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Summary 
The HYSTIMATOR project targets to improve state-of-charge (SoC) estimation for LFP cell chemistries. 

SoC estimation for LFP batteries is difficult due to a flat OCV curve and an important hysteresis effect. 

The Hystimator algorithm proposes to use electrochemical impedance spectroscopy (EIS) to incorporate 

hysteresis characteristics withing a physics-based Electric Circuit Model (ECM), which is validated with 

time domain lab measurements.  

Zusammenfassung 
Das HYSTIMATOR-Projekt zielt darauf ab, die Schätzung des Ladezustands (SoC) für LFP-Zellen zu 

verbessern. Die SoC-Schätzung für LFP-Batterien ist aufgrund einer flachen OCV-Kurve und eines 

wichtigen Hysterese-Effekts schwierig. Der Hystimator-Algorithmus schlägt vor, die elektrochemische 

Impedanzspektroskopie (EIS) zu nutzen, um die Hystereseeigenschaften in ein physikalisch basiertes 

elektrisches Schaltkreismodell (ECM) einzubeziehen, das mit Labormessungen im Zeitbereich validiert 

wird. 

Résumé 
Le projet HYSTIMATOR vise à améliorer l'estimation de l'état de charge (SoC) pour les piles LFP. 

L'estimation de l'état de charge des batteries LFP est difficile en raison d'une courbe OCV plate et d'un 

important effet d'hystérésis. L'algorithme Hystimator propose d'utiliser la spectroscopie d'impédance 

électrochimique (EIS) pour incorporer les caractéristiques d'hystérésis dans un modèle de circuit 

électrique (ECM) basé sur la électrochimique, qui est validé par des mesures de laboratoire dans le 

domaine temporel. 

Sommario  
Il progetto HYSTIMATOR mira a migliorare la stima dello stato di carica (SoC) per le batterie LFP. La 

stima del SoC per le batterie LFP è difficile a causa di una curva OCV piatta e di un importante effetto 

di isteresi. L'algoritmo Hystimator propone di utilizzare la spettroscopia di impedenza elettrochimica 

(EIS) per incorporare le caratteristiche di isteresi in un modello di circuito elettrico (ECM) basato 

sull’elettrochimica, convalidato con misure di laboratorio nel dominio del tempo. 
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Main findings 
Based on recent advances in non-equilibrium thermodynamics, a new approach to the modelling of the 

hysteresis of LiFePO4 is proposed. A method for characterizing the hysteresis based on electrochemical 

impedance spectroscopy (EIS) is presented, which allows to reduce the characterization time from 

multiples weeks to few days. The results show that hysteresis in LiFePO4 is a very slow relaxation 

process strongly correlated with prior works results in crystalline phase transitions. An Electrical Circuit 

Model (ECM) of the cell is then extracted by using the distribution of relaxation times (DRT) on the EIS 

profile of the cell. The extracted DRT parameters show good agreement at low frequencies with previous 

thermodynamic studies. The performance of the ECM is compared with state of art physics-based ECM 

(without hysteresis compensation) for both fresh and aged cells. The result show an RMSE reduction of 

two to four folds depending on the tested cycling profile.   
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Abbreviations 

DoD  Depth of Discharge 

LFP   Lithium Iron Phosphate 

SoC  State of Charge 

SoH  State of Health 

SoR  State of Resistance 

ESS  Energy Storage System 

EV  Electric Vehicle 

OCV  Open Circuit Voltage 

BMS  Battery Management System 

ECM  Electric Circuit Model 

GITT  Galvanostatic Intermittent Titration Technique 

DRT  Distribution of Relaxation Times 

CC  Coulomb Counting  

DRT  Distribution of Relaxation Times  

EIS  Electrochemical Impedance Spectroscopy 

NMC  Lithium Nickel Manganese Cobalt Oxide (LiNiMnCoO2) 

RMSE  Root Mean Square Error 
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1 Introduction 

1.1 Background information and current situation 

Pushed by the energy transition policies, EV adoption has exploded recently, representing close to 9% 

of the global car market1. Thanks to the stiff increase of raw materials costs and decent performances, 

LFP chemistry use in EV increased as well. Moreover, cells used in EVs, are often repurposed in ESS 

for second-life application2, anchoring LFP for the next decades in the battery field. 

Despite its popularity, SoC estimation, remains a challenge for LFP batteries3,4. This is explained by two 

main factors; firstly unlike other lithium chemistries 

LFP displays a very flat SoC-OCV curve which leads to significant SoC computation errors, even with 

almost perfect OCV estimation5. Secondly, LFP chemistry displays a very strong hysteresis between the 

charging and discharging conditions, which deeply affect the precision of OCV tracking routines6. To 

address the limitation in lithium batteries, a common method is to use a Coulomb Counter (CC) that 

integrates the current to estimate the SoC. However, due to the imprecise integrated current sensor, 

frequent resets of the counter are necessary using SoC-OCV relationship7,8. In LFP, the flat OCV curve 

and hysteresis further reduce reset precision. Additionally, if one factors in the dependencies of OCV 

towards temperature and aging which are both nonlinear and inter-related, then the SoC estimation can 

no longer be considered as simple as it could be for other chemistries. Multiples attempts have been 

made to solve this issue 9,10,11. They can be divided into two categories: empirical and data-driven 

modelling. 

The empirical modelling approaches usually rely on the measurement of the hysteresis phenomenon as 

a function of SoC12, sometimes with the addition of battery current or temperature6, and in rare occasions 

the aging of the cell is discussed11. While this class of methods provide a straight-forward and 

conceptually easy way to model hysteresis, the non-linearities in the relationships between the OCV 

curves and the parameters requires an unworkable amount of data and computations to be done by the 

 
1 L. Paoli and T. G ül, “Electric cars fend off supply challenges to more than double global sales,” E. IEA, 2022 

2 A. Colthorpe, “Wartsila claims 48mwh netherlands bess will be europe’s first large-scale lfp battery project,” energy storage 

news, December 2021 

3 R. Z. et al., “State of the art of lithium-ion battery soc estimation for electrical vehicles,” Energies, vol. 11, Jul 2018 

4 Y. Zheng, M. Ouyang, X. Han, L. Lu, and J. Li, “Investigating the error sources of the online state of charge estimation 

methods for lithium-ion batteries in electric vehicles,” J. Power ources, vol. 377, p. 161–188, February 2018 

5 A. Barai, W. D. Widanage, J. Marco, A. McGordon, , and P. Jennings, “A study of the open circuit voltage characterization 

technique and hysteresis assessment of lithium-ion cells,” J. Power Sources, vol. 295, November 2015 

6 A. B. et al., “The influence of temperature and charge-discharge rate on open circuit voltage hysteresis of an lfp li-ion battery,” 

IEEE Transportation Electrification Conference and Expo (ITEC), 2016. 

7 R. Xiong, Q. Y. J. Cao, H. He, and F. Sun, “Critical review on the battery state of charge estimation methods for electric 
vehicles,” IEEE Access, vol. 6, 2018. 

 

8 R. Z. et al., “State of the art of lithium-ion battery soc estimation for electrical vehicles,” Energies, vol. 11, 2018  

9 Y. H. et al., “Modeling of dynamic hysteresis characters for the lithium-ion battery,” J. Electrochem. Soc., vol. 167, January 

2020.  

10 J. Xie, J. Ma, Y. Sun, and Z. Li, “Estimating the state-of-charge of lithium-ion batteries using an h-infinity observer with 

consideration of the hysteresis characteristic,” J. Power Electron., vol. 16, March 2016 

11 V. Ovejas and C. A., “Effects of cycling on lithium-ion battery hysteresis and overvoltage,” Sci Rep, vol. 9, 2019. 

12 V. J. Ovejas and A. Cuadras, “Effects of cycling on lithium-ion battery hysteresis and overvoltage,” Sci. Rep., vol. 9, 

December 2019. 
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BMS. Furthermore, these curves are dependent on both the variations between batches of cells and the 

aging conditions which differ from cell to cell, leading to the need of regular calibration of the hysteresis. 

The data-driven modelling emerged as soon as battery databases got structured. Algorithms started to 

be trained to provide hysteresis estimators13,14,15. However, these algorithms suffer from a known 

limitation: (i) there is little warranty that a trained set of cells can be generalized to other cells, and (ii) 

the amount of data required for training might delay the time-to-market for a BMS solution. 

1.2 Purpose of the project 

Precise and robust SoC estimation is the basis for an optimal operation of battery assets. The project 

specifically targets SoC estimation, and the associated short-term objective is to provide a suitable hard- 

and software BMS solution for LFP batteries. This will allow to run battery assets in an optimal way and 

provide for instance a better estimation of the available driving range for LFP-powered EVs or more 

optimal use of ESSs.  

As anticipated in section 1.1, the current state of art is deemed unsatisfactory, and an innovative 

approach is required. In this project, a physic-based approach of hysteresis is studied and modelled. 

1.3 Objectives 

This project proposes a physical-based method for addressing hysteresis by developing a phsyics-

based model using EIS. An ECM is derived from the model and compared with a state-of-the-art physics-

based mode lacking hysteresis compensation. The KPI adopted to compare the different models’ 

performances (hystimator vs. literature) is the calculation RMSE w.r.t the measurements. 

2 Procedures and methodology 

The methodology started from the LFP electrochemical fundamental, moved then on how EIS can be 

used to model the hysteresis phenomenon (e.g. how to extract useful parameters from EIS to model 

the hysteresis). 

2.1 Theory of LPF electrochemistry 

Hysteresis is a macro phenomenon that can be found in various field of science, and which is 

characterized by the “dependence of the state of a system on its history”. In the current case, hysteresis 

translates by different values of OCV depending on the fact that the cell was charging or discharging 

prior to the relaxation that led to the measurement. 

Early works in non-equilibrium thermodynamics have shown that in LFP, the ion intercalation process is 

not as straightforward as in other lithium-based chemistries16. Further works demonstrated that the 

electrode must undergo partial reconfiguration of the triphylite lattice to accept Li+. The study of the 

 
13 Farrokh, D. M., F.S., Dizaji, and M. Hysteresis, “Identification using extended preisach neural network,” Neural Process Lett, 

vol. 54, 2022. 

14 Z. Chen, S. Qiu, M. Masrur, and Y. L. Murphey, “Battery state of charge estimation based on a combined model of extended 

kalman filter and neural networks,” in The 2011 International Joint Conference on Neural Networks, 2011, pp. 2156–2163 

15 M. Trapanese, V. Franzitta, and A. Viola, “The jiles atherton model for description of hysteresis in lithium battery,” in 2013 

Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2013, pp. 2773–2775. 

16 D. Morgan, z A. Van der Ven, and G. Ceder, “Li conductivity in lixmpo4 m = mn, fe, co, ni olivine materials,” Electrochemical 

solid state letters, 2004  
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lattice showed that Li+ have a single direction of progress inside the lattice along the plan (0,0,1)17. This 

causes a wave of local phase transition triggered by the nearby ionic potential, which lead to a macro 

intercalation following a surface diffusion model. This is a two steps relaxation process could take a 

longer time than a simple intercalation, due to the time constant of the lattice transformation, and the 

time constant of the ionic movement inside the lattice. 

However, study on real crystal, where vacancies can be occupied by impurities, showed that Li+ can 

also diffuse along (1,0,0) and (0,1,0) rather than only mono-dimensionally, following a bulk diffusion 

model rather than a surface diffusion model (Fig 1)18. In this case, a third time constant due to the bulk 

diffusion is is also contributing to the intercalation process. Moreover, it was reported that in LFP, the 

surface diffusion is one order of magnitude faster than the ionic diffusivity, which in turn is two orders 

faster than the bulk diffusion. 

Therefore, this work proposes as a guiding hypothesis that hysteresis in LFP is not an intrinsic 

phenomenon, but rather a much slower relaxation than other chemistries. 

 

  

Fig 1: bulk diffusion model for LFP chemistry as proposed in [18]. 

2.2 EIS for hysteresis model parameters extraction 

Integrating a complex electrochemical modelling of the relaxation (such as shown in [4], [11], [12]) in a 

classical SoC estimation algorithm is hardly realistic due to the high number of inter-related parameters 

that force trade-offs between precision and computation/memory cost. Instead, this works proposes to 

approximate this relaxation with a RC network matching the hysteresis time-constants anticipated in the 

previous section, which can be integrated in a conventional ECM. Usually, the characterization of ECM 

parameters is done by Galvanostatic Intermittent Titration Technique (GITT). However, given the 

presence of hysteresis, this would require weeks of experiment, which is not compatible with the needs 

of a BMS to update the ECM while battery is aging. Another method would consist in reducing the GITT 

rest time, to fit a relaxation model to the curve, and then to deduce the final OCV value. However, since 

a significant part of the full relaxation will be not measured, an accurate behavioural model will be 

needed to properly extrapolate the final voltage. This would require a prior characterization of the cell, 

which would limit the online applicability in BMS. Thus, this work proposes to: (i) extract the EIS of the 

 
17 M. Z. Bazant, “Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics,” Acc. Chem. Res, 

2013 

18 Hong, L., Li, L., Chen-Wiegart, YK. et al. Two-dimensional lithium diffusion behavior and probable hybrid phase 

transformation kinetics in olivine lithium iron phosphate. Nat Commun 8, 1194 (2017).  
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cell once, at extremely low frequencies, (ii) to use the previous work 19,20 to deconvolute the impedance 

and, (ii) to extract the parameters of the intercalation process by making extensive use of DRT. 

2.3 Low frequency, bias-free EIS 

To perform an DRT, the impedance must be measured over the frequency range of interest [18]. EIS is 

to be performed under conditions where the cell can be considered as a linear system. However, when 

performing EIS at very low frequencies, the amount of charge stored and retrieved in the cell during a 

half period of the sine wave is no longer negligible. This leads to a change of the cell’s OCV. On a small 

evolution of SoC, one can assume OCV to linearly change in consequence. Therefore, as shown in Fig 

2, the OCV increases during positive half-period of the wave and decreases during the negative half-

period. The lower the frequency, the more significant the OCV changes, and the less linear the cell. 

 

Fig 2: Change of OCV during a galvanic sine 

To determine the frequency below which the OCV must be factored in, the following steps are followed: 

1. The function OCV = f(SoC) is extracted by GITT. 

2. The impedance is extracted in lab down to 10 mHz (limit of regular EIS). 

3. A synthetic current wave is built for each frequency of interest. 

4. The change of SoC during the sine wave is computed following Eq (1). And the change of 

OCV is determined from the function of Step 1. 

5. The change of voltage of the cell due to the ohmic effect is computed by using Ohm’s law and 

the value of impedance for the frequency of interest. Below 10 mHz, the value of the 10 mHz 

impedance is used. It is false but to obtain an order of magnitude it is deemed reasonable. 

6. The resulting battery voltage is obtained by adding the change of OCV of the Step 4 and the 

Ohmic voltage of Step 5. 
 

 
19 P. Iurilli, C. Brivio, R. E. Carrillo, and V. Wood, “Eis2mod: A drt-based modeling framework for li-ion cells,” IEEE Transactions 

on Industry Applications, vol. 58, no. 2, pp. 1429–1439, 2022. 

20 P. Iurilli, C. Brivio, and V. Wood, “Detection of lithium-ion cells’ degradation through deconvolution of electrochemical 

impedance spectroscopy with distribution of relaxation time,” Energy Technology, 2022 
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(1) 

       

Where Q is the capacity charged (resp. discharged) from the cell, I is the amplitude and T the period of 

the sinewave. 

Examples of the obtained synthetic battery voltages are shown in Fig 3 for some frequencies below 

1mHz. It can be seen that from 0.5 mHz, the response of the cell is no longer a mono-harmonic sine, 

but that the OCV drift starts to distort it. Thus, for sub mHz frequencies, a correction is even more 

required. 

 

An approach based on the use of the Lissajous plot is proposed. In case of a linear system such a plot 

is expected to be elliptic or a straight line. A synthetic Lissajous plot is constructed using one of the 

previously obtained voltages in Fig 3. In Fig 4-left, a synthetic plot shows both the ideal plot (green dots) 

and distorted plot (blue line) without and with OCV effect. It can be observed that the ideal ellipsis 

(without OCV effect) is inside the distorted Lissajous plot (with OCV effect). Thus, it is proposed to 

perform an ellipsis fitting while respecting the maximum area of the real Lissajous plot and extract the 

actual impedance from the measured data.  

 

 

 

Fig 3: Effect of OCV over a sine wave of current at low frequencies. 

 

The finding of the ellipsis belongs to the convex optimization class of problem and is described in details 

in existing repositories21. The problem is stated as follow:  

“Given a point cloud containing points v₁, ..., vₙ, we want to find a large ellipsoid satisfying: 

• The ellipsoid is contained within the convex hull of the point cloud. 

• The ellipsoid doesn't contain any of the point vᵢ in the point cloud. 

To find such an ellipsoid, we solve a sequence of semidefinite programming problems.” 

The ellipsis is parametrized as: 

 

𝛦 = {𝑥|𝑥𝑇𝑃𝑥 + 2𝑞𝑇𝑥 < 𝑟} (2) 

 

 

 
21 Hongkai-Dai, “Find a large inscribed ellipsoid”, Github link.  

https://github.com/hongkai-dai/large_inscribed_ellipsoid
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where P,q,and r are unknowns. The condition that the ellipsoid doesn’t contain any of the points vi can 

be expressed as the following constraint: 

 

∀𝑖 ∈ [0, 𝑛], 𝑣𝑖 ∉ 𝛦 ⟺ 𝑣𝑖𝑇𝑃𝑣𝑖 + 2𝑞𝑇𝑣𝑖 ≥ 𝑟 (3) 

 

If the convex hull of vi is describe as the polytope 

 
∀𝑖 ∈ [0, 𝑛], 𝐶𝑜𝑛𝑣𝑒𝑥𝐻𝑢𝑙𝑙(𝑣𝑖) = {𝑥|𝐶𝑥 ≤ 𝑑} (4) 

 

Using the s-lemma22 we know that the ellipsoid is within the convex hull if and only if 

 
𝛦 ∈ 𝐶𝑜𝑛𝑣𝑒𝑥𝐻𝑢𝑙𝑙(𝑣𝑖) ⇔ ∃𝜆𝑖

≥ 0, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

[
 
 
 𝑃 1 −

1

2
𝜆𝑖𝑐𝑖

(𝑞 −
1

2
𝜆𝑖𝑐𝑖)

𝑇

𝜆𝑖𝑑𝑖 − 𝑟 ]
 
 
 

≽ 0 
(5) 

 

Where ci, di is the i’th row of C, d respectively. ≽ 0 means that the matrix is positive semi-definite. 

To guarantee that the quadratic function xTPx +  2qTx ≤  r describes an ellipsoid (not other shapes like 

a hyperbola), we require the following two conditions: 

 
𝑃 ≽ 0 (6) 

 

∃ 𝑧, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝑧𝑇𝑃𝑧 +  2𝑞𝑇𝑧 ≤  𝑟 (7) 

 

Thus, to maximize the ellipsoid, we can maximize the logarithm of  

 

𝑚𝑎𝑥 𝑛 𝑙𝑜𝑔(𝑟 + 𝑞𝑇𝑃−1𝑞) −  𝑙𝑜𝑔 𝑑𝑒𝑡(𝑃) (8) 

 

The general idea is to solve the non-convex optimization problem iteratively. In each iteration the 

objective is linearized and the convex optimization problem within a trust region is solved. 

The detail of the algorithm is provided in the code repository20. 

 

The resulting algorithm is applied to the synthetic data in Fig 4-left: the overlap between the ideal 

Lissajous (no OCV effect) and the reconstructed show the goodness of the method. 

 

Fig 4-right show the application of the method with the experimental data obtained at 10 uHz. This 

method will be used to reconstruct a “clean” EIS from the distorted measurements. 

 

 
22 Olik, I. Terlaky T.“ A Survey of the S-Lemma,” SIAM Review, vol. 49(3):371-418, 2007. 
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Fig 4: Synthetic and measured Lissajous curves at 10 uHz. 

(left) Synthetic Lissajous plot with and without OCV-induced effect, (right) measured Lissajous plot with reconstructed one 

2.4 ECM configuration 

Previous analyses in [19] proposed building an ECM by deconvoluting the EIS curve using the DRT 

method. However, hysteresis was not discussed in the prior work, which focused on NMC cells and 

approximated low frequencies using a Warburg element. This study extends the DRT to low frequencies 

to deconvolve the EIS and obtain relaxation time that matches the physics-based assumption of 

previous section II.A. The ECM’s R(s) and C(s) values extraction process works as follow: 

1. The peak characteristics of relaxation times are identified from the obtained DRT. The centre 

value of each peak providing the time constant. 

2. An R-C element is associated to each time constant. 

3. The function least squares from the Python library Scipy.interpolate is used to perform the fitting 

of the measured EIS and to extract the values of each R(s) and C(s) of the ECM. The algorithm 

is initialized as follow: 

a. The initial R value is determined by dividing the measured IR drop of the cell during 

GITT by the number of R-C networks. 

b. The initial values of C are determined from the resistance and the time constant. 

3 Experimental analysis 

The testing campaign has been performed at the CSEM’s Sustainable Energy Center, Neuchatel 

(Switzerland) on several 90 Ah LFP cell under controlled condition with testing set-up composed of: 

1) A cell tester Biologic BCS815 equipped with 32 parallel, 9V/15A channels (0.01% FSD accuracy 

on the voltage and 0.015% FSD accuracy on current, for each available range) with EIS 

spectroscope multiplexed and able to range from 10 kHz to 10 mHz. 

2) A thermostatic chamber ATT-DM1200T with 45◦ C–180◦ C temperature range. 

3) Potentiostat/galvanostat Gamry reference 3000 for EIS measurements in the range from 1 MHz to 

10 µHz, 
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A total of five LFP cells (images of the cells under tests can be found on the cover photo of this report) 

have been tested with different type of protocols. Here below, a summary of the tests that each cell 

underwent: 

Cell HYST_1_1 (referenced as AGED cell in the following) 
i. Cycling: cycled 1C/1C for 1000 cycles.  

ii. GITT 10h relaxation 

iii. Dynamic profile @ SoCs:85%-50%-15% 

iv. EIS (10kHz – 100uHz) 

Cell HYST_2_2 (referenced as FRESH cell in the following) 
i. GITT 1h relaxation 

ii. Dynamic profile @ SoCs:85%-50%-15% 

Cell HYST_2_3 (referenced as FRESH cell in the following) 
iii. GITT 10h relaxation 

Cell HYST_2_4 (referenced as FRESH cell in the following) 
i GITT 5h relaxation 

ii EIS (10kHz – 10mHz) repeated with several excitation currents 

Cell HYST_2_5 (referenced as FRESH cell in the following) 
i 5 days relaxation 

ii EIS (10kHz – 10uHz)   

In total, it is estimate that the overall test took roughly about 277 days of testing resources. The full test 

list is shown in the appendix. 

3.1 Analysis of the hysteresis phenomenon 

An LFP cell (cell HYST_2_5) has been studied under controlled conditions. The cell was placed in the 

temperature chamber and linked to the battery tester. The cell was charged to 3.6V using a CC-CV 

method, left to rest for over 24 hours to ensure that the thermal equilibrium would be reached, then a 

current pulse of C/10 for 30 minutes was applied and released, finally the voltage of the cell was 

monitored over few days. The result are plotted in Fig 5. It can be seen that unlike other chemistries 

(NMC, lco, etc.), the relaxation of LFP is 2 to 3 orders of magnitude slower (e.g. NMC is in the orders of 

100 hours and LFP in the order of 102 hours). This induces a clear difference in voltage measured under 

charge or discharge conditions. 

In the meanwhile, another LFP cell (cell HYST_2_3) was measured by GITT, with a relaxation of 10 

hours at each step. From each relaxation step, the cell voltage was measured after 3, 5, 10, hours 

relaxation. Fig 6 displays the results, which demonstrate the validity of the initial hypothesis regarding 

the nature of the hysteresis (i.e. hysteresis is a slow relaxation phenomenon) and prove that the results 

from GITT (and similar methods) provide only pseudo-OCV. Additionally, it can be observed that the 

relaxation speed is not uniform over the full SoC range, leading to significant errors in the computation 

of standard of SoC-OCV lookup table. 

 

To reduce the SoC estimation error and accurately characterize the full relaxation process, extracting 

both OCV and relaxation parameters with high precision is essential. While GITT is the most obvious 

method, it requires waiting for the relaxation to complete and results in half a week of monitoring for 

each step, as demonstrated by Fig 5, which makes it impractical for a BMS application. On the contrary, 
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the use of EIS at low-frequency EIS requires only a few days and it can provide the same information 

as a GITT conducted over several weeks. 
 

 

Fig 5: Relaxation of a FRESH 90 Ah LFP following a C/10 30 minutes pulse over 6 days. 

 

  

Fig 6: Pseudo-ocv curves obtained from a FRESH 90Ah LFP cells by large-current-steps GITT 
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3.2 EIS measurement and correction 

An EIS was extracted from 1 kHz down to 10 µHz by using potentiostat/galvanostat Gamry reference 

3000. The peculiar EIS shape of LFP cells at low frequencies is well-know in literature and mark the 

difference with other intercalation-based chemistries (NMC, NCA, etc.)23. The data is corrected 

accordingly to the method described in section 2.3, and the results are shown in Fig 7.  

In the case of the aged cell, due to the limitation in time, the full spectrum was not extracted, and only 

the measurement down to 100uHz where performed. As expected, the impedance tends to increase 

with the aging of the cell. 

 

 
 

 

Fig 7: EIS of a 90Ah LFP cell (FRESH on the left and AGED on the right), measured from 1 kHz down to 10 µHz, ’raw’ from the 

measurement equipment and corrected. 

 

Fig 8: Comparison of ESI of LFP cells, FRESH vs. AGED. 

 
23J. Illig. et al. Understanding the impedance spectrum of 18650 LiFePO4-cells. Journal of Power Sources 239, 670-679 (2013). 
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3.3 ECM parameters extraction 

The method described in sub-section 2.4 is applied to the corrected EIS, and the parameters of the ECM 

are extracted from DRT displayed in Fig 9 and shown in the Tab 1, for both fresh and aged cells. 

 

Fig 9: DRT of the studied 90Ah LFP FRESH cell. The figure is spread in 2 rows to display the dynamic range of the peaks. 

Focusing on the fresh cells and as stated in section 2.1, 3 relaxation times were found at the lowest 

frequencies, thus corresponding to three distinct processes. The first having a relaxation time 

approximately 10 times smaller than the second, which in turn is 100 times shorter than the third. 

Therefore, it is proposed to assign these three peaks to the three identified phenomena. It should be 

noted that further validation through invasive/destructive tests is required to fully confirm the physical 

assignments. However, such tests are beyond the scope of this article. 

Based on this electrochemical characterization assumptions for the fresh cell, the final ECM is thus 

composed of RCi with i(s) comprised from 1 to 7, as shown in Fig 10. 

 

Tab 1: ECM parameters obtained after extraction by DRT and their physical attribution. 

RC # Physical meaning Value(s) – fresh cell Value(s) – aged cell 

RC0* P-P and P-Cl interfaces 3.78E-04 6.187e-04 

RC1* SEI interface 3.10E-03 4.533e-03 

RC2* Charge transfer process 1.1E-02 
7.796e-02 

RC3* Charge transfer process 1.60E+00 

RC4* Charge transfer process 1.51E-01 8.752e-01 

RC5+ Surface diffusion 2.53E+02 3.740e+02 

RC6+ Li+ diffusivity 2.47E+03   --------------------------------------------------------- 

RC7+ Bulk diffusion 9.90E+04   --------------------------------------------------------- 

*  was demonstrated in [19], [20], + are proposed by this work. 

 

 

 

 

Fig 10: Final ECM selected to model LFP chemistry including the hysteresis 
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As regards of the aged cell analysis, EIS at frequencies below 100uHz was not performed due to safety. 

Consequently, the direct extraction of the last two peaks of the DRT was precluded. Nevertheless, it is 

postulated that the aging process has a less pronounced impact on lithium diffusivity, with surface 

diffusivity being more susceptible to aging effects compared to deep bulk diffusivity. Consequently, to 

estimate the values of the last two peaks, data from fresh cells were employed and extrapolated to the 

aged cell context. Although these values are recognized as suboptimal, they are deemed reasonable 

approximations under the current circumstances. 

 

Notably, an intriguing observation was made concerning the merging of peaks 2 and 3 in the DRT 

analysis. This phenomenon can be attributed to the growth of one of the peaks, which eventually engulfs 

the other, making its detection challenging for the DRT algorithm. It is speculated that the RC2 peak 

might be the one primarily responsible for this merging, given its proximity to the same order of 

magnitude as the merged peak. This peculiar aging behavior has been previously reported20, indicating 

that further in-depth post-mortem investigations are essential to propose a bullet-proof physical 

interpretation for this phenomenon, and enhance the accuracy of the model while ageing. 

 

From Fig 10, the state equation of the system can be written as: 

𝑋𝑘+1 =

[
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 (9) 

   

where  𝑋 = [
𝑉1

𝑆𝑂𝐶
], 𝐼 the current in the battery, 𝐶𝑛 the battery nominal capacity, and 𝑇𝑠 the sampling rate. 

If the sampling is set to 1 second, the standard form of the state space function can be obtained as: 

𝑋𝑘+1 = 𝐴𝑘 ⋅ 𝑋𝑘 + 𝐵𝑘 ⋅ 𝐼𝑘 (10) 

where 𝐴𝑘 =

[
 
 
 
 
𝑑1 ⋯ 0

⋮ ⋱ ⋮
⋮ 𝑑11 ⋮

⋮ 𝑑ℎ𝑦𝑠 0

0 ⋯ 0 1]
 
 
 
 

, ∀𝑖 ∈ [1,11], 𝑑𝑖 = 1 +
1

𝑅𝑖𝐶𝑖
, 

𝑑ℎ𝑦𝑠 = 1 +
1

𝑅ℎ𝑦𝑠𝐶ℎ𝑦𝑠
   

and 𝐵 = [
−1

𝐶1
; … ;

−1

𝐶11
 ;

−1

𝐶ℎ𝑦𝑠
;
−1

𝐶𝑛
] 

With 𝑉𝑏𝑎𝑡𝑡 given by: 

𝑉𝑏𝑎𝑡𝑡 = ℎ(𝑋) + 𝐼 ⋅ 𝑅0 (11) 

where ℎ(𝑥) = ∑ 𝑉𝑖
11
𝑖=1 + 𝑉ℎ𝑦𝑠 + 𝑂𝐶𝑉(𝑆𝑂𝐶). 
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4 Results and discussion 

The proposed ECM is compared with an existing model from literature24, which was built for NMC cells 

by applying a similar methodology (e.g. DRT on the EIS of a li-ion cell with a frequency range of 10 mHz 

to 1 kHz). In the model, 6 RC elements were used to simulate a Warburg diffusion behavior at low 

frequencies, but without hysteresis compensation. 

The averaged OCV was obtained from the GITT with a C/10 pulse and 10 hours of relaxation, either 

from the fresh or aged LFP cell by interpolating using a B-Spline of third order with functions splrep and 

splev from the Python library Scipy.interpolate.. 

In each simulation, the initial OCV was set by the measured cell voltage in relaxed condition from 

measurement, and it was assumed that every capacitors of the RCs networks were empty (battery fully 

relaxed). 

Two different tests have been performed to validate the model in the time domain and its ability in 

simulating the voltage at the cell terminals: 

1. Square current profile tests: to verify model accuracy in reproducing the solicitations deriving 

from fast square current profile (5 mins steps). 

2. GITT tests: to verify the model accuracy at intermittent current with a full charge-discharge 

cycle, with longer relaxation periods. 

 

The accuracy of the model is evaluated by means of the RMSE indicator (Python library ”sklearn”): 

 

𝑅𝑀𝑆𝐸 = √∫ (𝑋𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠(𝑡) − 𝑋𝑚𝑜𝑑𝑒𝑙(𝑡))
2𝑇

0

𝑇
 

Where X is the terminal voltage. 

4.1 Performance in response to dynamic profile 

A dynamic profile (code name: DYN) was built which consists of a repetition of current pulses of 

increasing amplitudes (C/10, C/5, C/2) separated by 5 minute resting periods (Fig 11). The dynamic test 

was conducted at three different state-of-charge (SoC) levels: high (85%), medium (55%), and low 

(15%).  

 

Tab 2: Comparison of RMSE values for proposed ECM and reference ECM (without hysteresis compensation). 

DYN Fresh  cell Aged cell 

SoC Proposed ECM Reference ECM Proposed ECM Reference ECM 

85% 15.6 mV 70.5 mV 19.6 mV 68.5 mV 

50% 14.3 mV 63.9 mV 20.3 mV 63.8 mV 

15% 15.2 mV 65.3 mV 21.1 mV 64.2 mV 

 

 

 
24 P. Iurilli, C. Brivio, R. E. Carrillo, and V. Wood, “Eis2mod: A drt-based modeling framework for li-ion cells,” IEEE Transactions 

on Industry Applications, vol. 58, no. 2, pp. 1429–1439, 2022. 
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Fig 11: reference current profile applied in the dynamic tests. 

The proposed model outperforms the reference model especially in the relaxation phases at the higher 

currents, where it converges towards a similar hysteresis-shifted value. The results of the comparison 

are displayed in Fig 12, which shows the performance of the proposed ECM and the reference one. It 

must be noted that the performances of the model are strongly dependent on the R(s)-C(s) extraction 

algorithm described in subsection 2.4: it has been observed that local minima could lead to erroneous 

RC values estimation which lead to strong divergence of the model from the measurements. 

Overall, the proposed ECM demonstrated improved accuracy compared to the reference ECM across 

all SoC levels. It should be noted that the model parameters from EIS/DRT were extracted at 50% SoC, 

and therefore do not encompass SoC dependency. The RMSE values indicate that the proposed ECM 

achieved an estimation error around 15 mV (Tab 2), while the reference ECM had an estimation error 

around 65 mV, thus ~4 folds gain higher on average.  

These results suggest that the proposed ECM is a promising method for accurately estimating the state-

of-charge of LFP batteries. 

When moving to the aged cells, the results shown in Fig 13 demonstrates that the proposed approach 

remains valid for aged cells and continues to provide superior estimations compared to the reference. 

However, it is noteworthy that the advantages obtained through the proposed approach diminish as the 

cell ages, with a reduction in gains to ~3 folds. This finding suggests that the low-frequency segment of 

the spectrum, previously hypothesized as relatively independent of aging effects, does indeed undergo 

changes with age, albeit to a lesser extent than other model parameters. 
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Fig 12: Comparison of the performances of the proposed ECM during dynamic cycling for a FRESH cell. From top to bottom: simulation 

results at SoC=85%, simulation results at SoC=50%, simulation results at SoC=15%, 
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Fig 13: Comparison of the performances of the proposed ECM during dynamic cycling for an AGED cell. From top to bottom: simulation 

results at SoC=85%, simulation results at SoC=50%, simulation results at SoC=15%, 
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4.2 Performance in response to GITT profile 

The GITT test was employed to assess the performance of the proposed ECM vs. reference model 

when full discharge/charge and long relaxation (10h) are accounted. Since these tests entails a full 

discharge/charge cycle with intermittent current at C/10, both the proposed and reference ECMs were 

used in conjunction with a lookup table and a coulomb counter to derive the OCV to be fed to the model. 

As shown in Fig 14 and Fig 15, The GITT protocol is slightly different between the fresh and aged cells. 

In the case of the fresh cell, current steps at C/10 were lasting 10 minutes, while in the case of the aged 

cell, the same current steps were imposed to last 1h to reduce the testing times.  

The results of Tab 3 confirms that the proposed ECM outperforms the reference model also in this case, 

exhibiting approximately twice the improvement in RMSE. While the performance gain between the 

proposed and reference models was not as good as observed in the dynamic profile analysis (~ 2 fold), 

this outcome can be explained by the influence of OCV/SoC initialisation which could contribute to an 

overall average error. Additionally, extreme SoC values were observed to have a significant impact on 

the error, which can be explained by a significant difference of EIS measurements at extreme SoCs 

(SoC < 5% and SoC > 95%). 

Aging effects were also evaluated in both the proposed and reference models. The results demonstrated 

that aging led to an increase in errors for both models. However, the rate of increase in error was 

approximately two times lower in the proposed model compared to the reference model. This 

observation further highlights the superior performance of the proposed ECM, as it exhibits greater 

resilience against the degrading effects of cell aging. 

 

Tab 3: Simulation results over dynamic profile for proposed ECM vs. reference ECM (without hysteresis compensation). 

RMSE Fresh  cell Aged cell 
 Proposed ECM Reference ECM Proposed ECM Reference ECM 

GITT 

(10h) 

43.3 mV 71.2 mV 90.7 mV 173.7mV 

 

5 Conclusions 

In this work, the goal was to characterize and model the hysteresis of LFP cells by using EIS. We 

proposed a modelisation based on physics-based principles from thermodynamics, which has shown 

that the intercalation in LFP is governed by a complex interaction between three main dynamics: surface 

diffusion, Li+ diffusivity and bulk diffusion. The resulting ECM model was built by applying DRT on the 

EIS spectra of the cell at very low frequencies (10 uHz) in order to characterize the time constant of 

these dynamics. The model was found to agree well with the measurements, and this was confirmed by 

the simulated results on both fresh and aged cells with. 

Specifically, the proposed ECM demonstrated superior modelling capabilities compared to the reference 

model when subjected to dynamic current profile and full GITT charge/discharge cycles. The improved 

performance suggests that the proposed ECM could be effectively utilized in a Kalman filter or other 

estimators to enhance State of Charge (SOC) estimation accuracy. By leveraging the strengths of the 

proposed ECM and considering its enhanced performance and resilience to aging effects, this research 

contributes to advancing battery modelling techniques and lays the groundwork for more accurate SOC 

estimation methodologies in practical applications, e.g. embedded solutions in BMSs. 
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Fig 14: Comparison of the performances of the proposed ECM during GITT for a FRESH cell. From top to bottom: complete simulation 

results at, zoom of a current step followed by 10 hour relaxation. 
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Fig 15: Comparison of the performances of the proposed ECM during GITT for a AGED cell. From top to bottom: complete simulation 

results at, zoom of a current step followed by 10 hour relaxation. 
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6 Outlook and next steps 

The next steps can be divided according to their objectives: 

To further enhance the accuracy of the model, it is crucial to acknowledge that EIS have been only 

measured at a specific SOC value of 50%. Recognizing that parameters are likely to be SOC-dependent, 

an extension of the model to cover the full SOC range becomes important, especially at extreme SoC 

levels, e.g. SoC < 5% and SoC > 95%. Moreover, temperature dependency of the models should be 

also addressed in the relevant range of common applications (-10°C – 45°C). 

To further enhance the robustness of the model, it is suggested to investigate more in deep the proposed 

assumptions concerning the relationship between crystal lattice and relaxation time. This assumption 

should be subjected to validation through destructive measurements. Once confirmed, insights from 

existing literature can be leveraged to establish a clear correlation between chemical processes and 

ECM blocks can be established, possibly including ageing factors. 

To further enhance the applicability of the model, it is advised to develop an estimation scheme for the 

very-low-frequency part of the EIS. Only in this way, the EIS-based solution proven in the hystimator 

project would find his implementation into embedded systems (e.g. into battery BMSs). 

7 National and international cooperation 

To enable a smooth transition for a post-project technology transfer, the creation of an external advisory 

board has been planned and executed. The advisory board has been organized such that the 

participants has been invited to two online meetings (24.08.2022 and 03.05.2023), where CSEM has 

informed about the status and results of the project. The participants for the advisory board are listed 

hereafter: 

- BMW (OEM): Dr. Jiahao Li, Senior Researcher (Jiahao.Li@bmw.de) 

- Gentherm (tier 1 supplier): Jason Chang, CTO (jason.chang@gentherm.com) 

- Infineon (chip manufacturer): Dr. Günter Hofer, Concept Engineer for BMS 

(guenter.hofer@infineon.com) 

- Green Cube (forklift products): Nicola Cinagrossi, Senior VP (ncinagrossi@greencubestech.com) 

- Kyburz (mobility products): Olivier Groux, Head of R&D (olivier.groux@kyburz-switzerland.ch) 

- Twice Energy (second life products): Philipp Strüby, CEO (philipp.strueby@twice-energy.ch) 

 

The project HYSTIMATOR has been presented at the CSEM booth of the Electric Energy Storage EES 

2023 (ees EUROPE 2023), which took place in June 2023 in Munich. CSEM has showcased a version 

of its zBMS demonstrator (Fig 16), which is based on the LFP cells investigated in the HYSTIMATOR 

projects. 

mailto:philipp.strueby@twice-energy.ch
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Fig 16: CSEM’s zBMS demonstrator showcase at the ees EUROPE 2023, equipped with the LFP cells used in HYSTIMATOR. 

Finally, during the HYSTIMATOR projects effort have already been made to further develop projects in 

the frame of publicly financed innovation projects under the scheme of Horizon Europe projects. This 

will allow to continue pushing for different approach for SoC estimation of hysteresis-prone chemistries 

such as LFP. 

 

8 Publications 

Part of the results presented in this report  have been published in the following conference paper: 

G. Thenaisie, C. Brivio. Hystimator™: EIS-based hysteresis modelling of LFP cells, 8th International 

Conference on clean electrical power (ICCEP), 2023.  
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10 Appendix: Test matrix 

 

 

Test Protocol File T chamber Cell name Cycler Test ID Event Channel Status Short description Machine time Used

Cycling Tamb HYST_1_1 Arbin Success Cycling up to 1000 cycles 1C/1C 100 YES

0035_3_1_gittLONG_eis_LF90_AGED 20°C HYST_1_1 (old LF90_1) Biologic 0035 3_1 CD5 Fail GITT + EIS ( on AGED cell ) (3h relaxation time) 7 NO

0035_3_2_gittLONG_eis_LF90_FRESH 20°C HYST_2_2 Biologic 0035 3_2 CD6 Success GITT + EIS ( on FRESH cell ) (3h relaxation time) 7 YES

0035_3_2_gitt_10min-10h_eis_LF90_FRESH 20°C HYST_2_3 Biologic 0035 3_3 CD7 Success GITT (10h relaxation time) 7 YES

0035_3_2_gitt_20min-5h_eis_LF90_FRESH 20°C HYST_2_4 Biologic 0035 3_4 CD8 Success GITT (5h relaxation time) 3.5 YES

LFP_2_5_10mHz_1p8A 20°C HYST_2_5 Gamry Sinlge ch. Success Short EIS 10mHz C/50 0 YES

0035_5_1_stepRELAX 20°C HYST_2_5 Biologic 0035 5_1 CD5 Success Step function and multiple days relaxation 24 YES

LFP_2_5_10uHz_1p8A_1 20°C HYST_2_5 Gamry Sinlge ch. Success Long EIS 10uHz C/50 #1 10 YES

0035_3_5_gitt_Vlevels_24h_LF90_HYST_2_4 20°C HYST_2_4 Biologic 0035 3_5 CD8 Errror GITT at chosed OCV levels (24h relaxation time) 20 NO

LFP_2_5_10uHz_1p8A_2 20°C HYST_2_5 Gamry Sinlge ch. Success Long EIS 10uHz C/50 #2 10 YES

LFP_2_5_10uHz_1p8A_3 20°C HYST_2_5 Gamry Sinlge ch. Success Long EIS 10uHz C/50 #3 10 YES

0035_3_6_gittLONG_30min-10h_withEIS_LF90_2_3 20°C HYST_2_3 Biologic 0035 3_6 CD7 Success GITT + intercalated EIS + 10h relax (on FRESH cell ) 7 NO

0035_3_7_gittLONG_30min-10h_withEIS_LF90_1_1 20°C HYST_1_1 (old LF90_1) Biologic 0035 3_7 CD5 Success GITT + intercalated EIS + 10h relax (on AGED cell ) 7 NO

0035_6_1_validation_DYN_LF90_2_2 20°C HYST_2_2 Biologic 0035 6_1 CD1-4 Success DYN tests for model simulation/validation (3h relax) 1 YES

0035_6_2_validation_DYN_LF90_2_2 20°C HYST_2_2 Biologic 0035 6_2 CD1-4 Success DYN tests for model simulation/validation (10h relax) 1 YES

LFP_2_4_10mHz_1p8A 20°C HYST_2_4 Gamry Sinlge ch. Success Short EIS 10mHz C/50 0 YES

LFP_2_4_10mHz_0p9A 20°C HYST_2_4 Gamry Sinlge ch. Success Short EIS 10mHz C/100 0 YES

LFP_2_4_10uHz_0p9A_1 20°C HYST_2_4 Gamry Sinlge ch. Errror Long EIS 10uHz C/100 #1 10 NO

LFP_2_4_10uHz_0p9A_2 20°C HYST_2_4 Gamry Sinlge ch. Success Long EIS 10uHz C/100 #2 10 YES

LFP_2_4_10uHz_0p9A_3 20°C HYST_2_4 Gamry Sinlge ch. Success Long EIS 10uHz C/100 #3 10 YES

0035_3_8_gitt_1h-48h_LF90_2_3 20°C HYST_2_3 Biologic 0035 3_8 CD7 Success GITT (48h relaxation time) 20 YES

LFP_2_4_10uHz_0p9A_4(v_reg) 20°C HYST_2_4 Gamry Sinlge ch. Success Long EIS 10mHz C/100 #4 10 YES

LFP_1_1_100uHz_0p9A 20°C HYST_1_1 (old LF90_1) Gamry Sinlge ch. Success Long EIS 100uHz C/100 #1 3 YES

0035_6_3_validation_DYN_LF90_2_2 20°C HYST_2_2 Biologic 0035 6_3 CD5-8 Success DYN tests for model simulation/validation (10h relax) --> 30' + 3h 0 NO

0035_6_4_validation_DYN_LF90_1_1 20°C HYST_1_1 (old LF90_1) Biologic 0035 6_4 CD5-8 Success DYN tests for model simulation/validation (10h relax) --> 30' + 3h + short one also0 YES

277.5


