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A B S T R A C T

Combined sewer overflows (CSOs) discharge organic micropollutants (MPs) into open water bodies, posing 
potential environmental threats. Knowledge of the numbers, sources, and dynamics of MPs during CSOs is scarce 
but crucial for assessing their impact and developing mitigation strategies. To shed light on the dynamics of 
dissolved organic MPs in CSOs, we conducted high-temporal-resolution sampling (10 min composite samples) 
followed by liquid chromatography high-resolution mass spectrometry analysis, both target (60 substances) and 
nontarget, at two CSO sites in a small [17 hectares reduced (hared)] and a large (368 hared) catchment for over 10 
events each. We observe similar patterns among indoor substances in the large catchment and among tire- 
associated compounds in both catchments, indicating source-specific behavior. Due to high and diverse con
centration variability, no temporal correlations were found among indoor substances in the small catchment or 
among pesticides in either catchment. A random forest classifier was applied to assign nontarget time series to 
indoor and road sources in the large catchment. The results indicate that CSOs discharge several thousand 
substances from indoor sources, followed by a few hundred from outdoor sources with continuous leaching. 
These high numbers substantially surpass the scope of traditional target lists and underscore the importance of 
broad-spectrum screening methods when assessing MP contamination.

1. Introduction

A large number of synthetic chemicals reach the aquatic environ
ment, and organic micropollutants (MPs) are prevalent in rivers, lakes, 
and oceans (Bradley et al., 2017; Lara-Martin et al., 2020). From urban 
areas, organic MPs enter open water bodies mainly through wastewater 
treatment plant (WWTP) and during rain events through combined 
sewer overflows (CSOs) or stormwater outlets (SWOs). While WWTPs 
have been extensively studied and can now reduce organic MPs through 
enhanced treatment, CSO discharges remain a less understood source. 
CSOs release a mixture of poorly or not treated raw waste- and storm
water into the environment and they are not designed to remove dis
solved compounds at all. In Europe, about 75 % of sewer systems are 
combined, with a rough estimate of 650,000 CSO sites (EurEau, 2020). 
With increasing urbanization and climate change, the frequency and 

volume of CSOs is expected to increase in the near future, with pre
dictions of up to a 256 % increase in annual CSO discharge volume by 
the end of this century (Abdellatif et al., 2015; Cavadini et al., 2024; 
Rodriguez et al., 2024). Therefore, CSOs are an increasingly important 
pathway for organic MPs, potentially causing adverse effects on the 
ecosystem and human health (Mutzner et al., 2022; Phillips et al., 2012).

CSOs contain a large variety of organic MPs originating from various 
urban sources (Launay et al., 2016). Raw wastewater carries various 
indoor-applied chemicals, such as pharmaceuticals, artificial sweet
eners, and biocides (mainly in cosmetics and detergents) (Eggen et al., 
2014; Michael et al., 2013; Patel et al., 2019). Additionally, stormwater 
washes off organic MPs from urban areas, including biocides from 
construction material, pesticides from urban greens and agriculture, and 
tire wear leachates (Burkhardt et al., 2012; Chibwe et al., 2022; Spahr 
et al., 2020). Among this broad range of substances, some may be 
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harmful to aquatic environments, as was illustrated recently with the 
compound 6PPD-quinone, which causes acute mortality among salmon 
populations during storm events (Tian et al., 2020). To mitigate the risks 
that organic MPs pose to ecological and human health, an improved 
understanding of their temporal dynamics throughout CSO events is 
crucial. Knowledge on concentration dynamics would enable: (1) 
modelling MP concentrations not only on the spatial but also temporal 
scale, (2) developing real-time control for effective pollution reduction, 
(3) evaluating effective in-sewer measures, such as retention basins or 
onsite treatments (e.g. filtration), or catchment-wide strategies, such as 
the integrated management of sewer system and WWTP. However, 
high-temporal-resolution data of organic MP in CSOs is currently lacking 
because most studies only report event mean concentrations.

To address this gap, we collected high-temporal resolution data on 
dissolved organic micropollutants at two sites over several CSO events to 
explore the dynamics of substance from different sources. In order to 
further enlarge our dataset, we incorporate a nontarget analysis, where 
we leverage temporal information of targets coupled with classification 
algorithm to allocate nontarget MPs to target time series (Hollender 
et al., 2017). This approach has gained traction in various fields, such as 
source allocation of nontargets in streams (Carpenter et al., 2018), his
torical accumulation of organic MPs in lake sediments 
(Chiaia-Hernandez et al., 2017), and persistence of organic MPs in 
natural drinking water sources (Albergamo et al., 2019). In our study, 
we use this approach to quantify the number of nontarget substances per 
source and uncover dynamics that are not captured by target time series 
but can be crucial for improving management of CSOs.

In order to achieve those goals, we conduct a two-step process: 

(1) Dynamics of target MPs: First, we use the 10 min interval time 
series of 60 target compounds from 10 CSO events at each of the 
two sites (2700 and 159,000 people) to characterize the temporal 
patterns of MPs from three sources, i.e. indoors, roads, and pesti
cides. Also, we look for further parameters, such as discharge, 
ammonium, and dissolved organic carbon (DOC), to identify 
proxies that are easier to measure.

(2) Source allocation of nontarget MPs: In the second step, we 
conduct a nontarget analysis on two CSO events and assign 
nontarget time series to sources based on the temporal dynamics 
with a random forest classifier that was trained with targets from 
Step 1. This allows quantifying the number of unknown sub
stances per source and to uncover further temporal patterns.

2. Material and methods

2.1. Data acquisition

Site and events. Two CSO sites in Switzerland were investigated 
(see catchment scheme in SI Figs. 1 and 3). The first CSO site is situated 
in a small rural village characterized by predominantly residential areas 
and roads, with agriculture on the outskirts of the urban area and little 
industry. In its sub-catchment, 2700 permanent residents (in this study 
referred to as “people”) are connected to the sewer system. The second 
CSO site lies in a much larger catchment, with 159,000 people con
nected, that also consists primarily of residential areas, roads, agricul
ture, and a small amount of industry. Table 1 provides an overview of 
the key characteristics of the two sampling sites and the overflow events 
sampled. The overflow events are also depicted in SI Fig. 5. More 
detailed information on the study sites, sampling method, analytical 
procedure, and additional measurements can be found in our previous 
study (Furrer et al., 2023).

Sampling. A detailed description of the sample storage, preparation 
and analysis procedure can be found in our previous study (Chapter 4.4) 
(Furrer et al., 2023). In brief, we collected 10 min composite samples 
(750mL) consisting of five 2 min grab samples (150mL) using an auto
mated sampler (MAXX TP5C) with integrated cooling system and 24 

glass bottles. Two samplers in series enabled us to sample up to 8 h. 
Samples were collected at the inflow channel a few meters upstream of 
the CSO, to be able to start measuring at the beginning of the storm event 
and independently of the CSO characteristics (retention basin, weir 
height) (see CSO schemes in SI Fig. 2 and 4). The sampler started 
automatically once the water level reached a certain threshold above 
dry-weather flow (CSO small catchment: > 80 L/s, CSO large catchment: 
> 1′500 L/s), which is the discharge of raw wastewater in the sewer 
during periods with no precipitation. Sampling the MP concentration 
transition from dry to wet weather proved infeasible due to clogging of 
the suction hose within a few minutes. Therefore, we sampled two 
events in the large catchment after the WWTP screen (20 m and 40 s 
downstream the original sampling point), which facilitated capturing 1 
h dry-weather periods prior to the overflow events and a 24 h 
dry-weather pattern.

Analytics. A detailed description of the sample storage, preparation 
and analysis procedure can be found in our previous study (Chapter 4.4) 
(Furrer et al., 2023). Briefly, the samples were analyzed for organic MP 
with liquid chromatography (water–methanol gradient) followed by 
high-resolution mass spectrometry (Q-Exactive, Thermo Fischer) with 
electrospray ionization in two separate runs for positive and negative 
mode. Full-scan MS1 spectra at a resolution ® of 140,000 (at m/z 200) 
were acquired over the mass range m/z 100–1000 followed by five 
data-dependent MS2 scans (R = 17,500 at m/z 200; triggered by target 
analyte masses) (also see SI Section 3.3). In total, we screened for 60 
target substances, of which we found 57 substances (list in SI Table 1) 
above the level of quantification (LOQ) at least once (concentration 
ranges in SI Fig. 7). In total, we spiked 159 isotopic-labelled standards 
(ILS). For a precise quantification of the 60 target compounds, 61 
structural identical ILS and 2 structural similar ILS with similar retention 
time from the 159 spikes ILS were used as internal standards (see SI 
Table 1). In brief, the relative recoveries for the 57 targets are 103 ± 15 
% (median ± std), the precision 4 ± 6 %, and the LOQ ranges from 5 to 
250 ng/L (see details in SI Table 1, 2 & 3). Lab and field blank samples 
were used to check that no substance carryover during sampling and in 
the laboratory was present. In each sample, we also analyzed ammo
nium (NH4

+-N) using either ion chromatography (930 Compact IC Flex, 
Methrom), photometry (Lachat QC8500), or Dr. Lange LCK304/05), 
depending on the expected concentration levels and numbers of samples 
to be analyzed at a time. All ammonium measurements were 
cross-validated before use. Additionally, we measured DOC using a total 
organic carbon analyzer (Shimadzu TOC-L). There is a data gap for DOC 
from August to December 2022 due to technical issues with the 
measuring instrument. Furthermore, we have data on precipitation, 
inflow, and overflow discharge of both CSO sites.

2.2. Dynamics of target substances

We calculated the Pearson correlations between the concentrations 
of the substances from the same source over all events in each catchment 
to assess their suitability for source allocation. A source is considered 

Table 1 
Key characteristics of the two sampling sites and the overflow events sampled.

Parameter Small catchment Large catchment

Effective hydraulic area [hared] 17 368
People connected 2700 159,000
Volume retention basin [m3] 280 3000
Max. dry-weather flow [L/s] 20 600
Sampling period Sep 2021–Jun 2022 Aug 2022–Jun 2023
# of events 14 10
# of samples 320 240
Overflow duration [h/event]* 2.8 (17.9) 6.8 (23.5)
Overflow volume [m3/event]* 996 (8684) 15,316 (47,004)
Rain intensity [mm/h] * 2.6 (45) 3.2 (52)
*mean (max) ​ ​
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suitable for source allocation when the median correlation of all com
pounds of this source exceeds 0.6, indicating strong linear correlation. 
Furthermore, we analyzed the Pearson correlation between the MPs of 
each substance class, defined as substances from the same source, with 
the parameters discharge, ammonium, and DOC. For better comparison 
of the dynamics independent of absolute concentration levels, we 
normalized each time series by the mean value of the corresponding 
substance over the entire event. For each source, we also conducted 
additional analyses:

Indoors. Due to the high correlation of indoor MPs with discharge 
and ammonium in the large catchment (see Fig. 1B and Section 3.1.1), 
we explored the potential to estimate concentrations of MP from indoor 
sources during rain events using measured dry-weather concentrations 
and dry-to-wet discharge ratios (SI Eq. 1). We further tested whether we 
could derive the daily dry-weather pattern for MP from the mean dry MP 
concentrations and the daily ammonium pattern (SI Eq. 2). Then, we 
calculated the mean average percentage error (MAPE) to compare the 
estimated MP concentrations with the measured MP concentrations 
during overflow events. 

MAPE = mean
(⃒⃒ ctrue − cpred

⃒
⃒

ctrue

)

MAPE: Mean absolute percentage error
ctrue: Measured MP concentration during overflow event
cpred: Predicted MP concentration during overflow event
Roads. The three substances originating from tire wear leachates, 

6PPD-quinone, 1,3-diphenylguanidine and hexa(methoxymethyl)mel
amine (HMMM), were investigated in their relationship with antecedent 
dry-weather days and discharge within events. The antecedent dry- 
weather days were defined as number of days before the event where 
the discharge did not exceed a maximum flow of 70 L/s for the small and 
1000 L/s for the large catchment. To test whether the tire-associated 
compounds show a first flush, the mass vs. volume [M(V)] curves 
were derived for each substance and event with which the cumulative 
mass of an MP is depicted over the cumulative discharged volume of an 
overflow event (Bertrand-Krajewski et al., 1998).

Pesticides. We categorized pesticides into plant protection products 
(PPPs) and biocides (SI Tab. 4) and analyzed their seasonal trends and 
first-flush dynamics. The seasonality was evaluated by calculating the 
ratio of maximum monthly concentrations to the overall maximum 
concentration. The first-flush dynamics were investigated as tire wear 
leachates with M(V) curves.

2.3. Nontarget analysis

Nontarget analysis was conducted with Compound Discoverer (CD) 
version 3.3 software from ThermoFisher. The CD workflow can be found 
in SI Fig. 22. A first evaluation of both positive and negative mode 
revealed that over 70 % of the nontarget compounds were detected in 
positive mode. Therefore, we present here only the results of the positive 
mode. Two events in the large catchment, from 09.05.2023 and 
22.06.2023, were selected due to their large number of samples per 
event and distinctive source-specific dynamics (Fig. 2). Each event was 
analyzed separately in CD. The results, consisting of mass, retention 
time, and peak area intensity in each sample, were exported from CD 
and further processed with the Python coding language. To ensure high 
quality time series, the initial datasets were reduced with two filter 
criteria: (1) only keep time series with at least four samples with peak 
area > 106 and 10 times larger than the maximal blank area, and (2) the 
retention time must fall within the range of 2.8 to 22 min. After filtra
tion, only a minority of the nontarget time series remained, although 
these still number several thousands.

A comprehensive overview of the filtered nontarget time series was 
obtained through three prioritization steps: (1) comparing the cumula
tive intensity over all samples of a compound to the total cumulative 

intensity over all samples and compounds, (2) ordering the maximal 
intensity of each compound among all samples by magnitude, and (3) 
calculating the percentage of samples for a compound exceeding the 
area intensity threshold 106.

We validated the CD software’s peak-picking process by estimating 
the recall (True Positive (TP) / (TP + False Negative (FN))) as the 
portion of spiked ILS and detected targets which were identified by the 
CD software compared to the total amount of spiked ILS and detected 
targets. The recall was assessed for 159 ILS and 29 quantified targets in 
the 1000 ng/L calibration point and all wastewater samples. Recall 
values for ILS and targets lie above 85 % for the calibration point and 
above 79 % for the wastewater samples (SI Fig. 24). The filtration pro
cess efficiently reduces the total number of time series in the wastewater 
samples by 55 % without impacting the recall values. As False Positives 
(FP) per se cannot be derived from the spiked substances in wastewater 
samples, we assessed the precision (TP / (TP + FP)) by manually 
inspecting the chromatographic shape of 300 randomly selected peaks 
and distinguished between peaks with good (gaussian) shape (TP) and 
poor (noisy) shape (FP). This analysis revealed 83 % TPs and 17 % FPs 
independent of intensity levels, leading to a precision of 0.83.

A comparison of the results from CD with those from Tracefinder 
demonstrated strong correspondence in targets’ areas (SI Fig. 25). To 
assess the impact of the matrix effect on the relative dynamics of the 
nontarget time series, we examined the peak area variation of 60 ILS, 
which we also used for target analysis. All ILS displayed a maximum 
variation of ± 20 % within the time series (SI Fig. 26). These un
certainties lie within the range of analytical precision, and therefore the 
matrix effect is negligible when calculating the relative dynamics of the 
nontargets.

2.4. Machine learning analysis

The filtered nontarget time series were allocated to a source based on 
their temporal behaviors. For this, we evaluated three classifiers 
commonly used for time series classification: random forest, nearest 
neighbor, and Gaussian. We trained the classifiers with the time series of 
targets exhibiting source-specific dynamics. As evident from the results 
in Section 3, only targets from the indoor and road sources display high 
correlation (> 0.6) with each other; thus, we solely consider these for 
source allocation. The random forest classifier was chosen as it yielded 
the best performance metrics and is known as a robust algorithm 
(Fernandez-Delago et al., 2014; Genuer et al., 2008).

The classification was performed with three Python packages: SciPy, 
scikit-learn, and tslearn. The training set consisted of the normalized 
time series (see Section 2.2) of two classes: indoors with 30 target time 
series and roads with 3. From each class, the entire time series of 70 % of 
the substances were used for training and 30 % for validating the clas
sifier by applying a stratified splitter. The trained classifier reached an 
accuracy of 1, which might be surprising but can be attributed to the 
very distinct patterns exhibited by the two classes in the training set. To 
better assess the goodness of classification for individual compounds by 
the trained classifier, we calculated the probability of each nontarget 
time series being assigned to its class. Thereby, a higher probability 
indicates a better match of the time series with the target substances. We 
decided to only display and proceed with those having at least 50 % 
probability. Detailed description of the classification analysis can be 
found in SI Chapter 6.

Subsequently, nontarget time series that could not be assigned to 
either source, were clustered to identify further patterns beyond these 
two target classes. This was conducted with a hierarchical cluster 
analysis using the Ward’s method, which performed better than KMeans 
and DBSCAN. The Ward’s method is often used to cluster environmental 
data (Carpenter and Helbling, 2018; Chiaia-Hernandez et al., 2017; Yun 
et al., 2023). For this clustering, we considered only the top 2000 
prioritized nontarget time series (described in Section 2.3) to obtain 
distinct clusters. We chose a cluster number of 20, as this resulted in a 
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variety of temporal patterns while grouping similar time series together. 
Detailed description of the clustering analysis can be found in SI Chapter 
7.

An overview of the method workflow can be found in the SI (Fig. 9).

3. Results and discussion

3.1. Dynamics of target substances

The per-event normalized MP concentrations are displayed for each 
substance class in three events per catchment in Fig. 1 (for all events see 
SI Fig. 10–14). The substances were divided according to expert 
knowledge into two main sources: indoors and outdoors, each 
comprising distinct substance classes. Indoor sources contain the sub
stance classes pharmaceuticals, nutrition, and indoor biocides. Outdoor 
sources comprise road-runoff related compounds and pesticides 

(encompassing PPPs and biocides). The substances from indoors enter 
the sewer system mainly via toilet flushes, with a few exceptions of 
substances from other uses such as dishwashers, washing machines and 
showers, whereas the road-related substances and pesticides are washed 
off from urban surfaces and transported to the sewer network by 
stormwater. In the subsequent analysis, indoor substance classes are 
evaluated jointly, given their uniform entry into the sewer system. 
Conversely, the outdoor classes roads and pesticides are considered 
separately due to their different application and wash-off behaviors.

For each substance class (indoors, roads, pesticides), we assessed the 
Pearson correlation between the substances within each class to deter
mine their potential usefulness in allocating nontarget time series to 
target substances (wherever median correlation > 0.6). Then, we 
examined correlations with additional parameters that could be used to 
explain and ultimately predict the observed concentration dynamics.

Fig. 1. A) Precipitation, inflow to CSOs, ammonium, and DOC (first panel) and MP concentrations normalized by the mean of each substance per event and grouped 
by sources (PPP = plant protection products), for the small and large catchment. B) Boxplots of Pearson correlation coefficients of the substances within each 
substance class (indoors, roads, pesticides) and between the substances of each class and the parameters flow, ammonium, and DOC for all events in the small and 
large catchment. Dates format: DD.MM.YYYY.
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3.1.1. Indoors
The substances from indoor sources can be divided into pharma

ceuticals with many consumers, Pharma I; pharmaceuticals with few 
consumers, Pharma II; nutrition, such as artificial sweeteners and 
caffeine; and indoor-applied biocides.

Source selectivity. For the indoor substances, substantial differ
ences can be observed between the Pearson correlation coefficients for 
the small and large catchments (Fig. 1B). In the small catchment, no 
correlation can be observed among the indoor substances, but the indoor 
substances in the large catchment are strongly correlated with each 
other. In the large catchment, a few substances, such as clarithromycin, 
erythromycin, and iopamidol, show lower correlations. This may be 
because they are consumed by fewer people. Clarithromycin and 
erythromycin, antibiotics for respiratory infections, are likely less 
common during the study period which excludes winter season, while 
iopamidol, an X-ray contrast agent, is excreted in high concentrations 
and by only a small number of individuals. The substance DEET also 
shows a lower correlation with ammonium in some events, which can be 
explained by the fact that the substance has many different applications 
and can therefore originate from different sources. Hence, allocating the 
sources of indoor substances for nontarget time series is possible for the 
large catchment but not for the small catchment.

The weak correlation among indoor MPs in the small catchment can 
be attributed to the catchment’s small population size (2700 people), 
resulting in higher concentration fluctuations during dry and conse
quently wet weather periods. An example comparing 15 pharmaceuti
cals in the small and large catchments during an overflow event, 
illustrates this disparity (SI Fig. 15). Despite stronger dilution (max. 
17×) in the small catchment than in the large one (max. 5×), concen
tration variations relative to the event mean concentration are much 
higher and more random in the small catchment. This indicates that 
concentration variations of indoor substances during wet weather are 
not solely driven by dilution but also by the inherent fluctuations in the 
raw wastewater, which is particularly more pronounced in smaller 
catchments. Although our sampling campaigns were conducted during a 
period impacted by the COVID-19 pandemic, we expect this to have 
minimal impact on the results, as our focus is mainly on relative 
variations.

Additional parameters. Indoor MPs in the large catchment exhibit 
strong positive correlations with ammonium and DOC, and strong 
negative correlation with discharge (Fig. 1B). This negative correlation 
facilitates the estimation of wet-weather concentrations using dry- 
weather concentrations and discharge measurements. This is illus
trated with the example of cyclamate, where wet-weather concentra
tions can be predicted fairly accurately (SI Fig. 16). The mean absolute 
percentage error (MAPE) for all indoor substances is generally low (< 40 
%) across events (SI Fig. 18). However, accurate predictions require a 
high-resolution daily pattern for the dry-weather concentrations, as 
using daily mean concentrations leads to higher errors. Hence, wet- 
weather concentrations of indoor substances not only depend on dilu
tion but also on the time of day. Previous research has shown similar 
strong daily variations in the inflow to a WWTP during dry weather 
(Koke et al., 2022). The high correlation (median corr. coeff.: 0.61) of 
ammonium with indoor MP also during dry weather (SI Fig. 17) suggests 
that the daily pattern of ammonium can serve as a proxy for daily MP 
variation. Calculating wet-weather concentrations based on the daily 
ammonium pattern and the daily mean MP concentration only slightly 
increases the MAPE. The strong correlation between indoor substances 
and ammonium primarily applies to substances, such as pharmaceuti
cals, excreted by humans. This correlation may be weaker for substances 
originating from other indoor sources, such as washing machines, 
dishwashers, or showers.

Two events included a one-hour dry-weather period prior to the 

event, which slightly increased correlation of indoor MP with discharge, 
as dilution effects are more pronounced. However, as sampling dry- 
weather discharge is challenging due to clogging and the correlation 
did not improve significantly, it is recommended to start sampling 
during the first stormwater discharge.

3.1.2. Outdoors

3.1.2.1. Road substances. Source selectivity. The substances leaching 
from tire and road wear particles (TRWPs), 6PPD-quinone, 1,3-diphe
nylguanidine and HMMM, exhibit strong correlations with each other 
across all the events and in both catchments (Fig. 1B). The high corre
lation allows us to assign nontarget time series with similar patterns to 
this source.

Additional parameters. There is no correlation of road substances 
with ammonium, DOC, or discharge (Fig. 1B). The lack of correlation 
with ammonium and DOC is expected, because these parameters 
represent raw wastewater, whereas road substances are transported 
with stormwater. Although stormwater does contain DOC, its concen
trations are much lower (4 – 16 mg/L from (Kalev and Toor, 2020; Lin 
et al., 2022; McElmurry et al., 2014)) compared to raw wastewater (40 
mg/L, see SI Fig. 8). Therefore, DOC correlates well with indoor sub
stances but not with road substances. The relationship between 
discharge and concentration shows a complex picture: initial concen
trations increase at low discharge levels, then decrease at higher dis
charges due to stronger dilution effects (SI Fig. 19). Therefore, a 
minimum discharge is required to mobilize these tire-associated com
pounds, and above a certain discharge, dilution effects become more 
pronounced. Interestingly, concentration ranges and median concen
trations of each compound are similar for both catchments (SI Fig. 7), 
suggesting independence from catchment size.

Analysis of mass vs. volume distribution [M(V)] curves in Fig. 2 re
veals constant wash-off of tire-associated compounds during storm 
events without following a first-flush pattern, defined as 80 % of the 
cumulative mass transported in the first 30 % of discharge 
(Bertrand-Krajewski et al., 1998). Furthermore, concentrations remain 
consistently above the LOQ. Thus, the wash-off process appears to be 
transport-limited rather than source-limited. Similar patterns have been 
observed in urban streams, where concentrations of tire-associated 
compounds remained elevated throughout and even after rain events 
(Johannessen et al., 2022; Peter et al., 2020; Rauert et al., 2022). 
Moreover, no clear correlation emerges between maximum event con
centration and the number of antecedent dry-weather days (SI Fig. 20), 
which aligns with previous studies (Challis et al., 2021). These findings 
imply a substantial deposit of TRWPs in the catchments which is not 
depleted during single rain events. However, the origins of these sour
ces, whether from roads, gully pots, or road embankments, remain un
clear. Lab-scale experiments in a former study demonstrated that over 
80 % of the leachable compounds in tires are not completely leached out 
after 28 days of contact with water (Muller et al., 2022). This un
derscores the necessity of not merely retaining TRWPs, as in a filtration 
system, but regularly removing them from the catchment and treatment 
system to prevent continual organic MP release. However, the lack of 
correlation between concentration and dry days may also stem from 
uncertainties over the minimum rain intensity and duration required for 
mobilization as well as the large variability in maximum discharge for 
the different events.

Although some knowledge is available on TRWP accumulation and 
wash-off processes (Unice et al., 2019), further investigation is needed 
into the leaching mechanisms of polar organic compounds from these 
particles and their transport by stormwater (Wagner et al., 2018). 
Moreover, identifying the primary sources of TRWPs in the catchment is 
crucial for designing effective mitigation measures.

V. Furrer et al.                                                                                                                                                                                                                                   Water Research 279 (2025) 123416 

5 



3.1.2.2. Pesticides. In this substance class, we distinguish between PPPs 
and biocides; some substances can fall into both categories (SI Tab. 4). 
The PPPs are applied in agriculture, urban green areas, and private 
gardens to control plant growth. Biocides can have various applications. 
Material protection agents, for example, are incorporated in facades and 
roofs to minimize fouling.

Source selectivity. Pesticides do not correlate with each other or 
with ammonium, flow, or DOC (Fig. 1B). There are a few exceptions, 
such as 2,4-D with MCPA and terbuthylazine in the small catchment and 
terbutryn/prometryn with isoproturon in the large catchment. This 
could be due to shared products or co-application. Overall, the diverse 
dynamics make pesticides unsuitable for source allocation of nontarget 
compounds.

This lack of correlation is evident in the relative concentrations of 
pesticides (Fig. 1A), which exhibit either isolated peaks at different time 
points or sustained elevated levels. This variability can be attributed to 
the distinct application modes of PPPs and biocides.

PPPs, when applied temporarily, undergo a source-limited wash-off 
process, leading to short, isolated peaks with varying timings that 
challenge the notion of a first-flush pattern (Fig. 2). Similar findings 

have been reported in agriculturally influenced small creeks, revealing 
varied temporal patterns (la Cecilia et al., 2021) and different wash-off 
times (Stravs et al., 2021), and in runoff from agricultural fields, 
showing no first flush of PPPs (Lefrancq et al., 2017). Possible expla
nations for these delayed occurrences include different traveling times 
within a catchment depending on distance, slope, inhomogeneous rain 
patterns, and different wash-off processes. In contrast, biocides, mainly 
from construction materials, constitute continuous sources and result in 
elevated concentrations throughout events, represented by linear M(V) 
curves. Studies have also found no first flush pattern for biocides from 
construction materials (Burkhardt et al., 2011). Exceptions such as 
diuron and isoproturon, both of which exhibit short, high peaks in 
August and May events, may be due to illegal continued use, because 
these were banned only recently, or encapsulation in paint, where only 
the top layer of chemicals is washed out by stormwater.

Mecoprop, used as both PPP and material protection product, shows 
10 times higher concentrations in June, indicating additional PPP 
application. Interestingly, this is reflected in the concentration dy
namics, resulting in a nonlinear M(V) curve (Fig. 2). This illustrates that 
high temporal resolution data can help in identifying the application of a 

Fig. 2. Mass vs. volume [M(V)] curves of tire-associated compounds, plant protection products, and biocides, each for all events in the large catchment. Mecoprop is 
categorized as ‘biocide’, as suspected main use in material protection.
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pesticide, especially with multiple authorized uses.
Additional parameters. Concentrations of the pesticides (SI Fig. 21) 

tend to be high in the months between March and June and very low 
from September to November. Six substances show high concentrations 
in only one month, indicating single rather short application periods. 
This indicates that the season in which samples are taken matters 
strongly when investigating pesticides. Similar findings were reported in 
a prior study which demonstrated that understanding seasonal occur
rence and mobilization during rainfall can aid in determining whether a 
substance originates from agricultural or urban sources; agricultural 
sources typically exhibit pronounced seasonal variation, and urban 
sources remain relatively constant throughout the year (Wittmer et al., 
2010).

3.2. Dynamics of nontargets

3.2.1. Source allocation of nontargets
As shown in the previous Chapter 3.1, only indoor substances in the 

large catchment and road substances in both catchments show source- 
specific dynamics and can therefore be used for source allocation of 
nontarget time series.

In total, 21,473 nontarget time series were derived for Event 1 
(09.05.2023) and 25,372 for Event 2 (22.06.2023). The prioritization 
steps for the nontarget time series (SI Fig. 27) reveal that the 20 % of 
time series with the highest intensities comprise 80 % of the total 
summed intensities with 82 (0.4 %) time series showing maximum 
concentrations exceeding 1E+09 for Event 1 and 77 (0.3 %) for Event 2. 
The filtered nontarget time series were classified, which resulted in the 
allocation of several thousand time series to one of two classes, indoors 
and roads (Fig. 3).

Indoors. Several thousand nontarget time series (Event 1: 3469, 
Event 2: 4778) show similar dynamics as the indoors target MPs; high 
concentrations in dry-weather samples and decreasing concentrations 
with increasing stormwater discharge indicate indoors as the most likely 
source. In a previous study, an extensive screening of raw wastewater for 
organic MPs revealed a substantial number of 398 detections from 2316 
targets, supporting our findings that raw wastewater can contain a large 
number of organic MPs (Gago-Ferrero et al., 2020). Another study 
conducting nontarget analysis in WWTP effluent found only 4 out of the 
30 most intensive peaks were targets, despite over 100 quantified targets 
(Schymanski et al., 2014). Hence, the large number of over 1000 
nontarget MPs from the indoor source in our study seems plausible.

Roads. This class with tire-associated substances contains a few 
hundred nontarget compounds (event 1: 154, event 2: 488). This un
derscores the importance of TRWPs as a substantial organic MP source in 
urban areas, and they should be considered when investigating storm
water contamination. Prior studies have already emphasized the role of 
traffic, particularly tire wear, as a source of organic MP and other con
taminants (Awonaike et al., 2022). Lab-scale leachate tests revealed that 
tires can leach a substantial number (145) of organic MPs, with a ma
jority being sufficiently polar to be mobile in aquatic systems (Muller 
et al., 2022). Previous nontarget analysis of roadway runoff detected 
between 443 and 1061 nontarget compounds per site (Peter et al., 
2019). Moreover, the relevance of tire wear leachates is amplified by 
their bioaccessability (Masset et al., 2022) and ecotoxicity (Chibwe 
et al., 2022; Tian et al., 2020). Hence, identifying the most critical tire 
wear compounds and expanding the target lists for stormwater 
contamination becomes crucial and should be part of future research. 
The high number of nontarget MPs from stormwater aligns with previ
ous findings, where thousands of nontarget compounds were detected in 
stormwater in several watersheds (Peter et al., 2022). It is possible that 
not all nontarget MPs within this class originate from tire wear leach
ates, as substances applied in other domains with a large source, such as 
biocides in material protection, can exhibit similar transport-limited 
behavior. Nonetheless, we assume that the number of biocides applied 
in material protection is likely small compared to the diverse array of 

organic MPs present in tire wear.
Both events show similar numbers of nontarget MPs per class, sup

porting the effectiveness of the nontarget workflow (second event see SI 
Fig. 29). The fact that the indoors class has roughly ten times more 
nontarget time series than the roads class indicates that raw wastewater 
contains much more diverse organic MPs than road runoff. It should be 
noted that our current analysis focuses solely on the numerical count of 
nontarget MPs within each class. Future research requires identification 
of the individual compounds, followed by the determination of their 
concentration and ecotoxicological significance. This is crucial for 
gaining a comprehensive understanding of the importance to attribute 
to each pollution source.

The nontarget analysis workflow is subject to uncertainty, arising 
from such processes as peak picking, time series construction, filtration, 

Fig. 3. Event from 9.5.2023 in the large catchment. A) Discharge at inflow CSO 
with 1h dry weather followed by 7h wet weather, with dashed line indicating 
start of stormwater discharge. B) – C) Classification results of normalized (by 
mean intensity) nontarget time series (grey) with similar dynamics as the target 
substances for indoor (red) and road (blue) substances. D) – G) Clustering re
sults of 2000 top priority nontarget time series (normalized by mean intensity) 
which were not classified as indoors or roads. Dates format: DD.MM.YYYY.
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and the impracticality of manually verifying all derived time series for 
true and false positives. Especially filtering based on intensity results in 
substances with poor ionization or low intensities not being considered. 
Additional uncertainties arise from the small set of road substances as 
input to the classification and the consideration of only the positive 
mode. Thus, the absolute number of allocated nontarget time series per 
source should be treated with caution, but it provides a first insight into 
the estimation of relative importance of various sources and the extent 
to which we underestimate the organic pollution situation with existing 
target lists.

3.2.2. Further dynamics
The unassigned time series from Section 3.2 were prioritized by their 

maximal intensities, because higher intensities typically correspond to 
higher concentrations. We then clustered the top 2000 time series to 
uncover additional temporal patterns beyond those represented by the 
target substances. In Fig. 3 (D–G), four clusters are displayed (all clusters 
see SI Fig. 30 and second event see SI Fig. 31). Cluster D shows a single 
peak occurring two hours after the start of storm event, suggesting a 
source-limited wash-off process, which could be a PPP. Clusters E and F 
exhibit higher concentrations during wet weather compared to dry 
weather, with cluster E showing slightly higher concentrations during 
the first 2 h of increased flow and cluster F showing elevated concen
trations throughout the storm event. Cluster G displays single peaks that 
could stem either from indoor substances with few consumers or from 
PPPs. Overall, clustering the remaining nontarget time series reveals 
further dynamics not necessarily represented by target substances. 
Hence, this approach provides a more holistic overview of potential MP 
dynamics in CSO. Even though the specific sources and identity of the 
substances remain unknown, the approach aids CSO management by 
revealing that organic MPs exhibit various patterns beyond a distinct 
first flush.

4. Conclusions

• Dissolved organic MPs show diverse temporal patterns during CSOs, 
influenced by source and catchment size. Indoor MPs dilute with 
increasing stormwater, while outdoor-applied MPs like tire wear 
leachates and pesticides exhibit elevated concentrations during wet 
weather, with either source- or transport-limited wash-off. Tire- 
associated substances exhibit transport-limited wash-off behavior, 
indicating large reservoirs within the catchments, which might be 
problematic due to long-lasting leaching effects. Consequently, 
traditional first-flush retention strategies may be insufficient to 
effectively protect water bodies, especially as concentrations of 
numerous substances persist above their LOQ throughout CSO 
events. Further research is needed to compare these concentrations 
with ecotoxicological data for optimal management strategies.

• Consistent source-specific dynamics were observed for indoor sub
stances in the large catchment and tire-associated compounds in both 
catchments. In the large catchment, indoor MP concentrations dur
ing CSOs correlate with discharge and ammonia, and could be pre
dicted based on dry weather concentrations and dilution.

• No consistent source-specific dynamics emerged for indoor sources 
in the small catchment or for pesticides in either catchment. This 
complicates monitoring, as it becomes difficult to identify suitable 
proxy signals, as well as modelling and optimizing mitigation mea
sures, as a wide range of potential dynamics must be considered. This 
complexity is particularly true for small catchments, where we only 
observed source-specific dynamics for tire wear leachates. Hence, for 
CSO catchments of similar or smaller size, assessing and predicting 
MP dynamics is challenging.

• Nontarget analysis reveals thousands of organic compounds in CSOs, 
underscoring their significance as pathway of a wide range of organic 
MPs entering open water bodies. Source allocation of nontargets 
detected several thousand indoor substances, emphasizing the 

importance of raw wastewater as an MP source, even when diluted. 
Around 150 substances with transport-limited wash-off behavior, 
likely from road runoff, were detected, indicating that road runoff is 
an underestimated pollution source. Our current target list vastly 
underestimates the numbers of present MPs, emphasizing the need 
for broad screening methods and nontarget analysis. Future research 
should also investigate the ecotoxicological relevance of nontarget 
compounds, as their impact cannot be determined by their numbers 
alone.

• Exploring the dynamics of nontarget time series unveils temporal 
patterns beyond those of target time series, increasing the variety of 
possible MP dynamics that need to be considered in CSO manage
ment. Even without identifying these substances, clustering 
nontarget time series offers valuable insights for future studies by 
providing a more holistic view of pollution dynamics. It also helps to 
prioritize identification efforts towards clusters that are not repre
sented by targets, contain large numbers of nontargets, or show 
patterns that cannot be explained with the current knowledge of 
systems and processes.
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