con-
centration and the number of antecedent dry-weather days (SI Fig. 20),
which aligns with previous studies (Challis et al., 2021). These findings
imply a substantial deposit of TRWPs in the catchments which is not
depleted during single rain events. However, the origins of these sour-
ces, whether from roads, gully pots, or road embankments, remain un-
clear. Lab-scale experiments in a former study demonstrated that over
80 % of the leachable compounds in tires are not completely leached out
after 28 days of contact with water (Muller et al., 2022). This un-
derscores the necessity of not merely retaining TRWPs, as in a filtration
system, but regularly removing them from the catchment and treatment
system to prevent continual organic MP release. However, the lack of
correlation between concentration and dry days may also stem from
uncertainties over the minimum rain intensity and duration required for
mobilization as well as the large variability in maximum discharge for
the different events.

Although some knowledge is available on TRWP accumulation and
wash-off processes (Unice et al., 2019), further investigation is needed
into the leaching mechanisms of polar organic compounds from these
particles and their transport by stormwater (Wagner et al., 2018).
Moreover, identifying the primary sources of TRWPs in the catchment is
crucial for designing effective mitigation measures.
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Fig. 2. Mass vs. volume [M(V)] curves of tire-associated compounds, plant protection products, and biocides, each for all events in the large catchment. Mecoprop is

categorized as ‘biocide’, as suspected main use in material protection.

3.1.2.2. Pesticides. In this substance class, we distinguish between PPPs
and biocides; some substances can fall into both categories (SI Tab. 4).
The PPPs are applied in agriculture, urban green areas, and private
gardens to control plant growth. Biocides can have various applications.
Material protection agents, for example, are incorporated in facades and
roofs to minimize fouling.

Source selectivity. Pesticides do not correlate with each other or
with ammonium, flow, or DOC (Fig. 1B). There are a few exceptions,
such as 2,4-D with MCPA and terbuthylazine in the small catchment and
terbutryn/prometryn with isoproturon in the large catchment. This
could be due to shared products or co-application. Overall, the diverse
dynamics make pesticides unsuitable for source allocation of nontarget
compounds.

This lack of correlation is evident in the relative concentrations of
pesticides (Fig. 1A), which exhibit either isolated peaks at different time
points or sustained elevated levels. This variability can be attributed to
the distinct application modes of PPPs and biocides.

PPPs, when applied temporarily, undergo a source-limited wash-off
process, leading to short, isolated peaks with varying timings that
challenge the notion of a first-flush pattern (Fig. 2). Similar findings

have been reported in agriculturally influenced small creeks, revealing
varied temporal patterns (la Cecilia et al., 2021) and different wash-off
times (Stravs et al.,, 2021), and in runoff from agricultural fields,
showing no first flush of PPPs (Lefrancq et al., 2017). Possible expla-
nations for these delayed occurrences include different traveling times
within a catchment depending on distance, slope, inhomogeneous rain
patterns, and different wash-off processes. In contrast, biocides, mainly
from construction materials, constitute continuous sources and result in
elevated concentrations throughout events, represented by linear M(V)
curves. Studies have also found no first flush pattern for biocides from
construction materials (Burkhardt et al., 2011). Exceptions such as
diuron and isoproturon, both of which exhibit short, high peaks in
August and May events, may be due to illegal continued use, because
these were banned only recently, or encapsulation in paint, where only
the top layer of chemicals is washed out by stormwater.

Mecoprop, used as both PPP and material protection product, shows
10 times higher concentrations in June, indicating additional PPP
application. Interestingly, this is reflected in the concentration dy-
namics, resulting in a nonlinear M(V) curve (Fig. 2). This illustrates that
high temporal resolution data can help in identifying the application of a
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pesticide, especially with multiple authorized uses.

Additional parameters. Concentrations of the pesticides (SI Fig. 21)
tend to be high in the months between March and June and very low
from September to November. Six substances show high concentrations
in only one month, indicating single rather short application periods.
This indicates that the season in which samples are taken matters
strongly when investigating pesticides. Similar findings were reported in
a prior study which demonstrated that understanding seasonal occur-
rence and mobilization during rainfall can aid in determining whether a
substance originates from agricultural or urban sources; agricultural
sources typically exhibit pronounced seasonal variation, and urban
sources remain relatively constant throughout the year (Wittmer et al.,
2010).

3.2. Dynamics of nontargets

3.2.1. Source allocation of nontargets

As shown in the previous Chapter 3.1, only indoor substances in the
large catchment and road substances in both catchments show source-
specific dynamics and can therefore be used for source allocation of
nontarget time series.

In total, 21,473 nontarget time series were derived for Event 1
(09.05.2023) and 25,372 for Event 2 (22.06.2023). The prioritization
steps for the nontarget time series (SI Fig. 27) reveal that the 20 % of
time series with the highest intensities comprise 80 % of the total
summed intensities with 82 (0.4 %) time series showing maximum
concentrations exceeding 1E+09 for Event 1 and 77 (0.3 %) for Event 2.
The filtered nontarget time series were classified, which resulted in the
allocation of several thousand time series to one of two classes, indoors
and roads (Fig. 3).

Indoors. Several thousand nontarget time series (Event 1: 3469,
Event 2: 4778) show similar dynamics as the indoors target MPs; high
concentrations in dry-weather samples and decreasing concentrations
with increasing stormwater discharge indicate indoors as the most likely
source. In a previous study, an extensive screening of raw wastewater for
organic MPs revealed a substantial number of 398 detections from 2316
targets, supporting our findings that raw wastewater can contain a large
number of organic MPs (Gago-Ferrero et al., 2020). Another study
conducting nontarget analysis in WWTP effluent found only 4 out of the
30 most intensive peaks were targets, despite over 100 quantified targets
(Schymanski et al., 2014). Hence, the large number of over 1000
nontarget MPs from the indoor source in our study seems plausible.

Roads. This class with tire-associated substances contains a few
hundred nontarget compounds (event 1: 154, event 2: 488). This un-
derscores the importance of TRWPs as a substantial organic MP source in
urban areas, and they should be considered when investigating storm-
water contamination. Prior studies have already emphasized the role of
traffic, particularly tire wear, as a source of organic MP and other con-
taminants (Awonaike et al., 2022). Lab-scale leachate tests revealed that
tires can leach a substantial number (145) of organic MPs, with a ma-
jority being sufficiently polar to be mobile in aquatic systems (Muller
et al., 2022). Previous nontarget analysis of roadway runoff detected
between 443 and 1061 nontarget compounds per site (Peter et al.,
2019). Moreover, the relevance of tire wear leachates is amplified by
their bioaccessability (Masset et al., 2022) and ecotoxicity (Chibwe
et al., 2022; Tian et al., 2020). Hence, identifying the most critical tire
wear compounds and expanding the target lists for stormwater
contamination becomes crucial and should be part of future research.
The high number of nontarget MPs from stormwater aligns with previ-
ous findings, where thousands of nontarget compounds were detected in
stormwater in several watersheds (Peter et al., 2022). It is possible that
not all nontarget MPs within this class originate from tire wear leach-
ates, as substances applied in other domains with a large source, such as
biocides in material protection, can exhibit similar transport-limited
behavior. Nonetheless, we assume that the number of biocides applied
in material protection is likely small compared to the diverse array of
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Fig. 3. Event from 9.5.2023 in the large catchment. A) Discharge at inflow CSO
with 1h dry weather followed by 7h wet weather, with dashed line indicating
start of stormwater discharge. B) — C) Classification results of normalized (by
mean intensity) nontarget time series (grey) with similar dynamics as the target
substances for indoor (red) and road (blue) substances. D) — G) Clustering re-
sults of 2000 top priority nontarget time series (normalized by mean intensity)
which were not classified as indoors or roads. Dates format: DD.MM.YYYY.

organic MPs present in tire wear.

Both events show similar numbers of nontarget MPs per class, sup-
porting the effectiveness of the nontarget workflow (second event see SI
Fig. 29). The fact that the indoors class has roughly ten times more
nontarget time series than the roads class indicates that raw wastewater
contains much more diverse organic MPs than road runoff. It should be
noted that our current analysis focuses solely on the numerical count of
nontarget MPs within each class. Future research requires identification
of the individual compounds, followed by the determination of their
concentration and ecotoxicological significance. This is crucial for
gaining a comprehensive understanding of the importance to attribute
to each pollution source.

The nontarget analysis workflow is subject to uncertainty, arising
from such processes as peak picking, time series construction, filtration,
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and the impracticality of manually verifying all derived time series for
true and false positives. Especially filtering based on intensity results in
substances with poor ionization or low intensities not being considered.
Additional uncertainties arise from the small set of road substances as
input to the classification and the consideration of only the positive
mode. Thus, the absolute number of allocated nontarget time series per
source should be treated with caution, but it provides a first insight into
the estimation of relative importance of various sources and the extent
to which we underestimate the organic pollution situation with existing
target lists.

3.2.2. Further dynamics

The unassigned time series from Section 3.2 were prioritized by their
maximal intensities, because higher intensities typically correspond to
higher concentrations. We then clustered the top 2000 time series to
uncover additional temporal patterns beyond those represented by the
target substances. In Fig. 3 (D-G), four clusters are displayed (all clusters
see SI Fig. 30 and second event see SI Fig. 31). Cluster D shows a single
peak occurring two hours after the start of storm event, suggesting a
source-limited wash-off process, which could be a PPP. Clusters E and F
exhibit higher concentrations during wet weather compared to dry
weather, with cluster E showing slightly higher concentrations during
the first 2 h of increased flow and cluster F showing elevated concen-
trations throughout the storm event. Cluster G displays single peaks that
could stem either from indoor substances with few consumers or from
PPPs. Overall, clustering the remaining nontarget time series reveals
further dynamics not necessarily represented by target substances.
Hence, this approach provides a more holistic overview of potential MP
dynamics in CSO. Even though the specific sources and identity of the
substances remain unknown, the approach aids CSO management by
revealing that organic MPs exhibit various patterns beyond a distinct
first flush.

4. Conclusions

e Dissolved organic MPs show diverse temporal patterns during CSOs,
influenced by source and catchment size. Indoor MPs dilute with
increasing stormwater, while outdoor-applied MPs like tire wear
leachates and pesticides exhibit elevated concentrations during wet
weather, with either source- or transport-limited wash-off. Tire-
associated substances exhibit transport-limited wash-off behavior,
indicating large reservoirs within the catchments, which might be
problematic due to long-lasting leaching effects. Consequently,
traditional first-flush retention strategies may be insufficient to
effectively protect water bodies, especially as concentrations of
numerous substances persist above their LOQ throughout CSO
events. Further research is needed to compare these concentrations
with ecotoxicological data for optimal management strategies.
Consistent source-specific dynamics were observed for indoor sub-
stances in the large catchment and tire-associated compounds in both
catchments. In the large catchment, indoor MP concentrations dur-
ing CSOs correlate with discharge and ammonia, and could be pre-
dicted based on dry weather concentrations and dilution.

No consistent source-specific dynamics emerged for indoor sources
in the small catchment or for pesticides in either catchment. This
complicates monitoring, as it becomes difficult to identify suitable
proxy signals, as well as modelling and optimizing mitigation mea-
sures, as a wide range of potential dynamics must be considered. This
complexity is particularly true for small catchments, where we only
observed source-specific dynamics for tire wear leachates. Hence, for
CSO catchments of similar or smaller size, assessing and predicting
MP dynamics is challenging.

Nontarget analysis reveals thousands of organic compounds in CSOs,
underscoring their significance as pathway of a wide range of organic
MPs entering open water bodies. Source allocation of nontargets
detected several thousand indoor substances, emphasizing the
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importance of raw wastewater as an MP source, even when diluted.
Around 150 substances with transport-limited wash-off behavior,
likely from road runoff, were detected, indicating that road runoff is
an underestimated pollution source. Our current target list vastly
underestimates the numbers of present MPs, emphasizing the need
for broad screening methods and nontarget analysis. Future research
should also investigate the ecotoxicological relevance of nontarget
compounds, as their impact cannot be determined by their numbers
alone.

Exploring the dynamics of nontarget time series unveils temporal
patterns beyond those of target time series, increasing the variety of
possible MP dynamics that need to be considered in CSO manage-
ment. Even without identifying these substances, -clustering
nontarget time series offers valuable insights for future studies by
providing a more holistic view of pollution dynamics. It also helps to
prioritize identification efforts towards clusters that are not repre-
sented by targets, contain large numbers of nontargets, or show
patterns that cannot be explained with the current knowledge of
systems and processes.
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