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Nach der Methode der Teilsicherheitsbeiwerte, die Mitte des letzten Jahrhunderts in die
Bemessungsregeln fiir Betonbauwerke eingefiihrt wurde, wird die Tragsicherheit durch die
Durchfiihrung von Grenzzustandsnachweisen unter Verwendung von Bemessungswerten
gewahrleistet, die mit Teilsicherheitsbeiwerten berechnet werden. In den letzten Jahren
wurden Anstrengungen unternommen, um einen Standardrahmen fir die
Wahrscheinlichkeitsmodellierung zu schaffen. Die Quellen der Unsicherheiten, die von den
einzelnen Teilsicherheitsbeiwerten abgedeckt werden, sind jedoch immer noch
Gegenstand von Diskussionen in der wissenschaftlichen Gemeinschaft, da sie in den
Regelwerken und den zugehdrigen Hintergrunddokumenten nicht klar definiert sind.
Darlber hinaus werden die statistischen Verteilungen der grundlegenden Zufallsvariablen
nach dem besten Kenntnisstand zu einem bestimmten Zeitpunkt angenommen. Wenn sich
das Wissen weiterentwickelt, der technologische Fortschritt voranschreitet und mehr Daten
zur Verfligung stehen, sollten diese statistischen Daten aktualisiert werden und entweder
zu einer Bestatigung oder zu einer Aktualisierung der Teilsicherheitsbeiwerte fihren. Die
Tatsache, dass einige der Teilsicherheitsbeiwerte keine solide wissenschaftliche
Grundlage haben, kénnte zu unzureichenden Sicherheitsniveaus in verschiedenen
Szenarien (Art der Tragwerke, Versagensarten, Materialien usw.) oder in einigen Fallen
auch zu Ubermassig teuren Tragwerken fiihren. Dariiber hinaus ist eine angemessene
Kenntnis der grundlegenden Zufallsvariablen, die von jedem Teilsicherheitsbeiwert
abgedeckt werden, von grundlegender Bedeutung flir eine bessere Entscheidungsfindung
im Umgang mit bestehenden Tragwerken. Um sichere und wirtschaftlichere Bauwerke zu
bemessen, besteht das Ziel dieses Berichts darin, die wichtigsten Ungewissheiten zu
klaren, die von jedem Teilsicherheitsbeiwert abgedeckt werden, wund die
Teilsicherheitsbeiwerte bei Bedarf auf der Grundlage aktualisierter statistischer
Verteilungen zu aktualisieren. Zu diesem Zweck ist anzumerken, dass es im Rahmen des
Partial Safety Factor (PSF) Formats nicht korrekt ist, sich auf einen einzelnen PSF zu
beziehen; stattdessen muss man konsequent einen Satz von PSF betrachten. Tatsachlich
muss zusatzlich zur Variabilitat jeder Zufallsvariablen das Ausmass, in dem diese Grdssen
zur Grenzzustandsfunktion beitragen, die den sicheren Tragwerksbereich vom unsicheren
trennt, berlicksichtigt werden. Bei der Methode der Zuverlassigkeitsanalyse erster Ordnung
(FORM), wird dieser Beitrag beispielsweise durch die Sensitivitdtsfaktoren dargestellt, die
die partielle Ableitung der Grenzzustandsfunktion nach der untersuchten Variablen
darstellen. In diesem Rahmen und da sich dieser Bericht hauptsachlich auf
Strassenbriicken konzentriert, werden Anstrengungen unternommen, um die
Unsicherheiten sowohl auf der Widerstands- als auch auf der Einwirkungsseite zu
quantifizieren. Neben dem Eigengewicht der Tragkonstruktion werden auch die
Variabilitaten der Verkehrslast und des Belagsgewichts untersucht.

Teilsicherheitsbeiwerte fiir Betontragwerke

Es werden verschiedene Unsicherheitsquellen untersucht, die den Widerstand von
Stahlbetonbauteilen und die entsprechenden Teilsicherheitsbeiwerte beeinflussen. Zu
diesem Zweck werden neue statistische Daten gesammelt und ausgewertet. Fur die
Bewertung der Teilsicherheitsbeiwerte wird der einfache, aber rigorose Ansatz der
Empfindlichkeitsexponentenanalyse verwendet. Dieser Ansatz entspricht insbesondere
der Durchfiihrung einer Taylor-Erweiterung erster Ordnung der Widerstandsfunktion im
logarithmischen Raum der grundlegenden Zufallsvariablen, die den Widerstand
beeinflussen. Der Empfindlichkeitsexponent stellt die lokale partielle Ableitung des
logarithmischen Widerstands in Bezug auf jede Variable dar (unter der Annahme
einer -Lognormalverteilung). Einer der Vorteile dieser Berechnungsmethode besteht darin,
dass die Empfindlichkeitsexponenten einheitenlos sind und direkt mit der Unsicherheit
durch den Einfluss einer bestimmten Basisvariablen auf das Widerstandsmodell verknipft
werden koénnen. Daruber hinaus kann die Grundlichkeit der
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Empfindlichkeitsexponentenanalyse unter Beriicksichtigung der Einheiten der einzelnen
Widerstandsvariablen leicht Gberprift werden.

Um die Teilsicherheitsbeiwerte auf der Widerstandsseite zu kalibrieren, ohne die
Variabilitdt auf der Einwirkungsseite zu berlicksichtigen, besteht eine lbliche Annahme
darin, jede Komponente separat zu betrachten, indem ein fester Empfindlichkeitsfaktor der
Zuverlassigkeitsmethode erster Ordnung (FORM) fir die Widerstands- (R) und die
Einwirkungsseite (E) angenommen wird. In diesem Fall werden die
Empfindlichkeitsfaktoren mit ae =-0,7 und ar = 0,8 angenommen. Diese Werte sind in
EN 1990:2023 und dem fib Model Code 2010 angegeben und sind im Allgemeinen
konservativ und beriicksichtigen eine grosse Anzahl von Szenarien.

Auf der Grundlage der obigen Annahme wird der Ansatz der
Empfindlichkeitsexponentenanalyse fur finf gangige Widerstandsmodelle fir
Betontragwerke verwendet (Zugnormalkraft, Drucknormalkraft, Biegung, Querkraft mit
Querkraftbewehrung, Durchstanzen). Die Ergebnisse zeigen, dass die Exponenten, die
den verschiedenen geometrischen und Material Parametern zugeordnet sind, von einem
Fall zum anderen variieren, was darauf hinweist, dass die massgeblichen Unsicherheiten
entsprechend variieren. Die Ergebnisse dieser Analysen zeigen, dass der Ansatz der
Materialbeiwerte (ys und yc) auf eine breite Palette typischer Widerstandsmodelle
angewandt werden kann (Zug- und Drucknormalkraft, Biegung, Querkraft bei
Vorhandensein einer ausreichenden Querkraftbewehrung; bei denen das Material und die
geometrischen Unsicherheiten massgebend sind), wahrend der Ansatz des
Widerstandsbeiwerts (yv ) flr andere spezifische Widerstandsmodelle (Querkraft ohne
Querkraftbewehrung und Durchstanzen; bei denen die geometrischen und die
Modellunsicherheiten massgebend sind) besser geeignet ist.

Das Modell fiir den Biegewiderstand von Stahlbetontragern wird als Referenz fir die
Kalibrierung des Teilfaktors fir die Streckgrenze der Stahlbewehrung verwendet. Fir die
Kalibrierung des Teilfaktors fiir die Betondruckfestigkeit wird das Modell fiir den Widerstand
von Stlitzen mit reiner Drucknormalkraft verwendet. Beide Widerstandsmodelle werden in
der Praxis haufig verwendet und stellen Falle dar, bei denen die
Materialfestigkeitsvariablen einen dominierenden Einfluss haben und relativ hohe
Modellunsicherheiten aufweisen.

Fir die Stahlstreckgrenze wird der Teilsicherheitsbeiwert ys = 1,15 bestatigt, der die
Material-, Modell- und Geometrieunsicherheiten abdeckt. Dieser Ansatz kann jedoch zu
unsicheren Nachweisen fiir Platten mit einer statischen Hohe von weniger als 200 mm
fihren und flir hGhere Bauteile zu konservativ sein. Es wird gezeigt, dass ein konstantes
Sicherheitsniveau und eine wirtschaftlichere Bemessung erreicht werden kénnen, wenn
Bemessungswerte fiir die statische Hohe (zur expliziten Abdeckung der geometrischen
Unsicherheit) zusammen mit einem reduzierten Teilfaktor ys angenommen werden.

Auch flr die Betondruckfestigkeit wird der aktuelle Teilsicherheitsbeiwert yc = 1,50
bestatigt. Dieser Wert beinhaltet nicht nur die Material, Geometrie- und
Modellunsicherheiten, sondern auch solche, die sich auf die Herstellung, den Transport,
das Giessen und die Nachbehandlung von Beton beziehen.

Trotz der Tatsache, dass die aktuellen Werte von ys und yc bestatigt werden, bietet die
durchgefiihrte Forschung neben der Moglichkeit, die Teilfaktoren zu reduzieren, wenn der
Bemessungswert der statischen Hohe verwendet wird, auch nitzliche Informationen fir
mehrere praktische Falle:

e Fir die Anpassung von Teilsicherheitsbeiwerten fir (i) eine verbesserte
Qualitatskontrolle und (ii) falls Messwerte von Abmessungen und die
Betondruckfestigkeit fox nach EN 13791 zur Beurteilung von bestehenden Bauwerken
zur Verfiigung stehen.

e Klarung des Unterschieds zwischen der Betonfestigkeit von Prifkérpern und der
Betonfestigkeit in situ.
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e  Berechnung von yc und ys fir verschiedene Werte des Ziel-Zuverlassigkeitsindex
(anders als 3,8).

e  Furdie Kalibrierung des Sicherheitsformats verfeinerter nichtlinearer Finite-Elemente-
Analysen ist es wichtig, dass bei diesen Ansatzen samtliche Material- und
Geometrieunsicherheiten ebenso konsistent behandelt werden wie bei der
Verwendung konventioneller Modelle. Zu diesem Zweck werden die statistischen
Daten (Variationskoeffizient und Bias-Faktor) fir Material- und Geometriewerte
dargelegt, die zur Begrundung der Beiwerten yc = 1,50 und ys = 1,15 angenommen
wurden.

Fir den Teilwiderstandsbeiwert yv flr den Durchstanzwiderstand und den
Querkraftwiderstand von Elementen ohne Querkraftbewehrung wird, wenn die
geometrischen Unsicherheiten durch den Teilsicherheitsbeiwert abgedeckt werden,
yv = 1,40 vorgeschlagen. Es wird jedoch festgestellt, dass ein konstanter Wert von
yv = 1,40 zu einer unsicheren Bemessung von Platten mit einer statischen Ho6he von
weniger als 200 mm fihren kann und flr dickere Platten zu konservativ sein kann.
Schliesslich wird gezeigt, dass ein konstanteres Sicherheitsniveau erreicht wird, wenn der
Bemessungswert der statischen Hohe mit einem niedrigeren Wert des Teilfaktors yv
kombiniert wird.

Die meisten Ergebnisse dieser Arbeit wurden in der zweiten Generation der europaischen
Norm fir die Bemessung von Betonbauwerken (Eurocode 2 von 2023) und dem
zugehorigen Hintergrunddokument umgesetzt, so dass sie implizit in die zukinftigen
Versionen der Schweizer Norm fiir Betonbauwerke ibernommen werden.

Modellunsicherheiten bei der  Schnittkraft- und
Tragfahigkeitsberechnung in statisch unbestimmten
Tragwerken

Diese Arbeit konzentriert sich auf die Unsicherheiten bei der Berechnung der Schnittkrafte
und der Tragfahigkeit von Stahlbeton- und Verbundkonstruktionen (Stahl-Beton). Fur die
Bemessung und Beurteilung von Tragwerken ist es Ublich, die Schnittkrafte mit den
Querschnittswiderstdnden zu vergleichen. Wahrend die Modellunsicherheiten auf der
Widerstandsseite wie oben beschrieben umfassend untersucht wurden, ist die
Modellunsicherheit bei der Berechnung von Schnittkraften in statisch unbestimmten
Tragwerken noch nicht ausreichend untersucht worden. Insbesondere wird die
Modellunsicherheit bei  Schnittkrafte- und  Tragfahigkeitsberechnungen unter
Berucksichtigung verschiedener mechanischer Modelle und Versagensarten untersucht.
Um eine ausreichende Menge an Daten zu sammeln und statistische Analysen
durchzufihren, wird das experimentelle Verhalten statisch unbestimmter Systeme mit einer
einfachen und effektiven Technik ermittelt, die es erméglicht, in der Literatur verfligbare
experimentelle Ergebnisse zu verwenden.

Im Vergleich zu verfeinerten Modellen fihrt ein linear-elastisches Modell mit ungerissener
Querschnittssteifigkeit zu einem  grésseren Variationskoeffizient (CoV) der
Modellunsicherheit bei der Tragfahigkeitsberechnung; einem grésseren CoV entsprechen
jedoch grossere Mittelwerte, was zu einer dhnlichen Schwanzverteilung und damit zu einer
ahnlichen Sicherheitsmarge wie bei verfeinerten Ansatzen (d. h. nichtlinearen Modellen)
fuhrt. Bei linearen, elastischen, ungerissenen Modellen kann auch beobachtet werden,
dass eine Uberdimensionierung einer oder mehrerer Komponenten eines statisch
unbestimmten Systems den CoV der Modellunsicherheit bei der Berechnung der
Schnittkréfte beeinflusst. Bei verfeinerten Berechnungsmodellen ist bei der
Tragfahigkeitsberechnung ein geringerer CoV der Modellunsicherheit zu beobachten,
wahrend dies bei der Berechnung der Schnittkréfte in Abhangigkeit vom
Uberbemessungsgrad der Teilelemente nicht immer der Fall ist.
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Bei Stahlbetonelementen ohne Duktilitatsanforderungen, fihrt die Anwendung der
Plastizitatstheorie (starr-plastische Betrachtung) zu einem sehr grossen CoV und potenziell
unsicheren Ergebnissen. Die Begrenzung der Verformungskapazitat oder der Nachweis,
dass die Anforderungen an die Duktilitat erfillt sind, verringert den CoV erheblich. Die
Versagensart beeinflusst die Modellunsicherheit bei der Tragfahigkeitsberechnung, nicht
aber die Modellunsicherheit bei der Berechnung der Schnittkrafte. Ein grosserer CoV fir
die Tragfahigkeitsberechnung wird fiir sprode Systeme unabhdngig vom
Berechnungsmodell beobachtet.

Bei  Stahl-Beton-Verbundkonstruktionen ist die  Modellunsicherheit bei der
Tragfahigkeitsberechnung bei Verwendung eines linear elastischen Modells ahnlich wie
bei Stahlbetonkonstruktionen. Auch die Querschnittsklasse, die mit dem Versagensmodus
zusammenhangt, beeinflusst die Modellunsicherheit bei der Tragfahigkeitsberechnung
unabhangig von der durchgefiihrten Analyse, wie bei Stahlbetonstrukturen beobachtet.
Schliesslich wird eine Verringerung des CoV durch die Begrenzung der
Verformungskapazitat bei der Verwendung von plastischen Modellen beobachtet.
Zusatzlich zum zusammengesetzten System aus zwei Tragern, werden diese Ergebnisse
fur Verbundkonstruktionen durch die Untersuchung eines kontinuierlichen Systems
bestatigt, das aus den experimentellen Last-Verformungsbeziehungen der einfachen
Balken zusammengesetzt wird. Insgesamt kann auf der Grundlage der Ergebnisse fir
zusammengesetzte Zweibalkensysteme davon ausgegangen werden, dass die
Unsicherheiten bei der Berechnung der Tragfahigkeit und folglich der Schnittkrafte ahnlich
sind wie bei Stahlbetonkonstruktionen.

Anhand von parametrischen Analysen und untersuchten Fallstudien liegt der
Teilsicherheitsbeiwert yss, der die Unsicherheiten im Zusammenhang mit den
Berechnungen der Schnittkrafte abdeckt und implizit in den Teilsicherheitsbeiwerten ys und
ya auf der Einwirkungsseite implementiert ist, zwischen 1,05 und 1,15. Es ist wichtig darauf
hinzuweisen, dass der Beiwert ys¢ die Unsicherheiten im Zusammenhang mit
Systemanderungen wahrend des Baus oder der strukturellen Modellierung komplexer
Tragwerke nicht bertcksichtigt. Diese zusatzlichen Unsicherheiten sollten genauer
untersucht werden und hangen wesentlich von der Komplexitat der Tragkonstruktion, der
Konstruktionsmethode, den verwendeten Werkzeugen und der Erfahrung des Ingenieurs
ab.

Rekalibrierung der Teilsicherheitsbeiwerte fiir standige
Lasten

Die Kalibrierung des Teilsicherheitsbeiwerts wird im Allgemeinen durchgeflihrt, um ein
annehmbares Sicherheitsniveau fiir ein breites Spektrum von Szenarien zu gewahrleisten,
und jeder Teilsicherheitsbeiwert deckt genau definierte Unsicherheiten ab, die mit der
Variabilitdit einer oder mehrerer grundlegender Zufallsvariablen, wie Geometrie,
Materialfestigkeiten und Nachweismodelle, zusammenhangen. Obwohl die statistischen
Verteilungen der grundlegenden Zufallsvariablen nach bestem Wissen und Gewissen zu
einem bestimmten Zeitpunkt angenommen werden, sollten diese Verteilungen mit
zunehmendem Wissensstand, technologischem Fortschritt und mehr verfligbaren Daten
aktualisiert werden, was zu einer Bestatigung oder Aktualisierung der
Teilsicherheitsbeiwerte fiihrt. Auf dieser Grundlage werden zur Aktualisierung der
Teilsicherheitsbeiwerte fiir das strukturelle und nichtstrukturelle Eigengewicht die
statistischen Verteilungen anhand von Daten aktualisiert, die auf dem Schweizer
Strassennetz gesammelt und von Institutionen und privaten Unternehmen zur Verfligung
gestellt wurden. Auch die Variabilitat der Verkehrslasten wird auf der Grundlage von
Messungen des Gewichts in Bewegung (WIM) quantifiziert, die wahrend mehr als 20
Jahren an mehreren Standorten (~15 Stationen) in der Schweiz durchgefiihrt wurden. Auf
der Grundlage der aktualisierten statistischen Verteilungen werden parametrische
Analysen durchgefiihrt, um die Empfindlichkeit der Teilsicherheitsbeiwerte zu untersuchen
und ihren Wert zu schatzen.
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Die Variabilitat des Eigengewichts von Stahlbetonbauteilen wird im Allgemeinen durch
geometrische und Raumgewichtsschwankungen verursacht. Durch die Verwendung von
Toleranzen als Standardabweichung der geometrischen Parameter und der in der Literatur
verfligbaren statistischen Verteilungen scheinen die geometrischen Schwankungen bei
grossen Bauteilen weniger bedeutend zu sein. Der CoV fiir das strukturelle Eigengewicht
von Stahlbetonbauteilen liegt im Allgemeinen zwischen 3 und 6%.

Messungen an mehreren bestehenden Briicken im Schweizer Strassennetz zeigen, dass
die Variabilitat der Belagsdicke einer Strassenbriicke im Allgemeinen durch bereits
vorhandene Verformungen und die Briickengeometrie beeinflusst wird. In den
untersuchten Fallen ist die mittlere Belagsdicke zwischen 1,2 und 1,5 mal grésser als der
Nominalwert. In einigen Fallen ist die gemessene Belagsdicke mehr als das Doppelte des
Nennwerts was darauf hindeutet, dass der Nennwert der Belagsdicke wahrend einer
Erneuerung erhoéht wurde. Der Variationskoeffizient der gesamten Belagsdicke liegt
zwischen 10 und 20% und damit deutlich Gber dem Wert fir das strukturelle Eigengewicht,
was die in anderen Landern veroffentlichten Werte bestatigt.

Aus diesen Griinden werden zwei Teilsicherheitsbeiwerte vorgeschlagen, namlich ya1 fir
strukturelles und ye2 fur nichtstrukturelles  Eigengewicht. Wahrend die
Teilsicherheitsbeiwerte fir die Materialfestigkeiten unabhangig von den anderen
Unsicherheiten kalibriert wurden (um bei Bedarf eine einfache Anpassung zu ermdglichen),
wurden die beiden Teilsicherheitsbeiwerte flir stdndige Einwirkungen unter
Berlicksichtigung aller Unsicherheiten kalibriert, um eine zuverlassigere Bewertung fir alle
potenziell massgebenden Kombinationen zu ermdglichen.

In diesem Zusammenhang werden die Variabilititen der Materialfestigkeit anhand von in
der Schweiz erhobenen Daten aktualisiert. Die Verteilungen stimmen im Allgemeinen mit
den in Abschnitt 1 angegebenen Werten Uberein. Allerdings sind der CoV und der Bias-
Faktor der Betonfestigkeit fiir die analysierten Daten grosser als die in der internationalen
Literatur gefundenen Daten. Diese uberhohte Festigkeit ist wahrscheinlich darauf
zurlickzufiihren, dass die Hersteller den Zementgehalt erhéht haben, um die Kriterien der
Dauerhaftigkeit und Verarbeitbarkeit zu erfillen.

Die Variabilitat der Verkehrslast fur die wochentlichen Maximalereignisse liegt zwischen 10
und 18%. Die Extrapolation von 50-Jahres-Maxima-Verteilungen hangt wesentlich von der
Genauigkeit der Schwanzanpassung der wdéchentlichen Ausgangsverteilung ab. Die
Berlcksichtigung von Lognormal- und Gumbel-Extrem-Maxima-Verteilungen fiir die
Schwanzanpassung der  Ausgangsverteilung fihrt zu einem CoV  der
Verkehrslastvariabilitat zwischen 6 und 10%.

Nach den parametrischen Zuverlassigkeitsanalysen liegt der erforderliche Wert von ya1 fir
das Eigengewicht, um den Zielwert des Zuverlassigkeitsindex Bits0y = 3,8 zu erreichen,
zwischen 1,1 und 1,2, wahrend ya fur andere standige Einwirkungen zwischen 1,3 und
1,8 liegt, wenn der Nennwert der Belagsdicke als Referenzwert betrachtet wird.
Zuverlassigkeitsanalysen, die an ausgewahlten Fallstudien mit verschiedenen
Versagensarten durchgefihrt wurden, bestatigen, dass ye1=1,2 und ye2=1,5 im
Allgemeinen zu ausreichend sicheren Ergebnissen fir den Entwurf neuer und die
Bewertung bestehender Bauwerke fiihren. In Bezug auf den Referenzwert der Belagsdicke
ist, wie in Eurocode 1 empfohlen, eine Erhdhung um 20% des Nennwerts gerechtfertigt.
Zuverlassigkeitsanalysen, die an ausgewahlten Fallstudien mit verschiedenen
Versagensarten durchgefihrt wurden, bestatigen, dass ye1 =1,2 und ye2 = 1,5 fir das
strukturelle bzw. nicht-strukturelle Eigengewicht zu ausreichend sicheren Ergebnissen in
Bezug auf die aktuellen Werte und in absoluten Zahlen flihren.

Systemanderungen wahrend der Konstruktion und erhebliche Unterschiede zwischen der
Modellierung komplexer Strukturen und dem tatsachlichen Verhalten werden in den oben
beschriebenen Teilsicherheitsbeiwerten auf der Lastseite nicht berlicksichtigt. Wenn es fiir
das Tragwerkssystem relevant ist, sollte es je nach seiner Komplexitat und insbesondere
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im Fall von massgeblichen sproden Versagensarten, wenn das Verhalten nicht durch
konstruktiven Massnahmen verbessert werden kann, in einer angemessen konservativen
Weise modelliert und die Ergebnisse entsprechend interpretiert werden.

Zusammenfassung der vorgeschlagenen
Teilsicherheitsbeiwerten

Auf der Grundlage der in diesem Bericht beschriebenen Untersuchungen werden fiir einen
Zielwert des Zuverlassigkeitsindex S50 = 3,8 (CC2) die folgenden Teilsicherheitsbeiwerte
fur stndige und voriibergehende Bemessungssituationen vorgeschlagen.

FUr den Bewehrungsstahl:

e wenn die Prifung mit Nennwerten der geometrischen Abmessungen durchgefiihrt
wird, wird der Wert ys = 1,15 bestatigt

e wenn der Nachweis auf der Grundlage der Bemessungswerte der statischen Héhe
d¢ = dnom - 15 mm gefuhrt wird, kann der Teilsicherheitsbeiwert fir
Bewehrungsstahl auf ys = 1,05 reduziert werden.

Fir den Beton:

e DerWertyc = 1,50 wird bestatigt.

Fiar Querkraft in Elementen ohne Querkraftbewehrung und fir Durchstanzen nach

EN 1992-1-1:2023:

e wenn der Nachweis mit Nennwerten der geometrischen Abmessungen
durchgefiihrt wird, yv = 1,40

e wird der Nachweis auf der Grundlage von Bemessungswerten der statischen
Hohe dy = dhom - 15 mm gefiihrt, darf der Teilfaktor fir Querkraft und Durchstanzen
auf yy = 1,30 reduziert werden.

Der Teilsicherheitsbeiwert ysq, der die  Modellunsicherheiten in  der

Schnittkraftberechnung abdeckt, liegt in Abhangigkeit von den anderen Unsicherheiten

zwischen 1,05 und 1,15. Dieser Beiwert ist implizit in den Teilsicherheitsbeiwerten yg

und yq berlicksichtigt. Letztere kdnnen alternativ unter Annahme folgender statistischer

Werte der Modellunsicherheit kalibriert werden: Bias-Faktor = 1,0 und CoV = 8%. Es

ist zu beachten, dass diese Beiwerte und statistischen Werte potenzielle

Unsicherheiten im Zusammenhang mit der Modellierung komplexer Tragwerken

und/oder dem Einfluss von Systemanderungen bei Tragwerken mit begrenzter

Verformungsfahigkeit und begrenzter Méglichkeit zur Umverteilung der internen Krafte

im Grenzzustand der Tragfahigkeit nicht bericksichtigen.

FUr die standigen Einwirkungen:

¢ Da die Unsicherheiten des Eigengewichts der tragenden und der nichttragenden
Elemente unterschiedlich sind, empfiehlt es sich, zwei getrennte
Teilsicherheitsbeiwerte zu verwenden, namlich ygs flr tragende und yey flr
nichttragende Elemente.

e Der Standardwert flirr das Eigengewicht der Tragkonstruktion ist ygs = 1,35 wie in
der aktuellen SIA 260. ygs kann auf 1,20 reduziert werden, wenn die Modellierung
des Tragwerks durch den Planer hinreichend zuverlassig durchgefihrt wird
(ausreichende Erfahrung in Bezug auf die Art des Tragwerks / verwendete
Software / Einfluss der Modellierung des Tragwerks auf die Ergebnisse auf der
Grundlage ahnlicher Berechnungen an ahnlichen Tragwerken) und der Einfluss
der Systemanderungen wahrend des Baus hinreichend zuverlassig bertcksichtigt
wird (verwendete Methode / angenommene Materialparameter / Erfahrung des
Planers in Bezug auf den Einfluss der Annahmen auf die Ergebnisse). Die gleiche
Reduktion ist auch bei statisch bestimmten Tragwerken zulassig.

e Es wird der Teilfaktor fir das Eigengewicht der nichttragenden Elemente
ve2 = 1,50 vorgeschlagen. Fir den Fahrbahnbelag von Strassenbriicken sollte
zusatzlich zu yg2=1,50 die Nenndicke um 20% erhéht werden, wie in
EN 1991-1:2023 [138] vorgeschlagen.

FUr die variablen Einwirkungen:

e Die Bemessungswerte werden auf der Grundlage von Zuverlassigkeitsanalysen
abgeleitet (dies ist nicht Gegenstand der vorliegenden Untersuchung, da die

12 May 2025



1782 | Recalibration of partial safety factors for actions and resistances for new and existing bridges

Kalibrierung der Verkehrslasten, einschliesslich der Bemessungswerte, derzeit in
anderen Forschungsarbeiten untersucht wird). Die charakteristischen Werte
kdnnen mit einem nominalen Teilsicherheitsbeiwert yq = 1,50 bestimmt werden.

e Die oben genannten Teilsicherheitsbeiwerte gelten fir die Bemessung neuer
Bauwerke und fir die Bewertung bestehender Bauwerke, wenn die entsprechenden
Variablen nicht durch direkte Messungen ermittelt wurden.

e Fir die Beurteilung bestehender Bauwerke, bei denen die Abmessungen vor Ort
gemessen und/oder die Materialfestigkeiten anhand von Prifungen an Proben des
bestehenden Bauwerks ermittelt wurden, kdnnen die Teilsicherheitsbeiwerte anhand
des in diesem Bericht beschriebenen Verfahrens und der aus den Messungen
abgeleiteten statistischen Werte angepasst werden. Vereinfachend koénnen die
folgenden Teilsicherheitsbeiwerte angenommen werden:

e Fir ys und yc kdnnen die in Anhang A (Modifikation von Teilsicherheitsbeiwerten
fur Baustoffe) von EN 1992-1-1:2023 angegebenen Werte verwendet werden;

o FUr das strukturelle Eigengewicht sollten die oben beschriebenen Werte von yg+
verwendet werden;

o FUr die anderen standigen Einwirkungen kann yg2 = 1,20 angenommen werden,
wenn die Abmessungen an der bestehenden Struktur gemessen werden.
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Selon la méthode des facteurs partiels, introduite dans les normes de dimensionnement
des structures en béton au milieu du siécle dernier, la sécurité structurale est assurée en
effectuant des vérifications de I'état limite ultime a I'aide de valeurs de calcul calculées avec
des facteurs partiels. Ces derniéres années, des efforts ont été faits pour établir un cadre
standard de modélisation des probabilités. Toutefois, les sources d'incertitudes couvertes
par chaque facteurs partiel font encore I'objet de discussions au sein de la communauté
scientifique, car elles ne sont pas clairement définies dans les normes et les documents
de référence relatifs. En outre, les distributions statistiques des variables aléatoires de
base sont supposées correspondre aux meilleures connaissances a un moment donné. Au
fur et a mesure de I'évolution des connaissances, des progrés technologiques et
scientifiques ainsi que de la disponibilit¢ des connaissances, ces données statistiques
devraient étre mises a jour et conduire a une confirmation ou a une mise a jour des facteurs
partiels. Le fait que certains facteurs partiels ne reposent pas sur une base scientifique
solide peut conduire a des niveaux de sécurité insuffisants dans différents scénarios (type
de structures, modes de défaillance, matériaux, etc.) ou, dans certains cas, a des
structures excessivement colteuses (trop sdres). En outre, une connaissance adéquate
des variables aléatoires de base couvertes par chaque facteur partiel est fondamentale
pour améliorer la prise de décision lorsqu'il s'agit de structures existantes. Ainsi, pour
dimensionner des structures sdres et plus économiques, l'objectif de ce rapport est de
clarifier les principales incertitudes couvertes par chaque facteur partiel et de les mettre a
jour sur la base de distributions statistiques actualisées si nécessaire. A cette fin, il convient
de noter que dans le cadre du format des facteurs partiels (PSFF), il n'est pas correct de
se référer a un PSF individuel ; au lieu de cela, il faut considérer de maniére cohérente un
ensemble de PSF. En fait, outre la variabilité de chaque variable aléatoire, il faut tenir
compte de la mesure dans laquelle ces quantités contribuent a la fonction d'état limite, qui
sépare le domaine structurel sar de celui qui ne I'est pas. Par exemple, dans la méthode
d'analyse de la fiabilité du premier ordre (FORM), cette contribution est représentée par
les coefficients de sensibilité, qui sont la dérivée partielle de la fonction d'état limite par
rapport a la variable étudiée. Dans ce cadre, et puisque ce rapport se concentre
principalement sur les ponts routiers, un effort sera fait pour quantifier les incertitudes a la
fois du cété de la résistance et du cbté de I'action. Outre le poids propre de la structure, les
variabilités de la charge de trafic et de la charge de la chaussée sont étudiées.

Facteurs partiels dans le béton structurel

Différentes sources d'incertitude affectant la résistance des éléments en béton armé et les
facteurs partiels correspondants sont étudiées. A cette fin, de nouvelles données
statistiques sont collectées et évaluées. L'approche simple mais rigoureuse de I'analyse
de sensibilité des exposants est utilisée pour évaluer les facteurs partiels. En particulier,
I'approche de I'analyse de sensibilité de I'exposant équivaut a effectuer une expansion de
Taylor du premier ordre de la fonction de résistance dans l'espace logarithmique des
variables aléatoires de base qui influencent la résistance. L'exposant de sensibilité
représente la dérivée partielle locale de la résistance logarithmique par rapport a chaque
variable (supposée suivre une distribution log-normale). L'un des avantages de cette
méthode de calcul est que les facteurs de sensibilité de I'exposant sont sans dimension et
peuvent étre directement liés a l'incertitude par l'influence d'une variable de base donnée
sur le modéle de résistance. En outre, I'exhaustivité de I'analyse de sensibilité de I'exposant
peut étre facilement vérifiée en tenant compte des unités de chaque variable de résistance.

Pour calibrer les facteurs partiels du coté de la résistance sans tenir compte de la variabilité
du cbté de I'action, une hypothése généralement faite est de considérer chaque composant
séparément en supposant un facteur de sensibilité fixe de la méthode de fiabilité du premier
ordre (FORM) pour la résistance (R) et le c6té de I'action (E). Dans ce cas, les facteurs de
sensibilité sont supposés respectivement ae = -0,7 et ar = 0,8. Ces valeurs sont indiquées
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dans la norme EN 1990:2023 et dans le Code modéle fib 2010 et sont généralement
conservatrices, tenant compte d'un grand nombre de scénarios.

Sur la base de I'hypothése ci-dessus, I'approche de I'analyse de sensibilité des exposants
est utilisée pour cing modéles de résistance courants pour les structures en béton armé
(effort normal de traction, effort normal de compression, flexion, effort tranchant en
présence d’armature d’effort tranchant, poingonnement). Les résultats montrent que les
exposants associés aux différents parametres géométriques et des résistances des
matériaux varient d'un cas a l'autre, ce qui indique que les incertitudes déterminantes
varient en conséquence. Les résultats de ces analyses montrent que si une approche par
facteur partiel de matériau (ys et yc) peut étre appliquée a une large gamme de modeles
de résistance typiques (effort normal de traction et compression, flexion, effort tranchant
en présence d'une armature d’effort tranchant suffisante ; lorsque les incertitudes
concernant les résistances des matériaux et géométriques sont déterminantes), une
approche par facteur de résistance (yv ) est plus appropriée pour d'autres modéles de
résistance (effort tranchant sans armature d’effort tranchant et poingonnement ; lorsque
les incertitudes géométriques et celles du modéle sont déterminantes).

Le modeéle pour la résistance a la flexion des sections en béton armé est utilisé comme
référence pour la calibration du facteur partiel pour la limite d'élasticité de I'armature en
acier. Pour la calibration du facteur partiel de la résistance a la compression du béton, le
modéle de résistance des colonnes soumises a une effort normal de compression centrée
est utilisé. Les deux modéles de résistance sont couramment utilisés dans la pratique et
représentent des cas ou les variables de résistance des matériaux ont une influence
dominante et présentent des incertitudes de modeéle relativement élevées.

Pour la limite d'élasticité de I'acier d’armature, le facteur partiel ys = 1,15 couvrant les
incertitudes liées au matériau, au modeéle et a la géométrie est confirmé. Cependant, cette
approche peut conduire a des dimensionnements avec un niveau de sécurité insuffisant
pour les dalles dont la hauteur utile est inférieure a 200 mm et peut étre trop conservatrice
pour les éléments plus épais. Il est démontré qu'un niveau de sécurité constant et un
dimensionnement plus économique pourraient étre obtenus si les valeurs de
dimensionnement de la hauteur utile (pour couvrir l'incertitude géométrique explicitement)
sont adoptées avec un facteur partiel réduit ys.

Pour la résistance a la compression du béton, le facteur partiel actuel yc = 1,50 est
également confirmé. Cette valeur couvre non seulement les incertitudes liées aux
matériaux, a la géométrie et au modele, mais aussi celles liées a la production, au
transport, au bétonnage et a la cure du béton.

Bien que les valeurs actuelles de ys et yc soient confirmées, la recherche menée, outre la
possibilit¢ de réduire les facteurs partiels en cas d'utilisation de la valeur de
dimensionnement de la hauteur utile, fournit également des informations utiles pour
plusieurs cas pratiques :

e Pour la modification des facteurs partiels pour (i) un niveau plus élevé de controle de
qualité et (ii) les valeurs mesurées des données géométriques et la résistance a la
compression du béton fy selon EN 13791 a utiliser pour I'évaluation des structures
existantes.

e  Clarification de la différence entre la résistance du béton mesurée sur des éprouvettes
de contréle et la résistance in situ.

e  Calcul de yc et ys pour différentes valeurs cible de l'indice de fiabilité (autre que 3,8).

e  Pourla calibration du format de sécurité des analyses par éléments finis non linéaires:
il est important qu'en utilisant ces approches, toutes les incertitudes des matériaux et
géomeétriques soient traitées de la méme maniére qu'en utilisant des modéles
conventionnels. A cette fin, les données statistiques (coefficient de variation et
facteurs de biais) pour les valeurs des résistances des matériaux et géométriques qui
justifient les facteurs yc = 1,50 et ys = 1,15 sont présentées.
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En ce qui concerne le facteur partiel de résistance yv pour le poingonnement et la
résistance a l'effort tranchant des éléments sans armature d’effort tranchant, si les
incertitudes géométriques sont couvertes par le facteur partiel de résistance, yv = 1,40 est
proposé. Cependant, il est observé qu'une valeur constante de yv = 1,40 peut conduire a
un dimensionnement avec un niveau de sécurité insuffisant pour des dalles avec une
hauteur utile inférieure a 200 mm et peut étre trop conservatrice pour des éléments plus
épais. Finalement, il est démontré qu'un niveau de sécurité plus constant est atteint si la
valeur de dimensionnement de la hauteur utile est combinée avec une valeur plus faible
du facteur partiel yv.

La plupart des résultats de ce travail ont été mis en ceuvre dans la deuxiéme génération
de la norme européenne pour le calcul des structures en béton (EN 1992-1-1:2023) et son
document de référence, de sorte qu'ils seront adoptés implicitement dans les futures
versions de la norme suisse pour les structures en béton.

Incertitudes du modéle dans les effets d'action et le calcul
de la charge ultime dans les structures statiquement
indéterminées

Ce travail se concentre sur les incertitudes dans le calcul des effets d'action et de la charge
ultime des structures en béton armé et des structures mixtes acier-béton. Pour le
dimensionnement et I'évaluation des structures, il est courant de comparer les effets
d'action avec les résistances sectionnelles. Alors que les incertitudes du modeéle du cété
de la résistance ont été largement étudiées comme décrit ci-dessus, l'incertitude du modéle
dans le calcul des effets d'action dans les systémes statiquement indéterminés n'a pas
encore été correctement étudiée. En particulier, l'incertitude du modéle dans les calculs
des effets d'action et de la charge ultime est étudiée en tenant compte de divers modéeles
mécaniques et modes de défaillance. Pour collecter une quantité suffisante de données et
effectuer des analyses statistiques, la réponse expérimentale des systemes statiquement
indéterminés est obtenue en adoptant une technique simple et efficace qui permet d'utiliser
les résultats expérimentaux disponibles dans la littérature.

Comparé a des modeles plus raffinés, un modéle élastique linéaire avec une rigidité
sectionnelle non fissurée conduit a un plus grand coefficient de variation (CoV) de
l'incertitude de modeéle dans le calcul de la charge ultime ; cependant, a un plus grand CoV
correspondent de plus grandes valeurs de la moyenne, conduisant a une distribution de la
queue statistique similaire, donc a une marge de sécurité similaire a celle des approches
plus raffinées (comme par exemple les modeéles non linéaires). Pour les modéles linéaires
élastiques non fissurés, on peut également observer qu'un surdimensionnement d'un ou
plusieurs composants d'un systéme statiquement indéterminé influence le CoV de
l'incertitude de modéle dans le calcul des effets de I'action. En ce qui concerne les modéles
de calcul plus raffinés, on peut observer un plus faible CoV de l'incertitude de modéle pour
le calcul de la charge ultime, alors que ce n'est pas toujours le cas pour le calcul des effets
d'action, en fonction du taux de surdimensionnement des éléments.

Pour les structures en béton armé, les modéles basés sur la théorie de la plasticité
supposant une capacité de déformation illimitée, s'ils sont exécutés sans exigences de
ductilité, conduisent a des CoV trés élevés et a des résultats potentiellement dangereux.
Limiter la capacité de déformation ou vérifier que les exigences de ductilité sont remplies
réduit considérablement le CoV. Le mode de défaillance influence l'incertitude de modéle
dans le calcul de la charge ultime, mais pas l'incertitude de modéle dans le calcul des effets
de Il'action. Un plus grand CoV pour le calcul de la charge ultime est observé pour les
systemes fragiles, indépendamment du modéle de calcul.

Pour les structures mixtes acier-béton, lors de I'utilisation d'un modéle élastique linéaire,

l'incertitude de modéle dans le calcul de la charge ultime est similaire a celle obtenue pour
les structures en béton armé. De méme, la classe de section, qui est liée au mode de
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défaillance, influence l'incertitude de modéle dans le calcul de la charge ultime, quelle que
soit I'analyse effectuée, comme cela a été observé pour les structures en béton armé.
Enfin, une diminution du CoV est observée en limitant la capacité de déformation lors de
l'utilisation de modeles plastiques. Outre le systeme a deux poutres assemblées, ces
résultats sont confirmés pour les structures mixtes par I'étude d'un systeme de poutre
continue assemblé a l'aide des réponses expérimentales des poutres simplement
appuyées. Globalement, sur la base des résultats obtenus pour les systemes a deux
poutres assemblées, on peut supposer que les incertitudes dans le calcul de la charge
ultime et, par conséquent, des effets de I'action sont similaires a celles obtenues pour les
structures en béton armé.

Au moyen d'analyses paramétriques et d'études de cas, le facteur partiel ysq4 qui couvre les
incertitudes liées aux calculs des effets d'action, et qui est implicitement considéré dans
les facteurs partiels ys et ya du c6té de I'action, se situe entre 1,05 et 1,15. Il est important
de noter que ce facteur ysq ne tient pas compte des incertitudes liées aux variations du
systéme structurel pendant la construction ou a la modélisation structurelle des structures
complexes. Ces incertitudes supplémentaires méritent d'étre étudiées plus en détail et
dépendent fortement de la complexité de la structure, de la méthode de construction, des
outils utilisés et de I'expérience de I'ingénieur.

Recalibration des facteurs partiels pour les charges
permanentes

La calibration du facteur partiel est généralement effectuée pour fournir un niveau de
sécurité acceptable pour un large éventail de scénarios de dimensionnement et chaque
facteur partiel couvre des incertitudes bien définies liées a la variabilité d'une ou plusieurs
variables aléatoires de base, telles que la géométrie, la résistance des matériaux et les
modeles de calcul. Bien que les distributions statistiques des variables aléatoires de base
soient supposées correspondre aux meilleures connaissances a un moment donné, au fur
et a mesure que les connaissances augmentent, que le progrés technologique progresse
et que davantage de données sont disponibles, ces distributions doivent étre mises a jour
et conduire a la confirmation ou a l'actualisation des facteurs partiels. Sur cette base, pour
mettre a jour les facteurs partiels concernant le poids structurel et non-structurel, les
distributions statistiques sont mises a jour en utilisant les données collectées sur le réseau
routier suisse et fournies par des institutions et des entreprises privées. De plus, la
variabilité des charges de trafic est quantifiée sur la base des mesures de poids en
mouvement (WIM) effectuées pendant plus de 20 ans en plusieurs endroits (~15 stations)
situés en Suisse. Sur la base des distributions statistiques mises a jour, des analyses
paramétriques sont effectuées pour étudier la sensibilité des facteurs partiels et pour
estimer leur valeur.

La variabilité¢ du poids propre des éléments en béton armé est généralement due a la
variabilité géométrique et a la variabilité du poids spécifique du béton. En utilisant les
tolérances comme écart-type des paramétres géomeétriques et les distributions statistiques
disponibles dans la littérature, les variabilités géométriques semblent étre moins
importantes pour les grands éléments. Le CoV pour le poids propre structurel des éléments
en béton armé est généralement compris entre 3 et 6%.

Les mesures effectuées sur plusieurs ponts existants du réseau routier suisse montrent
que la variabilité de I'épaisseur de I'enrobé dans un pont routier est généralement
influencée par les déformations préexistantes et la géométrie du tablier. Pour les cas
analysés, I'épaisseur moyenne de I'enrobé est supérieure a la valeur nominale, la valeur
moyenne mesurée étant généralement entre 1,2 et 1,5 fois la valeur nominale. Dans
certains cas, la valeur mesurée dépasse méme deux fois la valeur nominale, ce qui
suggére que la valeur nominale de I'épaisseur de I'enrobé a été augmentée lors du
resurfagage. Le coefficient de variation de I'épaisseur totale de I'enrobé se situe entre 10
et 20 %, ce qui est nettement plus élevé que pour le poids propre structurel et confirme les
valeurs publiées dans d'autres pays.
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Pour ces raisons, deux facteurs partiels, respectivement yc1 pour le poids structurel et ys2
pour le poids propre non-structurel, sont proposés. Alors que les facteurs partiels pour les
matériaux ont été calibrés indépendamment des autres variabilités (pour permettre une
simple modification si nécessaire), les deux facteurs partiels pour les actions permanentes
ont été calibrés en tenant compte de toutes les variabilités afin de fournir une évaluation
plus fiable pour toutes les combinaisons potentiellement déterminantes.

A cet égard, les variabilités de résistance des matériaux sont mises & jour & l'aide des
données recueillies en Suisse. Les distributions sont généralement conformes aux valeurs
spécifiées dans le premier chapitre. Cependant, le CoV et le facteur de biais de la
résistance du béton pour les données analysées sont plus importants que les données
trouvées dans la littérature internationale. Cette sur-résistance est probablement
attribuable a une augmentation de la teneur en ciment pour répondre aux criteres de
durabilité et d'ouvrabilité du béton.

La variabilité de la charge de trafic pour les événements hebdomadaires maximaux se situe
entre 10 et 18%. L'extrapolation des distributions des maxima sur 50 ans dépend de
maniére significative de la précision de l'ajustement de la queue de la distribution
hebdomadaire de départ. La prise en compte des distributions log-normales et de Gumbel
pour l'ajustement de la queue de la distribution de départ conduit a une valeur de référence
de la variabilité de la charge de trafic comprise entre 6 et 10%.

Selon les analyses de fiabilité paramétriques, la valeur requise de ya1 pour le poids propre
afin d'atteindre la valeur cible de l'indice de fiabilité Big50y = 3,8 se situe entre 1,1 et 1,2
tandis que ye2 pour les autres actions permanentes se situe entre 1,3 et 1,8 dans le cas
ou I'épaisseur nominale de I'enrobé est considérée comme valeur de référence. Les
analyses de fiabilité effectuées sur des études de cas sélectionnés comprenant divers
modes de défaillance confirment que ys1 = 1,2 et ys2 = 1,5 conduisent en général a des
résultats suffisamment sdrs pour le dimensionnement de nouvelles structures et
I'évaluation de structures existantes. En ce qui concerne la valeur de référence de
I'épaisseur de I'enrobage, une augmentation de 20 % de la valeur nominale recommandée
dans I'EN 1991-1:2023 est justifiée. Les analyses de fiabilité effectuées sur des études de
cas sélectionnés comprenant divers modes de défaillance confirment que ys1 = 1,2 et
ye2 = 1,5, respectivement pour le poids propre structurel et non-structurel, conduisent a
des résultats suffisamment sirs par rapport aux valeurs actuelles et en termes absolus.

Les modifications du systéme structural au cours de la construction et les différences
significatives entre la modélisation de structures complexes et le comportement réel ne
sont pas prises en compte dans les facteurs partiels du c6té de la charge décrits ci-dessus.
Si le systeme structurel le permet, en fonction de sa complexité et en particulier dans le
cas de modes de défaillance fragiles, si le comportement ne peut pas étre amélioré par
des détails judicieux au cours du processus de dimensionnement, la structure doit étre
modélisée de maniére raisonnablement conservatrice et les résultats doivent étre
interprétés en conséquence.

Résumé des facteurs partiels proposés

Sur la base des études décrites dans le présent rapport, les facteurs partiels suivants pour
les situations de projet durables et transitoires sont proposés pour une valeur cible de
l'indice de fiabilité Bigt50 = 3,8 (CC2).

e Pour l'acier d'armature :
e si la vérification est effectuée avec les valeurs nominales des dimensions
géomeétriques, la valeur ys = 1,15 est confirmée
e sila vérification est effectuée sur la base des valeurs de dimensionnement de la
hauteur utile dy = dnom - 15 mm, le facteur partiel pour I'armature peut étre réduit a
ys = 1,05.
e Pour le béton :
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e Lavaleur yc = 1,50 est confirmée.

Pour I'acier de construction métallique (structural steel) :

e La valeur yms = 1,05 est confirmée.

Pour l'effort tranchant dans les dalles sans armature d’effort tranchant et pour le

poingonnement selon EN 1992-1-1:2023 :

e si la vérification est effectuée avec les valeurs nominales des dimensions
géométriques, yv =1,40 ;

¢ sila veérification est effectuée sur la base des valeurs de dimensionnement de la
hauteur utile dy = dnom - 15 mm, le facteur partiel pour I'effort tranchant et le
poingonnement peut étre réduit a yv = 1,30.

Le facteur partiel ysq couvrant les incertitudes de modele dans le calcul de I'effet
d'action se situe entre 1,05 et 1,15 en fonction des autres incertitudes. Ce facteur est
implicitement pris en compte dans les facteurs partiels yc et yq . Ces derniers peuvent
également étre calibrés en supposant les valeurs statistiques suivantes de l'incertitude
de modéle : facteur de biais y=1,0 et CoV =8%. Il convient de noter que ces
coefficients et valeurs statistiques ne tiennent pas compte des incertitudes potentielles
lies a la modélisation de structures complexes et/ou de l'influence des changements
de systéme dans le cas de structures ayant une capacité de déformation limitée et une
possibilité limitée de redistribuer les efforts a I'état limite ultime.

Pour les actions permanentes :

e FEtant donné que les incertitudes relatives au poids propre des éléments
structuraux et non structuraux sont différentes, il est recommandé d'utiliser deux
facteurs partiels distincts, a savoir ygs pour les éléments structuraux et yg2 pour
les éléments non-structuraux.

e La valeur par défaut du facteur pour le poids propre de la structure est ygr = 1,35
comme dans la norme SIA 260 actuelle. ygs peut étre réduit a 1,20 si la
modélisation de la structure est effectuée par le concepteur de maniére
suffisamment fiable (expérience suffisante par rapport au type de structure /
logiciel utilisé / influence de la modélisation de la structure sur les résultats basés
sur des calculs similaires sur des structures similaires) et si l'influence des
changements du systéme pendant la construction est prise en compte de maniére
suffisamment fiable (méthode utilisée / paramétres des matériaux supposés /
expérience du concepteur par rapport a l'influence des suppositions sur les
résultats). La méme réduction est autorisée dans le cas de structures
statiquement déterminées.

e Le facteur partiel pour le poids propre des éléments non-structuraux ye2 = 1,50
est proposé. Pour les enrobés des ponts routiers, en plus de yg2= 1,50,
I'épaisseur nominale doit étre augmentée de 20% conformément a la norme
EN 1991-1:2023 [138].

Pour les actions variables :

e Les valeurs de dimensionnement sont dérivées sur la base d'analyses de fiabilité
(hors du champ de la présente recherche puisque la calibration des charges de
trafic, y compris les valeurs de dimensionnement, sont actuellement étudiées dans
le cadre d'autres projets de recherche). Les valeurs caractéristiques peuvent étre
déterminées en divisant la valeur de dimensionnement par un facteur partiel
nominal yq = 1,50.

Les facteurs partiels ci-dessus sont valables pour le dimensionnement de nouvelles
structures et pour [I'évaluation des structures existantes lorsque les variables
correspondantes n'ont pas été actualisées par des mesures directes.
Pour I'évaluation des structures existantes, lorsque les dimensions ont été mesurées
sur place et/ou que la résistance des matériaux a été actualisée a partir d'essais sur
des échantillons prélevés sur la structure existante, les facteurs partiels peuvent étre
ajustés en utilisant la procédure décrite dans le présent rapport et les valeurs
statistiques dérivées des mesures. De maniere simplifiée, les facteur partiels suivants
peuvent étre admis :

e Pourysetyc, les valeurs indiquées a I'annexe A (Modification des facteurs partiels
relatifs aux matériaux) de la norme EN 1992-1-1:2023 peuvent étre utilisées ;
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e Pour le poids propre de la structure, il convient d'utiliser les valeurs de ygs décrites

ci-dessus ;
e Pour les autres actions permanentes, on peut admettre ys>=1,20 si les

dimensions sont mesurées sur la structure existante.
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According to the partial safety factors method, introduced in structural concrete design
codes in the middle of the last century, structural safety is ensured by performing limit state
verifications using design values calculated with partial safety factors. In recent years,
some efforts were made to establish a standard probability modelling framework. However,
the sources of uncertainties covered by each partial factor are still a matter of discussion
in the scientific community since they are not clearly defined in codes of practice and the
related background documents. Moreover, the statistical distributions of the basic random
variables are assumed according to the best knowledge at a specific time. As knowledge
evolves, technological advancement progresses and more data is available, these
statistical data should be updated and lead to either a confirmation or an update of the
partial safety factors. The fact that some of the partial safety factors do not have a solid
scientific base might lead to insufficient levels of safety in different scenarios (type of
structures, failure modes, materials etc.), or, in some cases, lead also to excessively
expensive structures (too safe). In addition, an adequate knowledge of the basic random
variables covered by each partial factor is fundamental to improve decision-making when
dealing with existing structures. Thus, to design safe and more economical structures, the
aim of this report is to clarify the main uncertainties covered by each partial safety factor
and to update the partial safety factors on the basis of updated statistical distributions if
needed. To this purpose, it should be noted that within the frame of the Partial Safety Factor
Format (PSFF), it is not correct to refer to an individual PSF; instead, one must consistently
consider a set of PSF. In fact, in addition to the variability of each random variable, the
extent to which these quantities contribute to the limit state function, which separates the
safe structural domain from the unsafe one, must be considered. For instance, in the First
Order Reliability Analysis Method (FORM), this contribution is represented by the sensitivity
factors, which is the partial derivative of the limit state function with respect to the
investigated variable. In this framework and since this report will mainly focus on road
bridges, an effort will be put in quantifying uncertainties both on the resistance side and on
the action side. Besides the structural self-weight, the traffic load and the pavement load
variabilities are investigated.

Partial safety factors in structural concrete

Various sources of uncertainty affecting the resistance of reinforced concrete members and
the corresponding partial safety factors are investigated. To this purpose, new statistical
data are collected and evaluated. The simple, yet rigorous exponent sensitivity analysis
approach is used for assessing the partial safety factors. In particular, the exponent
sensitivity analysis approach is equivalent to perform a first order Taylor expansion of the
resistance function in the logarithmic space of the basic random variables influencing the
resistance. The exponent sensitivity represents local partial derivative of the logarithmic
resistance with respect to each variable (assumed following a log-normal distribution). One
of the advantages of this calculation methodology is that the exponent sensitivity factors
are unitless and can be directly linked to the uncertainty through the influence of a given
basic variable on the resistance model. In addition, the thoroughness of the exponent
sensitivity analysis can be easily verified considering the units of each resistance variable.

To calibrate the partial safety factors on the resistance side without accounting for the
variability on the action side, a common assumption generally made is to consider each
component separately by assuming a fixed First Order Reliability Method (FORM)
sensitivity factor for the resistance (R) and the action side (E). In this case, the sensitivity
factors are assumed respectively ae =-0.7 and ar = 0.8. These values are given in
EN 1990:2023 and the fib Model Code 2010 and are generally conservative accounting for
a large number of scenarios.
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Based on the above assumption, the exponent sensitivity analysis approach is used for five
common resistance models for RC structures (axial tension, axial compression, bending,
shear with shear reinforcement, punching shear). The results show that the exponents
associated to the different geometrical and material parameters vary from one case to the
other, indicating that the governing uncertainties vary correspondingly. The results of such
analyses show that while a material factor approach (ys and yc ) can be applied to a wide
range of typical resistance models (axial tension and compression, bending, shear in the
presence of sufficient shear reinforcement; where the material and the geometrical
uncertainties are governing), a resistance factor approach (yv) is more appropriate for other
specific resistance models (shear without shear reinforcement and punching shear; where
the geometrical and the model uncertainties govern).

The model for the bending resistance of reinforced concrete sections is used as reference
for the calibration of the partial factor for the yield strength of steel reinforcement. For the
calibration of the partial factor for the concrete compressive strength, the model for the
resistance of columns against axial compression is used. Both resistance models are
commonly used in practice and represent cases where the material strengths variables
have a dominating influence and present relatively high model uncertainties.

For the steel yield strength, the partial safety factor ys = 1.15 covering the material, model
and geometrical uncertainties is confirmed. However, this approach can lead to unsafe
designs for slabs with an effective depth smaller than 200 mm and can be overly
conservative for deeper members. It is shown that a constant safety level and a more
economic design could be obtained if design values of the effective depth (to cover the
geometrical uncertainty explicitly and individually) are adopted together with a reduced
partial factor y;.

For the concrete compressive strength, current partial factor yc = 1.50 is also confirmed.
This value includes not only the material, geometrical and model uncertainties, but also
those which relate to the production, transportation and casting of concrete.

Despite the fact that current values of ys and yc are confirmed, the conducted research, in
addition to the possibility to reduce the partial factors in case the design value of the
effective depth is used, also provides useful information for several practical cases:

e For the modification of partial factors for (i) enhanced quality control and (ii) measured
values of geometrical data and the compressive concrete strength f according to
EN 13791 to be used for the assessment of existing structures.

e Clarification of the difference between cylinder concrete strength (measured on control
specimens) and in-situ strength.

e  Calculation of yc and ys for different values of the target reliability index (other than
3.8).

e  For the safety format calibration of refined non-linear finite element analyses: it is
important that by using these approaches, all material and geometrical uncertainties
are treated consistently as by using conventional models. For this purpose, the
statistical data (coefficient of variation and bias factors) for material and for
geometrical values which have been assumed to justify the factors yc =1.50 and
ys = 1.15 are presented.

With respect to the resistance partial factor yv for punching shear and shear resistance of
members without shear reinforcement, if geometrical uncertainties are covered by the
resistance partial factor, yv = 1.40 is proposed. However, it is observed that a constant
value of yv = 1.40 can lead to unsafe design of slabs with a shear resisting effective depth
smaller than 200 mm and can be overly conservative for thicker slabs. Eventually, it is
shown that a more constant safety level is achieved if the design value of the shear resisting
effective depth is combined with a lower value of the partial factor yv.

Most of the results of this work have been implemented in the second generation of the
European standard for the design of concrete structures (Eurocode 2 of 2023) and its
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background document, so that they will be adopted implicitly in the future versions of the
Swiss code for concrete structures.

Model uncertainties in action effects and load bearing
capacity calculation in statically indeterminate structures

This work focusses on the uncertainties in calculating action effects and the global load
bearing capacity of reinforced concrete and composite structures (steel-concrete). For the
dimensioning and assessment of structures, it is common practice to compare action
effects with sectional resistances. While model uncertainties on the resistance side have
been extensively investigated as described above, the model uncertainty in the calculation
of action effects in statically indeterminate systems has not been properly investigated yet.
In particular, the model uncertainty in action effects and load bearing capacity calculations
is investigated considering various mechanical models and failure modes. To collect a
sufficient amount of data and perform statistical analyses, the experimental response of
statically indeterminate systems is obtained adopting a simple and effective technique
which allows using experimental results available in literature.

Compared to more refined models, a linear elastic model with uncracked sectional stiffness
leads to larger CoV of the model uncertainty in load bearing capacity calculation; however,
to a larger CoV correspond larger values of the mean, leading to similar tail’s distribution,
thus, similar safety margin as for more refined approaches (i.e. non-linear models). For
linear elastic uncracked models, it can also be observed that an over-design of one or more
components of a statically indeterminate system influences the CoV of the model
uncertainty in action effects calculation. Regarding more refined calculation models, a
lower CoV of the model uncertainty can be observed for the bearing capacity calculation
while this is not always the case for action effects calculation, depending on the over-design
ratio of the members;

For reinforced concrete structures, models based on limit analysis assuming unlimited
deformation capacity, if performed without ductility requirements lead to very large CoV
and potentially unsafe results. Limiting the deformation capacity, or verifying that ductility
requirements are fulfilled reduces considerably the CoV. The failure mode influences the
model uncertainty in load bearing capacity calculation but does not influence the model
uncertainty in action effects calculation. Larger CoV for the load-bearing capacity
calculation is observed for brittle systems independently of the calculation model.

For composite steel-concrete structures, when using a linear elastic model, the model
uncertainty in load bearing capacity calculation is similar to the one obtained for reinforced
concrete structures. Also, the section class, which is related to the failure mode, influences
the model uncertainty in load-bearing capacity calculation regardless of the analysis
performed, as observed for reinforced concrete structures. Finally, a decrease of the CoV
is observed by limiting the deformation capacity when using plastic models. In addition to
the assembled two-beams system, for composite structures these results are confirmed by
investigating a continuous system assembled using the experimental responses of the
simply-supported beams. Overall, based on the results for assembled two-beams systems,
it can be assumed that the uncertainties in calculation of the load bearing capacity and,
consequently, of the internal action effects are similar to those obtained for reinforced
concrete structures.

By means of parametric analyses and investigated case studies, the partial safety factor
ysd that covers the uncertainties related to the action effects calculations, and is implicitly
implemented in the partial factors yc and ya on the action side, ranges between 1.05 and
1.15. It is important to note that ysq factor does not account for uncertainties related to
structural system variations during construction or structural modelling of complex
structures. These additional uncertainties deserve to be investigated more in detail and
significantly depend on the complexity of the structure, the construction method, the used
tools and the experience of the designer.
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Recalibration of partial safety factors for permanent loads

The calibration of the partial safety factor is generally performed to provide an acceptable
level of safety for a wide range of design scenarios and each partial safety factor covers
well-defined uncertainties related to the variability of one or more basic random variables,
such as geometry, materials and models. Although the statistical distributions of the basic
random variables are assumed according to the best knowledge at a specific time, as
knowledge increases, technological advancement progresses and more data is available,
these distributions should be updated and lead to either confirming or updating of the partial
safety factors. On this basis, to update the partial factors on structural and non-structural
self-weight, statistical distributions are updated using data collected on the Swiss road
network and provided by institutions and private companies. Also, the variability of traffic
loads is quantified based on weight in motion measurements performed during more than
20 years in multiple locations (~15 stations) located in Switzerland. Based on the updated
statistical distributions, parametric analyses are performed to investigate the sensitivity of
the partial factors and to estimate their value.

Structural self-weight variability of the reinforced concrete members is generally caused by
geometric and concrete specific weight variability. By using tolerances as standard
deviation of the geometrical parameters and statistical distributions available in literature,
geometric variabilities appear to be less significant for large members. The CoV for
structural self-weight of reinforced concrete members is generally between 3 and 6%.

Measurements in several existing road bridges in the Swiss road network show that the
variability of the pavement thickness is generally influenced by pre-existing deformations
and the bridge geometry. For the analysed cases, the mean thickness of the pavement is
larger than the design value with the bias factor generally between 1.2 and 1.5. In some
cases, the bias is larger than 2 suggesting that during resurfacing the nominal value of the
pavement thickness was increased. The CoV of the overall pavement thickness is found
between 10 and 20%, significant larger that for the structural self-weight, confirming values
published in other countries.

For these reasons, two partial safety factors, respectively ye1 for structural and ye2 for
non-structural self-weight are proposed. While the material partial factors have been
calibrated independently of the other variabilities (to allow for a simple modification if
needed), the two partial factors for permanent actions have been calibrated accounting for
all variabilities to provide a more reliable assessment for all potentially governing
combinations.

With this respect, materials strength variabilities are updated using data collected in
Switzerland. Distributions are generally in line with values specified in Section 1. However,
the CoV and bias factor of concrete strength for the analysed data are larger than data
found in international literature. This over-strength is probably to be attributed to an
increase in cement content to meet durability and workability criteria by producers.

The variability of the traffic load for the weekly maxima events is found between 10 and
18%. Extrapolation of 50-year maxima distributions depends significantly on the tail fitting
accuracy of the starting weekly distribution. Considering both log-normal and Gumbel
extreme-maxima distributions for the tail fitting of the starting distribution leads to CoV of
the traffic load variability between 6 and 10%.

According to the parametric reliability analyses, the required value of ya1 for self-weight to
reach the target value of the reliability index Bigts0y = 3.8 lies between 1.1 and 1.2 while yc2
for other permanent actions is between 1.3 and 1.8 in case the nominal pavement thickness
is considered as reference value. Reliability analyses performed on selected case studies
including various failure modes confirm that ye1 = 1.2 and ys2 = 1.5 lead in general to
sufficiently safe results for the design of new and the assessment of existing structures.
With respect to the reference value of the pavement thickness, an increase of 20% of the
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nominal value as recommended in Eurocode 1 is justified. Reliability analyses performed
on selected case studies including various failure modes confirm that ys1 =1.2 and
ye2 = 1.5, respectively for structural and non-structural self-weight lead to sufficiently safe
results with respect to current values and in absolute terms.

Structural system changes during construction and significant differences between
modelling of complex structures and actual behaviour are not accounted for in the partial
safety factors on the load side described above. If relevant for the structural system,
depending on its complexity and particularly in case of governing brittle failure modes, if
the behaviour cannot be improved with sound detailing during the design process, the
structure should be modelled in a reasonably conservative manner and the results
interpreted accordingly.

Summary of proposed partial factors

Based on the investigations described in this report, the partial factors for persistent and
transient design situations can be proposed for a target value of the reliability index
,3@,50 =38 (CC2).

e For reinforcing steel :

e If the verification is performed with the nominal values of the geometric
dimensions, the value ys = 1.15 is confirmed;

e If the verification is carried out on the basis of the design values of the effective
depth dy = drhom - 15 mm, the partial factor for the reinforcement may be reduced
to ys = 1.05.

e Forconcrete :

e The value yc = 1.50 is confirmed.

e For structural steel :

e The value yms = 1.05 is confirmed.

e For shear stress in slabs without shear reinforcement and for punching according to
EN 1992-1-1:2023 :

e If the verification is carried out using the nominal values of the geometric
dimensions, yv = 1.40;

e If the verification is carried out on the basis of the design values of the effective
depth dy = dnom - 15 mm, the partial factor for shear and punching can be reduced
to yv =1.30.

e The partial factor ysq covering the model uncertainties in the action effect calculation
lies between 1.05 and 1.15 depending on the other uncertainties. This factor is implicitly
accounted for in the partial factors y¢ and yq. Alternatively, ye and yq can be calibrated
assuming following statistical values of the model uncertainty: bias factor gy = 1.0 and
CoV = 6.5-8%. It has to be noted that these factors and statistical values do not account
for potential uncertainties related to the modelling of complex structures and/or the
influence of system changes in the case of structures with limited deformation capacity
and limited possibility to redistribute internal forces at ultimate limit state.

e For permanent actions :

e Since the uncertainties of the self-weight of structural and non-structural elements
are different, it is recommended to use two separate partial factors, namely yg for
structural and yg2 for non-structural elements

e The default value of the factor for the structural self-weight is ygs = 1.35 as in the
current SIA 260. ygr may be reduced to 1.20 in case the modelling of the structure
is conducted by the designer in a sufficiently reliable manner (sufficient experience
with respect to the type of structure / software used / influence of the modelling of
the structure on the results based on similar calculations on similar structures) and
if the influence of changes in the system during construction is taken into account
in a sufficiently reliable manner (method used / material parameters assumed /
experience of the designer with respect to the influence of assumptions on the
results). The same reduction is allowed also in the case of statically determined
structures.
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e The partial factor for the self-weight of non-structural elements yg2 = 1.50 is
proposed. For the pavement of road bridges, in addition to ys2 = 1.50, the nominal
thickness should be increased by 20% in accordance with EN 1991-1:2023 [128].

e For variable actions :

e The design values are derived on the basis of reliability analyses (out of the scope
of the present research since the calibration of traffic loads, including their design
values, are currently investigated in other research projects). The characteristic
values can be determined by dividing the design value by a nominal partial factor
ya = 1.50.

e The above partial factors are valid for the design of new structures and for the
assessment of existing structures where the related variables have not been assessed
by direct measurements.

e For the assessment of existing structures, where the dimensions have been measured
on site and/or the material strengths have been assessed from tests on samples taken
from the existing structure, the partial factors may be adjusted using the procedure
described in this report and the statistical values derived from the measurements. As
a first step, the following partial factors may be assumed:

e As afirsts step, the following partial factors can be assumed:

e For ys and yc, the values provided in Annex A (Adjustment of partial factors for
materials) of EN 1992-1-1:2023 may be used,;

e For the structural self weight, the values of yss described above should be used;

e For the other permanent actions, ys2 = 1,20 may be used if the dimensions are
measured on the existing structure.
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Introduction

Partial safety factors for concrete and reinforcing steel covering the material, the
geometrical and the model uncertainties are used since several decades in codes of
practice for concrete structures to calculate the design values of the resistances Ry to be
compared to the design values of the internal forces Ey in the verification of the Ultimate
Limit State to ensure that Ry = E4. The approach with an explicit verification of the Ultimate
Limit State (ULS) has replaced the permissible stresses approach since the 1970s (in
Switzerland, the verification for prestressed structures was conducted at ULS already
according to SIA 162:1968 and for the general case, since its guideline SIA 34:1976). The
partial safety factors for concrete and steel reinforcement are relatively stable since more
than five decades although they have been calibrated at the beginning to ensure the same
level of safety as previous standards based on the permissible stresses approach. Current
values according to SIA 262:2013 [1] (namely yc = 1.50 and ys = 1.15) have been adopted
from EN 1992-1-1:2004 [3]) whose calibration according to reliability analysis is described
in its background document [23].

The theoretical bases of the calibration of the partial factors are still valid and the statistical
values of the uncertainties covered by the partial factors for concrete and steel have
evolved little in recent decades. Nevertheless, a recalibration of yc and ys is justified for
several reasons:

e The statistical values of the model uncertainties should be consistent with the actual
values which refer to the models used for the verification.

o With respect to the uncertainties related to the actual concrete compressive strength in
the structure, there is a need for a clear definition of the effects covered and the
assumed statistical values.

e For design formulae where the concrete strength is not accounted for in a linear manner
(as for instance punching and shear in slabs without shear reinforcement, where the
resistance is proportional to the concrete strength with an exponent of 1/3), there is a
need of a recalibration and to avoid some shortcomings, and the definition of a new
partial factor is suitable.

e For the sake of simplicity, the dominating geometrical uncertainties, as for instance the
effective depth, are typically covered by the material partial factors yc and ys.
Nevertheless, this simplification shows some shortcomings (is overly conservative for
deep members, slightly unconservative for thin members). For this reason, the
possibility to use an alternative format, where the verification is conducted on the basis
of design values of the dominant geometrical dimension, can be useful to save material
in dimensioning new structures or in assessing existing structures in a more reliable
manner.

e The partial safety factors for materials have been calibrated on the basis of the most
common cases (design formulae for bending and compression; typical material
uncertainties; most common tolerance class in execution; new cast-in-place concrete
members; verification based on nominal geometrical values; usual target value of the
reliability index; etc.). Nowadays, exceptions are more and more common. For this
reason, there is a need for a consistent procedure to adjust the partial factors for
materials for other situations as for instance: (a) geometrical deviations fulfilling more
stringent tolerance classes during execution (as for instance in precast elements); (b)
calculation of the design resistance on the basis of geometrical values measured on the
finished structure (for new and existing structures); (c) verification on the basis of the
compressive concrete strength and/or the reinforcement yield strength assessed in the
existing structure; (d) the use of other verification methods with different model
uncertainties (as for instance Non-Linear Finite Element Analysis Methods, see next
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point); and (e) the choice of another target value of the reliability index (current partial
factors are based on S50 = 3.8), for instance accounting for another reference period.

e The use of Non-Linear Finite Element Analysis Methods, where the same assumptions
with respect to the material and geometrical uncertainties as for common analyses
should be made in the calibration of their safety format. The same holds true for other
design methods that could be developed in the future, where the design values should
be calibrated using the same assumptions for the relevant uncertainties as described in
this section.

For all these cases, not only a procedure, but also a clear definition of the material,
geometrical and model uncertainties and other effects (e.g., difference between in-situ
concrete strength and concrete strength measured on specimens) which are covered by
the partial factors is needed.

The results of the research described in this section have already been implemented in the
2nd generation of Eurocode 2 for concrete structures (EN 1992-1-1:2023 [14]) and its
background document [57], so that they will be adopted implicitly in the future versions of
the Swiss code for concrete structures. The procedure for adjusting the partial factors for
materials, as well as the statistical values presented in this section are also defined in a
code-like formulation in the Annex A of EN 1992-1-1:2023 [14].

In the following of this section, the common assumptions in the partial factor format
calibration and the typical partial factor formats for structural concrete are briefly reminded
in Subsection 1.2. The exponent sensitivity analysis, whose application was instrumental
on the calibration of the partial factor, are also introduced in the same subsection. In
Subsection 1.3, the reference limit states, as well as the corresponding resistance models,
investigated for the calibration of the basic partial factors yc and ys and the additional partial
factor yv (for shear of members without shear reinforcement and for punching shear in the
2n generation of Eurocode 2) are presented. Eventually, in Subsections 1.4, 1.5 and 1.6,
the probabilistic modelling of the basic uncertainties and the detailed procedure adopted in
the calibration of ys, yc, and yv are explained and discussed.

Typical partial factor formats and exponent sensitivity
analysis approach

Typical partial factor formats in structural design codes

The safety verification in current design codes is mainly performed by verifying limit state
functions adopting design values for the resistance and for the action effects, whose values
are calculated with partial factors calibrated to ensure a target reliability level. In this
subsection, the common assumptions in the partial factor format calibration and the
corresponding typical partial factor formats for reinforced concrete structures in current
design codes will be briefly reminded.

It should be noted that the definitions of the basic concepts of probability of failure Pr,
reliability index B, target reliability index Bi, the First Order Reliability Method (FORM)
sensitivity factors «, and «, in the probability-based structural safety theory will not be
repeated in this subsection and can be consulted in other literatures (e.g.[2, 5, 6]).

In the partial factor calibration in current structural design codes, the first common
assumption is to adopt standardized FORM sensitivity factors for the action effect and the
resistance side. In the EN 1990:2023 [7] and the fib Model Code 2010 [8], the standardized
values a, =-0.7 and «, =0.8 are proposed for the FORM sensitivity factors provided that
the ratio between the standard deviations of the action effect and the resistance is within
the limit between 0.16 and 7.6. Using standardized values for the FORM sensitivity factors
allows calibrating:

* the partial safety factors on the action and on the resistance sides separately;
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* the partial safety factors for actions regardless of the type of construction material, which
significantly simplifies the safety format used in practice.

On the basis of the standardised FORM sensitivity factors, the target reliability for the
design resistance and the design action effect are simplified as:

PIEX) 2 E,} =0(a: ) (1)
PIR(X) <R} =®(-0 S,,) (2)

where X refers to the vector of the random variables representing the basic uncertainties
involved, P(-) refers to the probability function and ®(-) refers to the cumulative probability
function for standard normal distribution.

Another important simplification normally considered consists on lumping partial factors
covering different basic variables. Such procedure allows reducing the total number of
partial factors in the design format. In EN 1990:2023(E) [7], a number of simplifications are
proposed in the safety format for the design resistance, resulting eventually in three
different safety formats. A comparison of the different formats is summarized in Tab. 1.

Tab. 1 Different formats of the design resistance according to EN 1990:2023 (E) [7], (refer
to notation section for the definitions of symbols)

Model Material Geometrical
Formula e o e
uncertainties uncertainties uncertainties
covered by 7.,
1 X with a, =a
General format R, =—R {77 k. a,, z F,, } Y ra Vo d nom
Y ra Vm or separately by

a,=a,, tAa

covered by y,,

Material factor X with a, =a
approach Rd =R {77 k ,a, ,z FEd } covered by y,, ¢ o
Vm or separately by

a,=a,, tAa

nom

covered by 7,

Resistance R - R{UXk’%»ZFm} covered b with a, = a,,,
factor approach d Y T

Vr or separately by
a,=a,, tAa

nom

In the general format (first row in Tab. 1), the partial factors can be individually calibrated
for the model, geometrical and material uncertainties. The design value of resistance (Ry)
is defined as:

1 X
R, :_R{n_k’ad’zFEd} (3)
Y ra

where yrq is the partial factor associated with the uncertainty of the resistance model, and
for geometrical deviations, if these are not modelled explicitly; ; is a conversion factor
accounting for scale effects, effects from moisture and temperature, effect of aging of
materials, or any other relevant parameters; X, is the characteristic value of materials or
product properties; ym is a partial factor for a material property accounting for unfavourable
deviation of the material or product properties from their characteristic values as well as
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the random part of the conversion factor 5 ; a, represents the design values of geometrical
properties; and F;, represents the design values of actions used in the assessment of £,,.

Alternatively, to enhance the ease-of-use, the partial factors for different types of
uncertainties may be combined into a partial factor ym for material properties (referred to
as the “material factor approach”, second row in Tab. 1):

R, :R{”ka ,ad,ZFEd} (4)

M

or into a single partial factor yr for the resistance (referred to as the “resistance factor
approach”, third row in Tab. 1):

_ R{UXkaadazFEd}
7R

R, )

It should be emphasized that the partial factors for material strength variables (ywm) in the
“material factor approach” need to be calibrated to cover material, model and potentially
also geometrical uncertainties (depending if design values ay are also adopted for the
governing geometrical variables) involved in the resistance model. Similarly, the partial
factor for the design resistance (yr) in the “resistance factor approach” also need to be
calibrated to cover all basic uncertainties (again, potentially with the exception of the
geometrical uncertainties, if design values are considered for the geometrical variables).
With respect to Eq. 5, it is also worth to mention that in some codes, the resistance design
values are obtained by dividing the characteristic values with a factor yr > 1 (e.g. EN
1992-1-1:2004 [3]) whereas in other codes, the same result is obtained by multiplying the
characteristic values with a strength reduction factor ¢ < 1 (ACI 318-19 [9]).

In what regards specifically RC structures, it should be noted that the approach
mathematically expressed in Eq. 4 is for instance considered in EN 1992-1-1:2004 [3], fib
MC 2010 [8], the Chinese [10] and Canadian [11] codes to calculate the resistance
associated to bending, axial force, shear and torsion of members with sufficient shear
reinforcement, whereas Eq. 5 is applied in other cases, such as the verification of the shear
resistance of members without or with insufficient shear reinforcement in EN 1992-1-
1:2004 [3] and fib MC 2010 [8], or for all design formulae according to ACI 318-19 [9],
AASHTO [12] and Australian [13] codes for concrete structures.

The suitable simplified safety format to be applied to a given type of structural resistance
should be chosen on the basis of the variability of the shape of the corresponding limit state
functions and on the dominating involved uncertainties. In the 2" generation of Eurocode
2 [14] for the design of concrete structures, two basic partial factors according to the
“material factor approach” are calibrated: yc for the concrete compressive strength and ys
for the steel yielding strength. The two partial factors are calibrated so that the verification
of a wide range of limit states commonly used in daily practice can be performed ensuring
the required safety level (e.g. the resistance to axial load, bending, and combined axial
load and bending). There are other more specific limit states where the combination of the
partial factors yc and ys calibrated on the basis of a “material factor approach” cannot
provide a sufficiently consistent reliability level and, for those cases, additional partial
factors can be calibrated (this is the case of the partial factor yv calibrated following a
“resistance factor approach” for both the shear resistance of members without sufficient
shear reinforcement and the punching shear resistance). This matter is discussed in detail
in Subsection 1.3.
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Exponent sensitivity analysis

As it will be shown in the following, the so-called exponent sensitivity analysis is an efficient
tool to facilitate the calibration of partial factors for the resistance of concrete structures.
The shape of the limit state function in the standard normal space of the basic variables
plays an instrumental role in the reliability analysis and, consequently, in the calibration of
the partial factors. For the calibration of the partial factor on the resistance side, the limit
state function is defined by R(X)-R, =0 and its shape in the standard normal space
depends not only on the sensitivity of the structural resistance model R(X) to the involved
basic variables X, but also on the probability distributions of the basic variables.

In this work, in order to have a clear and explicit representation of the sensitivity of the
resistance models to the basic variables, exponent sensitivity analyses are carried out
[15,16]. The exponent sensitivity factors are calculated based on a power-multiplicative
form approximation of the resistance functions:

R(X)zCO-Hf,."' where X = (f,, f3,...f,) (6)

where f; is the i basic variable in the resistance function, #, is the corresponding exponent
sensitivity factor and C, is the residual constant coefficient in the power-multiplicative form
approximation of the resistance function.

The power-multiplicative form approximation presented in Eq. 6 is equivalent to perform a
first order Taylor expansion of the resistance function in the logarithmic space of the basic
variables. The exponent sensitivity factors can be calculated as the local partial derivative
of the logarithmic resistance to the logarithmic basic variables [15]. The advantages lying
on the calculation of the exponent sensitivity factors are:

* The exponent sensitivity factors are unitless and can be directly linked to the uncertainty
through the influence of a given basic variable on the resistance model. When the basic
uncertainties are modelled as lognormal distributions, the CoV of the resistance variable
can be directly estimated based on the CoVs of the basic variables and the
corresponding exponent sensitivity factors with Eq. 7:

Vezyn -V’ (7)

* The thoroughness of the exponent sensitivity analysis can be verified by comparing the
units obtained on the right side of Eq.6 to the known units of the resistance variable (left
side of Eq. 6), refer to [15] for details.

The precision of the estimated CoV in Eq. 7 depends on the nonlinearity of the resistance
function in the logarithmic space. When the resistance function is strongly nonlinear (e.g.
involving different failure modes; refer to [15] for examples), the values of the CoV
estimated based on the locally calculated exponent sensitivity factors are not necessarily
precise. However, when the exponent sensitivity analysis is performed for a wide range of
applicable cases for a given resistance function, the results can provide valuable
information about the ranges and trends of the sensitivity factors and the corresponding
variability of the resistance variable [17]. This valuable information can thereafter be used
to facilitate the partial factor calibration.
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Considerations on the calibration of partial factors in
structural concrete

Definition of the required partial factors

The partial factors required to achieve a given target reliability level vary with the shape of
the limit state functions and, thus, implicitly depend on the structural resistance models. In
order to have a quantitative comparison between different resistance models, an exponent
sensitivity analysis is performed for five resistance models for the most common limit states
governing the design of RC structures, namely:

1. The resistance of a reinforced tie subjected to axial tension;

2. The resistance of a reinforced column subjected to axial compression (neglecting
second order effects);

3. The resistance of a reinforced beam segment subjected to bending, analysed with
Bernoulli-Navier hypothesis (plane sections remain plane after deformation) and
neglecting the concrete tensile strength;

4. The shear resistance of a beam with shear reinforcement, analysed with the closed-
form resistance model of EN 1992-1-1:2023 (clause 8.2.3 [14]);

5. The resistance of a slab-column connection without shear reinforcement (punching
shear), analysed with the closed-form resistance model of EN 1992-1-1:2023 (clause
8.4.3 [14]).

The results of the exponent sensitivity analysis for these different resistance models are
shown in Fig. 1 as a function of the main variables.

(a) Reinforced tie subjected to axial tension (b) Column subjected to axial compression neglecting second order effect
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Fig. 1 Results of the exponent sensitivity analyses [15] for five typical structural concrete
resistance models: (a) RC member subjected to pure axial tension; (b) RC column
subjected to pure axial compression; (c¢) RC beam subjected to pure bending; (d) RC beam
with shear reinforcement subjected to shear and (e) slab-column connection with potential
punching failure.
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The following observations can be made by comparing the results of the exponent
sensitivity analyses of the five investigated resistance models:

* The results of this analyses confirm the significant differences among the models in
terms of the sensitivities to the basic geometrical and material variables. The dominating
material and geometrical variables (from a deterministic perspective) therefore differ
from one limit state to the other.

* For the cases of flexure and shear, various failure regimes can be easily identified.

* Both the axial tension resistance model and the bending resistance model of suitably-
reinforced cross-sections are dominated by the steel yield strength (with the exponent
ny close to 1, refer to Fig. 1a and c), which indicates that they have similar level of
material uncertainties. However, by comparing the sensitivity of geometrical variables
in the two resistance models, it can be observed that the bending resistance model
involves a higher level of geometrical uncertainties, since, in the former case, both the
reinforcement area (As) and the effective depth (d) have an exponent close to 1. In
addition, it is well-known that the bending load-bearing mechanism is more complex
than the one associated with axial tension, which suggests that also a higher model
uncertainty is potentially associated to the bending resistance model (the statistics of
the uncertainty of the different resistance models are presented later in Subsection 1.4).

* Both the axial compression (Fig. 1b) and bending resistances (Fig. 1c) of over-
reinforced cross-sections are dominated by the concrete compressive strength (with n«
close to 1).

* For the punching shear resistance model (Fig. 1d), it can be observed that only one
material strength variable is involved ( /., as the closed-form equation represents a
simplification of a more advanced mechanically-based model, refer to [18, 19] for
details) and that its exponent is much lower than 1 (nr= 1/3). Regarding geometrical
variables, it is important to note that the effective depth d has the highest exponent ( na
>1). The results also show that in the case of punching shear, the sum of the exponents
of material variables is significantly lower than the sum of the exponents of geometrical
variables and of the exponent of the model uncertainty (when the model uncertainty is
assumed to be represented by a random variable ¢ multiplied to the resistance model,
it has an exponent equal to 1).

The safety format suitable for each limit state should depend on the dominating
uncertainties. If these are material variables, a material factor approach can be adopted;
otherwise, if the model uncertainty is the dominating one, a resistance factor approach
should be adopted. In more complex situations, a general format approach can be adopted.

The results of Fig. 1 show from a deterministic perspective that the resistance models can
be distinguished into two types based on their sensitivity to the material strength variables
S and f :

* Resistance models with nr+ ng = 1: this type of models include resistance against an
axial tension, compressive axial load, bending and shear of members with shear
reinforcement. It should be noted that for bending with over-reinforced cross-section,
the sum nr+ ny is smaller than 1, but the difference is relatively small and can still be
considered to belong to this type.

* Resistance models with n«+ ny < 1: the punching shear resistance belongs to this type.
In addition, performing an exponent analysis as the one shown in Fig.1 to the shear
resistance model of members without shear reinforcement allows showing that, also in
that case, the model presents a low sensitivity to the material strength variables and
belongs to this category.

The first type of resistance models (with nx+ ny =1) has high sensitivity to the material
strength variables (comparable to the exponent of model uncertainty, n, =1). By combining
the information of the exponents and the probability distributions of the basic uncertainties
using Eq. 7 (the statistics of basic uncertainties will be presented in Subsection 1.4-1.6), it
can be demonstrated that the material uncertainties are dominating for most models of this
type. Due to this reason, a material factor approach can therefore be accepted for these
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resistance models, with a partial factor applied to the concrete compressive strength (yc)
and another to the steel reinforcement yield strength (ys).

On the contrary, for the second type (with nr+ ny significantly smaller than one), due to
their low sensitivity to the material strength variables, the material uncertainties cannot be
dominating anymore. A safety format based on a material approach is for this reason not
suitable, as the partial factor of the material strength variable would have a low exponent
in the design resistance equation, being therefore not effective. A safety format based on
the resistance factor approach (refer to Tab. 1) results as a justified safety format
alternative for these resistance models. Due to this reason, a partial factor yv, applied to
the resistance model and calibrated on that basis, is thus justified for the punching shear
resistance (this applies also for the case shear resistance of members without sufficient
shear reinforcement).

Definition of reference models used for the calibration of the partial
factors

For design purposes, it is suitable to have the same partial factors applied to a number of
resistance models (associated to different limit states). This means that a choice has to be
made with respect to reference resistance model to be used to calibrate each partial factor.
The following criteria are established for that purpose:

* The reference model used in the calibration of the partial factor for a material strength
should be a case in which this material strength variable is dominating (i.e. with an
exponent sensitivity factor close to or equal to 1);

* The chosen reference model should be relevant for practice and have significant
geometrical and model uncertainties in order to widen the applicability range of the
calibrated partial factors.

Based on these criteria, yc is calibrated using the resistance model for the axial
compression resistance of columns (as it is more likely to find situations in practice where
the axial compressive resistance of columns is governing than the bending resistance of
over-reinforced cross-sections) and ys is calibrated accounting for the bending resistance
of suitably-reinforced concrete cross sections. The case of a reinforced concrete tie (see
Fig. 1a) is not suitable since: (i) it is not a common case in practice; (ii) the model
uncertainty is very small; and (iii) the geometrical uncertainty is also negligible (the
uncertainty of the reinforcement area is indirectly accounted for in the uncertainty of the
yield strength, since according to EN 10080:2005 [25], the latter is determined by dividing
the measured yield force by the nominal reinforcement area). With respect to the partial
factor yv, it can be calibrated on the basis of the resistance model for shear of members
without shear reinforcement or punching shear. In fact, both models share the same
principles [22] and the derived closed-form design expressions included in the
EN 1992-1-1:2023 for the two cases present strong similarities (thus yielding equivalent
trends in terms of material, geometrical and model uncertainties). Differences in the model
uncertainties can be covered by adjusting the related calibration coefficients.

Assumptions and simplifications adopted in the calibration of partial
factors

Accounting for the reference resistance models, the following simplifications and
approximations are further assumed in order to achieve an analytical solution for the
calculation of the partial factors yc, ys and yv:

* The probabilistic modelling of the basic uncertainties and of the resistance variable can
be approximated by lognormal distributions.

* The standard deviation of the logarithm of the resistance variable (denoted as o, ,,)
can be approximated by its CoV (denoted V, ). For a lognormal distribution variable, the
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exact relationship between its standard deviation and CoV is: o, ,, = (In(V;; +1))** . The
approximation of o, ~V, is considered acceptable when o, ,, is lower than 0.2.

* The material strength variable has an exponent close to 1 in the resistance solution
when the “material factor approach” is adopted. When this assumption is valid
(considered also as a criterion in the choice of the reference resistance model), the
application of the partial factor to the material strength variable is equivalent to applying
it to the resistance directly.

Based on the aforementioned assumptions, the value of the partial factors can be
calculated with the following equations:

_ exXp (aR ’ ﬂtgt Vaw )

Yu (8)
Hrm
Ve = 2,1V (9)
R
Uy =— :H:u[n' (10)

nom

where the subscript M is replaced by S for reinforcement, by C for concrete in compression
and V for shear; Vg is the Coefficient of Variation (CoV) of the resistance (accounting for
the influence of (i) the material strength variability; (ii) the geometrical uncertainties and (iii)
the model uncertainties on the resistance side; n; is the exponent sensitivity factor for the
" basic variable; V; is the CoV for the i basic variable; u,, is the bias factor of the
resistance represented by the ratio between the mean value of the resistance R, and the
nominal value of the resistance Riom; Rnom is the nominal value of the resistance calculated
with the design formula without partial factors, and 4 is the bias factor for the i basic
variable, representing the ratio between its mean value and its nominal value accounted
for in the design formula (e.g. the characteristic value for material strength variables).

In the following subsections, the probabilistic modelling of the basic uncertainties involved
as well as the exponent sensitivity factors of the corresponding basic variables in different
failure modes of RC structures are discussed and the corresponding partial factor
calibration is presented.

Calibration of partial factor for steel reinforcement

Following the discussions presented in Subsection 1.3.1, the bending resistance model of
a suitably-reinforced rectangular cross section is used as reference for the calibration of
the partial factor for the yield strength of steel reinforcement.

The bending resistance can be calculated adopting Bernoulli-Navier hypothesis (plane
sections remain plane), neglecting the concrete tensile strength and considering a
parabola-rectangle response of concrete (with strain limitation) in compression and an
elastic-perfectly plastic response of steel reinforcement. These are the hypotheses adopted
for the exponent analysis presented in Fig. 1b. In such case, the bending resistance model
can be approximated by the following power-multiplicative equation (including the random
variable ¢, for its model uncertainty):

RzCO.fymv.A?n;n,d"zl.gszco.fy .AX .d .Qs with nﬁ;:”AS:”dzl (11)

Following the simplified form of the resistance function, the adopted distribution parameters
of the yield strength f,, the effective depth d, and the model uncertainty variable ¢, in the
calibration of partial factor ys are listed in Tab. 2. The distribution parameters adopted to
justify the same partial factor in SIA 262:2013 [1] derived from EN 1992-1-1:2004 (refer to
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[23]) are also listed in Tab. 2 for the sake of comparison. It should be noted that, as already
discussed, since the yield strength of steel reinforcement is typically calculated based on
the measured axial tensile load resistance and the nominal reinforced area (without
measuring the actual area) of reinforcement bars [24, 25], the statistics of f, represent both
the uncertainties of f, and As. Due to this reason, the reinforcement area As is considered
to be deterministic in the partial factor calibration. In the following, the considerations for
the distribution parameters adopted for each basic variable are explained in detail.

Tab. 2 Statistical values assumed to calibrate the partial factors for reinforcement (values
in brackets refer to the assumptions to justify in EN 1992-1-1:2004, see [23])

Coefficient of variation V; Bias factor
Yield strength f, Viy = 0.045 (0.040) fym/fu= exp(1.645Vy,)
Effective depth d Vq = 0.050 (0.050) Mg = 0.95 (1.00)
Model uncertainty 6 Vs = 0.045 (0.025) Hs =1.09 (1.00)

Coefficient of variation and bias Vig = /V; V2 4V2 =0.081 fys = f'ﬂ,ud py, =1.115

factor of resistance for f‘ "
reinforcement (0.069) :
' (1.068)

Statistics of yielding strength

Regarding the distribution of the material strength variable f,, Tab. 3 shows the statistics of
B500 reinforcement of different ductility classes in UK and in Switzerland collected in the
two last decades. It can be observed that the CoVs are slightly higher than the value of
0.04 assumed in EN 1992-1-1:2004 (see Tab. 2). For this reason, a value of 0.045 is
adopted. It has to be noted that with this assumption, the ratio fym/ fyspec becomes 1.077,
which is slightly lower than the measured values (second value is the bracket of Tab. 3).
With respect to prestressing reinforcement, Kreis et al. [26] provided similar
results (Vipo.7 = 0.043-0.058 for the 0.1% proof strength 0.7 and Vi, = 0.025-0.043 for the
tensile strength f,).

Tab. 3 Statistical values of the yield strength of B500 reinforcement (fspec = 500 MPa,
the values in the brackets refer to the number of tests and to the average value of the
measured ratio fym / fyx spec)

Ductilty class Beeby/Jackson:2016 CARES 2005-2006 EPFL 2015-2019
[Beeby, 2016] [Cares, 2019] [EPFL, 2019]

A 0.050 (1 803, 1.143) 0.051 (410, 1.140) -

B 0.048 (10 480, 1.108) 0.040 (3 458, 1.104) 0.042 (104, 1.092)

c 0.040 (3 794, 1.092) 0.038 (300, 1.084) -

All ductility classes 0.048 (16 077, 1.107) 0.043 (4 168, 1.107) -

Statistics of effective depth

As already mentioned, the geometrical uncertainties related to the reinforcement area As
are implicitly accounted for in the variability of the yield strength (since the latter is
characterized on the basis of the nominal cross-sectional area [25]). For this reason, this
geometrical uncertainty is not accounted for repeatedly in the partial factor calibration. In
addition, as the exponent n, takes relatively low values and the variability of b is small
(detailed information provided in Subsection 1.5), it is assumed that its influence on the
reliability of bending resistance is negligible (assuming n, = 0). It thus results the variability
of the effective depth d (assuming n, ~1) as sole geometrical uncertainty involved in the
calibration of ys.
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The probabilistic modelling of the effective depth is based on the following sources:

* In the work of Ellingwood [27], it is considered for the effective depth of one-way slabs
that:

e d,=d . —10 mmand ¢ =12 mm for top bars

nom

e d,=d ., -3mmand s =9 mm for bottom bars

nom

where d, refers to the mean value of the effective depth and o refers to its standard
deviation:

* In the JCSS Probabilistic Model Code (section 3.10.2) [28], it is proposed to adopt
d,=d . —10 mmand ¢ =10 mm.

nom

* A comparison between the nominal and measured values of the effective depth of the
hogging reinforcement in 140 punching tests conducted in the Structural Concrete
Laboratory of Ecole Polytechnique Fédérale de Lausanne (Switzerland) between 2007
and 2015 (refer to Fig. 2) shows that the difference between the nominal and measured
value has the same order of magnitude as the standard deviation (similarly to the
relationship adopted by Ellingwood [27]).

* A comparison in practice between the nominal value according to drawings (based on
the specified member height, cover and bar diameter), the effective depth considered
in design (similar to nominal value) and the theoretical value based on the chosen
reinforcement supports has shown that a part of the deviation between nominal and
actual effective depth has its origin already during the design process.

0.6 T T T ‘ :
Measurements of tests conducted
at Structural Concrete Laboratory of EPFL o
0.5+ A=d,-d,, ' 1

_ 7| 8 foundation elements: y
E u,= 1 mm

50_4_0A76mm ; I
:2 140 flat slab elements: ” ;
= M, = -8 mm o
% A = _"
2 0.3} o,=7mm ’ ﬂ\ 4
Z ¥
> 0.2 i
=
= 2
8 =
2 0.1} o ) e flat slab elements ]

¢ foundation elements
0L . . . . .
0 0.1 0.2 0.3 0.4 0.5 0.6

measured effecive depth d _[m]

Fig. 2 Statistics of effective depth measured on punching shear specimens tested at EPFL
between 2007 and 2015 (all measured on saw-cuts).

Based on these sources, a standard deviation of 10 mm is seen as a reasonable
assumption. Nevertheless, since the statistical values described above refer to relatively
thin members, they should be corrected by a law accounting for the size of the member.
The latter can be calibrated on the basis of the tolerance of the location of ordinary

reinforcement according to EN 13670:2009 [29]. As shown in Fig. 3a, the influence of the
size of the member can be reproduced by the following formulae:

¥, =0.05-(200/d)*" [d in mm] (12)
4, =1-0.05-(200/ d)*" (13)

The resulting CoV of the effective depth d is represented in Fig. 3b.
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S

—Tolerance class 1 according to EN 13670:2009
| - -- Tolerance class 2 according to EN 13670:2009
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Fig. 3 Standard deviation of the effective depth as a function of the member’s size; (a)
comparison between the assumed standard deviation and the tolerances of the location of
ordinary reinforcement according to EN 13670:2009 and (b) resulting coefficient of variation
(see Eq.(14)-(15), abscissae in logarithmic scale).

Statistics of model uncertainty for the flexural resistance model

To quantify the model uncertainty related to bending, the flexural resistance measured in
laboratory tests (denoted as Mrex» ) is compared to the resistance calculated (denoted as
Mrcaic ) according to the provisions of subsection 8.1 of EN 1992-1-1:2023 [14]. With this
respect, the formulae are applied without partial factors and with the mean values reported
in the publications. The database used by Foster et al. in [30] and Stewart et al. in [31] for
calibrating the Australian Standard for concrete structures AS3600 is considered in the
following.

The compression zone is considered in the calculation of the flexural resistance with a

parabola-rectangle distribution of the concrete stresses. Regarding the stress-strain

relationship for reinforcing steel, clause 5.2.4(2) in EN 1992-1-1:2023 [14] allows two

approaches:

* (a) Linear-elastic/perfectly plastic behaviour without strain-hardening, and

* (b) Linear-elastic/plastic behaviour with strain hardening linearized between beginning
of yielding and ultimate strength (stress f and strain ¢, , but with a strain not higher
than ¢, /ys).

The comparison between experimental and theorical results has been conducted following
both approaches. With respect to the stress-strain relationship including strain hardening,
the slope of the plastic branch (strain hardening modulus E, ) depends on the ductility class
of the reinforcement. Assuming the minimum values (10% quantiles) of the ratio f;/f, and
of the maximum strain ¢, given in table C1.2 in Annex C of EN 1992-1-1:2023, modulus
E, becomes 1110 MPa for ductility class A, 840 MPa for class B and 1030 MPa for class
C (Grade B500 reinforcement). Assuming the maximum value of ratio f;/ f, for class C
reinforcement, E, becomes 2410 MPa. Since for most of the tests included in the used
database, the actual strain hardening behaviour is unknown, a strain limit of &, =7.5% and
aratio fi/f, = 1.2 has been adopted in the comparison ( £, =1380 MPa for f, =500 MPa).

Fig. 4 shows the model uncertainty variable ¢, calculated as the ratio between the
measured and the calculated flexural strength, € =Mgexp / Mrcac , for both modelling
approaches (neglecting or accounting for strain hardening of steel reinforcement) as a
function of the calculated reinforcement strains.
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Fig. 4 Comparison between calculated flexural resistance Mr.cac (0n the basis of section
8.1 and 5.2.4 of EN 1992-1-1:2023 [14]) and experimental measured value Mrex as a
function of the calculated steel stain for (a) the case strain hardening is neglected and (b)
the case with strain hardening assuming &, =7.5% and fi/f, = 1.2 (the thick curves refer to

the moving averaged whereas the thin curves describe the upper and lower 5% fractiles,
courtesy of data by S. J. Foster).

The statistics of both cases are compared in Fig. 5. One can observe that:

e For small steel strains (failure dominated by concrete crushing with elastic
reinforcement or with limited plastic strains), the bias factor y,, is close to 1.0. For this
regime, the uncertainty of the resistance for practical cases will be governed by yc so

that these cases should not be considered in calibrating ys.

» For large steel strains, the bias factor u,, increases significantly, not only for the case
where strain hardening is neglected in the calculation, but also in the case strain
hardening is accounted for. Such result is justified by the fact that: (1) the database
contains also tests with ductile steels (with significant f;/ f, ratios); (2) the model for
bending according to EN 1992-1-1:2023 [14] underestimates the effect of strain
hardening (since an average steel strain is considered, i.e. the strain localization in the
crack region is neglected); (3) the concrete strain limit is probably underestimated in

case of a strain localization which develops with steel yielding.

* The coefficient of variation V,, increases with the steel strain. This can be explained by

the fact that steels with different strain hardenings are considered in the database.

(a) 1.3 T T T T T T
12+ neglecting strain hardening
: \

Hos 1.1}

L . B . .
. considering strain hardening

€ =75%andf/f =12

b 012 ; . . : ; ;

[ considering strain hardening

0.02 F neélecling strain hardening

L 1 L L i

0 1
0 0.005 001 0.015 002 0025 003 0.035
&

5

Fig. 5 Statistics of the model uncertainty data for flexural resistance: (a) bias factor u,; =

Mreexp / Mrcaic @and (b) coefficient of variation V,, of ratio Mrexp / MRcac.

Based on the results shown in Fig. 5, the values of u,, =1.09 and ¥V, =0.052 can be
assumed for the region governed by an average steel strain. In addition, it has to be
considered that these variabilities depend also on the uncertainties related to the reported
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data in the test reports. Using the procedure proposed by Ellingwood [27], the effect of
these uncertainties can be removed from the actual model uncertainty as follows:

Vo=Vo Vi =2V (14)

where V, is the actual CoV of the model uncertainty, V,_is the CoV of the ratio Mrexp / Mg carc
mentioned above, ¥, represents the measurement uncertainties related to the failure load
(errors in measuring the failure load, effect of supports friction, influence of different loading
rates, effect of the test procedure, etc.) and ¥, are the CoVs for the measured error of the
geometrical and material variables. The following values are assumed for the CoVs:
effective depth = 0.01; yield strength = 0.01 and concrete strength = 0.03. Accounting for
all the measurement errors, the coefficient of variation of the flexural resistance V,; can be

reduced from 0.052 to 0.045.

Calibration of ys using the nominal value of the effective depth

By using Eq. 8 and assuming «, =0.8, 5, =3.8 (for the ultimate limit state of structures
with medium consequences class with a 50 years reference period according to EN
1990:2023 [7]) and the above-mentioned distribution parameters, the partial factor ys
becomes:

o exp(ay By Vi) ©0(08:3.8:0.045° +0.050" +0.045" )
= = “ = =1.15 15
77, e exp(1.645-0.045)-0.95-1.09 (15)

which is unchanged with respect to current practice.

Alternative using the design value of the effective depth

As already discussed above, the distribution parameters for the geometrical uncertainties
assumed in the calibration of ys are valid only for members with an effective depth of
approximately 200 mm (for the hogging reinforcement). For thinner members, the
geometrical variability (in terms of coefficient of variation V) will be higher, so that a higher
partial factor ys would be required to ensure that the target reliability index is reached. On
the contrary, for larger members (and also for sagging reinforcement), a lower partial factor
ys could be justified (refer to Fig. 3). To overcome this shortcoming, and to achieve a more
uniform level of safety, the verification can be conducted using design values of the
effective depth (instead of nominal values, requiring the geometrical uncertainties to be
covered by a material partial factor). This possibility is already considered in the general
format for the resistance design value R, according to EN 1990:2023 [7] (refer to Eq. 3).
The term a, in Eq. 3 refers the design value of the geometrical property and its value is
defined based on the sensitivity of the resistance to the deviation in the relevant geometrical
property (refer to clause 8.3.7 of EN 1990:2023 [7]):

* When the structural design is sensitive to deviations in a geometrical property, the

design value of the parameter a, should be calculated as:

a,=a,, tAa (16)

* On the contrary, when the structural design is not significantly sensitive to the deviation
of a given geometrical property, the design value can be simply assumed as:
ad = anom (17)
where g, is the nominal value of the geometrical property and A« is the deviation in the

geometrical property.

In what regards the sensitivity of the bending resistance to the effective depth as
geometrical property, and as previously shown and discussed, Eq. 17 is theoretically only
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applicable for thick members. This fact indicates that the design value of the effective depth
(Eq. 16) should be used instead of its nominal value (Eq. 17).

The deviation in the effective depth As can be obtained by minimizing the difference
between the target reliability index S, and the achieved index /S (see Fig. 6b) or by aiming
at achieving an almost constant partial factor (see Fig. 6a). As shown in Fig. 6, consistent
results can be obtained with the values of y,=1.04 and Ad=19mm for hogging
reinforcement and Ad =11 mm for sagging reinforcement. For the sake of simplicity, a
constant value of Ad can be adopted in the calculation of the design value of the effective
depth:

d,=d, +Ad (18)

nom

where the value of Ad =15 mm is proposed for both hogging and sagging reinforcement.
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Fig. 6 (a) Required partial factor to achieve the target reliability index S, ; (b) achieved
reliability indexes with the assumed partial factor y, (solid curves refer to the approach
using nominal values of the effective depth whereas dashed curves refer to the case using
design values of the effective depth) and (c) Reinforcement saved by applying y, =1.04
and Ad =15mm instead of y,=1.15 to achieve the same design bending resistance
(assumed h,, =d,  +50mm, b  =06-d, ., fx =500MPaand f, =30MPa, the dashed

nom nom nom ’?

part of the curves represent cases with over-reinforced cross-section).

It has to be emphasized that this approach allows to obtain, not only a more constant safety
level (avoiding an unsafe design for thin members), but also a more economical and
environmentally-friendly design (particularly for deep members). The ratio of reinforcing
steel that can be saved by adopting the design effective depth approach is shown in Fig. 6c.
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Partial factor for concrete in compression

As discussed in Subsection 1.3.1, the most frequent case where the concrete compressive
strength is the dominating material strength is the axial compression resistance of columns.
Due to this reason, it is used as the reference model for the calibration of yc.

The axial compression resistance of centric loaded reinforced concrete columns can be
approximated as follows when the contribution of both longitudinal and confinement
reinforcement is neglected:

Rznix-f;-Ac .90 (19)

Following the simplified form of the resistance function, the distribution parameters of f;, A,
and the model uncertainty variable ¢, adopted in the calibration of partial factor y. in EN
1992-1-1:2023 [14] are listed in Tab. 4 (the detailed justification of these distributions are
explained in the following subsections). The distribution parameters assumed in the
justification of the same partial factor in EN 1992-1-1:2004 (refer to [23]) are also listed in
Tab. 4 for comparison.

In the following, the considerations for the distribution parameters adopted for each basic
variable are explained in detail.

Tab. 4 Statistical values assumed to calibrate the partial factor for concrete (adopted in
Table A.3 of EN 1992-1-1:2023 [14], values in brackets refer to the assumptions to justify
Ve =1.50 in EN 1992-1-1:2004, see [23])

Coefficient of variation V; Bias factor u
Compressive strength f; _ _
(control specimen) Vic = 0.100 (0.150) fom/for = exp(1.645Vy,)
In-situ factor y 0.95
7, = fc,m /1 is = 0.120 (0.000) M, =0.95 (0.85)
Concrete area A, V. = 0.040 (0.050) H, =1.00 (1.00)
Model uncertainty V,- =0.070 (0.050) Mo =1.02(1.00)
Coefficient of variation and _\/ 2 2 2 2 _ :fﬂ. el . =1.142
bias factor of resistance for ' =\ Ve T Vs ¥V Vo =0.176 Hrc £ Hogs *Hac ™ Hoc
concrete (0.166) (1.088)

Definition with respect to the compressive concrete strength

The partial factor for concrete y. applies to the characteristic concrete compressive
strength which can be either specified (and controlled according to EN 12390-3:2019:
Testing hardened concrete — Part 3: Compressive strength of test specimens [32]) or
determined according to EN 13791 [33] on the basis of tests on core samples extracted
from the executed structure. Furthermore, the control cylinder specimens can be casted at
a main plant or on-site in a ready mix plant. On the other side, the partial factor y. is
determined on the basis of reliability analysis accounting for the actual uniaxial in-situ
concrete compressive strength in the structure. With this respect, it is important to clearly
differentiate between the following definitions of the concrete compressive strength (refer
to Fig. 7):
Je.se - SPECIfied uniaxial concrete compressive strength

* f...:concrete compressive strength of the control specimens casted at a main plant

(cylinders), or on-site in a ready mix plant (no transportation)
* f.a - actual uniaxial in-situ concrete compressive strength in the structure
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* /.. :compressive strength of a core taken at a test location within a structural element

or precast concrete component expressed in terms of the strength of a 2:1 core of
diameter > 75 mm

Design specification Concrete production
= [ — xy. Concrete transportation
= 0000} —— V) e
frrrey e, |“)) | Casting and curing
= A3 — -
e Vi
= I} (OO0 = OO : q .
/ [ ore extraction
/ and testing
§ i —
gl
Strength specified Strength of control specimens at plant or Actual strength of Strength of
(e.g. C30/37) at ready mix plant (no transportation) concrete in structure extracted cores
ﬂk,xpe(‘ p/(f;k,ryl frk.m's(t) frk.ix
frk,\,m- Sf[-A_[-_rl fc,ais =, is .-/;,rﬂ fr,nis :fr,is/,l core-actual

Fig. 7 Representation of different concrete compressive strengths (figure adapted from

[57])

The difference between f

c,spec and f;
* The strength margin decided by the concrete producer

* The variability of concrete components and production (at location of production)
* The seasonal variability (typically, with a lower concrete strength in summer)

* The variability of manufacture, curing and testing of control specimens

The difference between f, , and f, . (accounting for with coefficient 7, ) depends on:

c,evl c,ais

.« depends on:

* The effects of casting, vibration, curing and temperature
* The effect of consolidation of fresh concrete (mainly bleeding, refer to [34])

* The anisotropy (difference between horizontal and vertical concrete strength resulting
from bleeding, refer to [34])

* The effect of transport and W/C (water to cement ratio) modification between mixing
and casting

The difference between f

c,ais

and f

c,is

(accounted for with coefficient 7., ...,) depends

on:

* The damage sustained during core extraction

* The potential uncorrected effect of length-diameter ratio (theoretically, the concrete
strength f,, should refer to cores with an aspect ratio 2:1, but the actual aspect ratio
can be slightly different or the relationship for transforming the concrete strength from
different aspect ratios can be inaccurate)

* The core diameter (since the cores are typically smaller than the control specimens
used to measure f, ,, there is a size effect [35, 36, 37, 38, 39))

* The effect of the moisture condition on the core [39, 40, 41, 42]

el

The distribution parameters of the variables defining the different definitions of concrete
compressive strength can be determined based on the following available information:

* f..-asapartof the quality control after production

e f.. . statistical evaluation of the results of core testing

. : by comparing the results of cylinder tests and cores extracted from cylinders

ncarefaclua[ )

* 7, by comparing the results of cylinder tests and cores extracted from a structural
member, accounting also for 77, ...
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Statistical values of the concrete compressive strength fc cy

In the past, the standard deviation of sy (Or f;cuve) has often been defined based on the
work by Risch and co-workers [43], who concluded that, for different types of construction
sites and quality controls, a standard deviation of about 5 MPa can be assumed for fz cube >
30 MPa (see Fig. 8). Interestingly, the referred authors also observed that the standard
deviation was smaller for mass production or for ready-mix (they found a reasonable fit with
a constant coefficient of variation Vr.=0.136 for mass production (at main plant) and V¢
=0.115 for ready-mix concrete, see Fig. 8).

Types of concrete:
‘i | o Mass production
s Ready-mix

| @ Other types

Socivam (MP2]

Fig. 8 Standard deviation of the cube strength as a function of the mean value of the
concrete strength according to [43] for all types of construction sites and productions (green
markers for mass production red markers for ready-mix concrete and blue markers for other
types, reproduced based on the data from [43]).

Since the work by Risch et al. [43] (more than 50 years ago), the concrete production and
the quality control have evolved significantly, so that more updated statistical data can
nowadays be considered. According to Fig. 9, which shows the results by Foster et al. [30],
Bartlett & MacGregor [44] and Torrenti [45], the CoV of concretes produced in the last
decades is lower than the values presented by Risch et al. [43]. In addition, as shown by
Torrenti & Dehn [46], who considered additional recent data (particularly from Germany),
the CoV decreases for higher concrete strengths. To account for such effect, the mentioned
authors proposed as a best fit the following relationship: V.= 0.100-( f, / 40)™" , see dashed
curves in Fig. 9. Nevertheless, as it is later shown in this document, this effect has little
influence on the calibration of the partial factor, so that V= 0.100 for in-situ concrete and
Vie=0.060 for precast concrete can considered without a significant loss of generality.

0.2 —— r : . )
L ® Foster et al, 2016 Types of Fonf:rere.
. + Barlett & McGregor, 1994 | 4 + Cast in-situ
0151 '\\ . ¢ Torrenti et al., 2019 s+ * Precast
By
S gt
= Vi o
80.10' 5 ‘.‘:{ |. . .-'
< "
’a:‘ S e o * ot
0.05 E:A.‘o‘. hl..:op':-.__, _______ i
S o o= 0. ,00'(.5/40 =
i
00 20 40 60 80 100 120 140
f(“,ﬁ'l,m lM‘PaJ

Fig. 9 Coefficient of variation of concrete compressive strength as a function of the mean
value according to (a) Foster et al. [30], Bartlett & MacGregor [44], Torrenti [45] and
Torrenti & Dehn [46].
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Statistical values of factor nis for new in-situ structures

It is well-known since more than a century that the concrete compressive strength in an
actual structure differs from the concrete strength measured on control specimens (cubes
and cylinders). It is further known that the concrete compressive strength can even vary
within a structural member resulting from casting (for a comprehensive literature review
since 1915, see Moccia et al. [34]). This phenomenon has been confirmed by numerous
researchers who have compared the strength of control specimens (fecyr Or fooue) to the
strength of cores with the same aspect ratio (2:1 for cylinders and 1:1 for cubes) extracted
from the actual structure. Since one of the most relevant effects on the actual in-situ
concrete strength attributes to the phenomena occurring during the first minutes/hours after
casting (mainly the bleeding process, where the water in excess in fresh concrete migrates
upwards due to the settlement of solid particles which leads to an accumulation of water
on the upper layer of concrete and particularly under the coarse aggregates [34]), the
distribution of 7, mainly depends on:

* The location where the cores are extracted (typically 7, <1.0 in the upper layer and
n, > 1.0 in the bottom layer, see Fig. 10), and

* The direction of the core extraction (typically, the horizontal concrete strength in the
upper layers is more affected by the bleeding phenomenon than vertically extracted
cores [47]).

@ Petersons, 1964
m  Giacciao and Giovambattista, 1986
+ Yuanetal., 1991
¢ Miaoetal., 1993
A Khayatetal., 2001
* Zhuetal, 2001
14 T T T T T
12} . ® |
. : . A e
Y1 | s-.;-.'..,‘;____}"___‘_A_:A_ _______ B nens b S
e ) -: . °Fo A 4 % b
08} S 1
= 06 ]
04l blue markers: cores from the bottom part )
red markers: cores from the top part
021 b
0 . . ) . s
0 20 40 60 80 100 110

/.o [MPa]

Fig. 10 Ratio n, between the concrete strength in the structure fsais and the cylinder
strength f.c,, red and blue markers refer to the top and bottom part of the member,
respectively (has been calculated as 1, =f. ./ f.or = (eis ! Neore—aenar) Jocy) @SSUMING
Nooreven = 0-95 , figure adapted from Moccia et al. [34].

In addition to the comparison between extracted cores and control specimens, also
compression tests on larger specimens extracted from an actual structural member confirm
this effect (see Fig. 11). As shown by Moccia et al. [34], this effect can be accentuated by
the presence of transverse reinforcement (due to the development of voids under such
reinforcement), although it can also be mitigated in case confinement reinforcement is
provided.
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Fig. 11 Ratio between the average compressive strength measured on specimens cut out
from Column CK1, CM2 and Beam BM1 ( fsais ) and the cylinder strength fcy (adjusted with
factor k: accounting for the effect of the speed of loading, refer to [34]): specimens extracted
from a 3m high column (CK1), a 1.05m column (CM2) and a beam (BM1) under in-situ
conditions (the blue curve and the blue dot refer to unreinforced members, the red and the
green curve refer to members with transverse reinforcement not acting as confinement),
adapted from Moccia et al. [34].

For determining the statistical values of coefficient 7, to be used for the calibration of the

partial factor yc, the following approaches can be adopted:

1. By statistical evaluation of tests available in literature;

2. By ensuring full consistency with the standard for the assessment of in-situ compressive
strength in structures;

3. By referring to the assumptions for calibrating other structures.

Regarding the first approach, the statistical data of the values plotted in Fig. 10 can be

used:

* Top layer (upper 20% of the height, red markers in the figure): 40 values, u,, =095,
V.. =0.095

* Bottom layer (bottom 20% of the height, blue markers in the figure): 23 values,
e =105,V =0.105

If one assumes that the measurements from the top and the bottom layers are equally

represented, then the statistical values become: y,, =1.00,V,, =0.11.

nis
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It has to be noted that these values refer mostly to results of laboratory tests where
compaction and curing have been most likely conducted in a more accurate manner than
in practice. Therefore, for practical cases (at least for in-situ structures), one can expect
the statistical values to be less favourable (especially the coefficient of variation). On the
other hand, the observed variability can partially be related to the difference between the
actual in-situ strength f, . and the core strength f, , (variability of coefficient 7,,. ...
see Fig. 7). With this respect, the results of a comprehensive experimental programme by
Haavisto et al. [39] show that for cores = 80 mm (height and diameter), the CoV of the
strength of cores extracted from cylinders produced from the same batch is slightly higher
than the CoV of the cylinder strength (5.3% instead of 3.7%) and the CoV of factor ncore-
actual , (in this case, f, ., = /.., ) is 5.4% (a similar value of Vicore-actal is given by Bartlett et
al. [44]: between 4% and 5.5% for cores @100-150 mm). By combining these data with the
CoV of 0.11 reported above, the CoV of 7, becomes (0.112-0.0542-0.0532+0.0372)"2 =

0.088.

A detailed investigation based on the interpretation of 1080 cores extracted from members
cast using 108 mixes is presented by Bartlett & MacGregor [48, 49, 50]. The statistical
values of 7, based on cores extracted from mid-height of the member (or averaged
between top and bottom parts) are:

*  u,, =0.948 for members with h <450 mm,
* u,, =1.032 for members with h =450 mm,

s V, =0.139 for all members.

In what refers to the variability within the member (mostly related to the location over its
height), Bartlett & MacGregor [50] proposed to consider it with an additional variable with
a CoV of: V. uion = 0.063 for laboratory cast columns, 0.069 for laboratory cast shallow
members and 0.099 for the case of an in-situ bridge. A more recent evaluation of these
statistical data performed by Bartlett [51], and conducted for the calibration of the Canadian
Standard A23.3-4, led to the following conclusions: a value of ¥, =0.113 should be
adopted for cast-in-place members, whereas the additional coefficient of variation to
account for the geometrical variability ¥, ..., given by Bartlett [51] is confirmed.

With respect to the second approach (consistency with the standard for the assessment of
in-situ compressive strength in structures), EN 13791:2018 (section 9) [33] and Annex | of
EN 1992-1-1:2023 contain the following relationship:

S

— ck,is 20
Jo =085 (20)
Which can be justified as follows:
.f;',is = 77is : 77<'orefuutual : f;‘,cyl (21)
Assuming lognormal distributions and independency between all random variables, the
CoV, the mean and the characteristic values of f,, become:
ﬁm,[x = IUI][S -lLli]C()i‘E*twtll(ll .f;’m,cyl (22)
V/b,i: = \/Vrjzi_s + Vr]zcorefaclual + Vfi,cyl (23)
ﬂk,is = ‘f;‘m,[s : exp(_1645 : er,[x) (24)
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and since :
-f;'k = f;'m,cyl ’ exp(_l 645 : Vfc,cyl) (25)

the relationship between f, and f, , can be expressed as:

X645V +V, st +V it =V o)

nis neore—actual Je ol -
fck = fck,ix : (26)

/’lllis : yr]corefa(‘tual

Considering the assumed distribution parameters for the basic variables listed in Tab. 5,
Eq. 26 becomes f, = 1, /0.86, which is approximately equivalent to Eq. 20.

Tab. 5 Distribution parameters for basic variables related to fo s

Coefficient of variation V; Bias factor //
£ 0.100 fem/fer = exp(1.645Vy)
N 0.120 (assumed) 1.00 (For cores extracted from all regions)

0.05 (assumed according to [39] and Bartlett &

ncarefaclual MaCGregor [44]) 0.95 (1/1 .06 according to [52])

It should be noted that in the derivation of the relationship between f, and f, . in Eq. 20
(Annex | of EN 1992-1-1:2023 [14]), the bias factor of 7, is taken as 1.00 assuming that
cores are extracted from all regions in the structure (see Tab. 5). This is a conservative
assumption since Eq. 20 is usually used to estimate the characteristic cylinder strength f,,
based on the value of f,  (characteristic strength of cores extracted from existing

structures).

With respect to the calibration of other standards, the following distribution parameters

have been assumed:

» Calibration of in EN 1992-1-1:2004: according to [23], the value y,. =1.50 accounts for
a coefficient 7, =0.85 without an explicit mention about its variability. According to
Konig et al. [53], this value (already considered in the justification of in ENV 1992-1-
1:1991 [54]) has been intended as a characteristic value;

* Canadian Standard A23.3-04 [11]: according to Bartlett [51], the resistance factor for
concrete in compression has been calibrated on the basis of following values: x,, =1.03
, V., =0.113 (these values referring to the average strength in the member). To account
for the in-situ strength variability within the member as well as the number of batches
used to case the member, an additional factor is considered (whose mean value is 1.00

with an CoV equal to 0.13 for cast in-place structures, see also [52]);
¢ Australian Standards AS3600:2018: according to [55] and [30], the calibration of the
resistance factor for concrete in compression in the latest Australian Standard is based
on following assumptions: x, =088, V, =0.12 (these values being based on a
previous work [56]). The work by Bartlett & MacGregor [49] is also mentioned as a
confirmation of the assumed value of V,, .

Based on these considerations, the following distribution parameters for 7, can be
adopted:
* Mean value: y, =0.95

* Coefficient of Variation: ¥, =0.12

With respect to the mean value, it accounts for the unfavourable case where the internal
force has been transferred across the weakest part of the member as in columns (Fig. 12a),
walls not sensitive to buckling (as for instance walls for the introduction of concentrated
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loads, see Fig. 12(b)), members with sagging moments (Fig. 12(c)) or compression fields
in large members subjected to shear forces as shown in Fig. 12(d) and (e).

(@) ’ (b) ’ (¢

2 | poorer
Head ) quality
concrete

poorer
quality
concrete poorer {

quality
conerete

(©

poorer

quality
concrete

poorer

quality
concrete

Fig. 12 Examples of structural members where the region with poor concrete quality can
be governing (Figure adapted from [57]).

It should be noted that the above-mentioned effects shall be also considered in the
derivation of the distribution parameters of the model uncertainties. This is accounted for
by deducing the effect of the variability of 7, (reasonable values reproducing the conditions
in test specimens) from the distribution parameters of the model uncertainties assumed
based on the statistics of test data (as proposed by Ellingwood et al. [27]).

Statistical value of the geometrical uncertainties for calibrating yc

As mentioned above, columns can be considered as typical members where the partial
factor y. plays a major role. For the dimensions of the cross sections of these members,
a standard deviation of 6 mm can be assumed according to Ellingwood et al. [27]. Since
this value refers to common dimensions, it should be corrected accordingly to a similar law
as prescribed for the construction tolerances. As shown in Fig. 13, the evolution of the
tolerances according to EN 13670:2009 [29] can be reasonably described by a power law
with an exponent of 1/3 in the region of interest, so that following standard deviation of the
column width b can be adopted:

o, =6-(b/300)" [bin mm] (27)
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Fig. 13 Comparison of the evolution of the assumed standard deviation of the column width
(Eq. 27) with the tolerance according to EN 13670:2009 (a) and (b) resulting CoV of the
column area (Eq. 28).

Assuming that for a square column with dimension bxb, both dimensions are fully
correlated (a conservative assumption), the CoV of the concrete area becomes:

V. =2V, =0.04-(300/b)>" [b in mm] (28)

As shown in Fig, 13, the CoV of the column area varies between 0.01 and 0.05 for columns
with standard dimensions. It should be noted that the factor 2 in Eq. 28 is replaced by V2
in case the two dimensions of the cross section are statistically independent. Nonetheless,
as the geometrical uncertainty associated to the cross-section area of the column is not
dominant compared to material and model uncertainties, a constant value V, =0.04 can
be assumed (the influence of this choice will be discussed later).

Statistical values of the model uncertainty for calibrating yc

The comparison between the experimental results of short column members (without
second order effects) and calculated values according to the provisions of Section 8.1 of
EN 1992-1-1:2023 [14] has been conducted in [58] for the cases without and with load
eccentricity. For cylinder strengths not higher than 100 MPa, the mean values of the ratio
Ny ! Niao 18 1.02 and its coefficient of variation is 0.087. Since the latter is affected by
the uncertainties in the reported data (typically nominal dimensions of the test specimens,
variability of the strength of the control specimens fcqs and 7, ), the actual coefficient of
variation of the model uncertainty can be reduced according to Eq. 14. With ¥V, =0.02
(variability of load measurements in tests), V,. =0.02 (variability of cross-section area in
tests), ¥, =0.03 (variability of concrete cylinder strength in tests) and ¥, =0.03, the CoV
of the model uncertainty V. is reduced from 0.087 to 0.070.

Calibration of yc

The coefficient of variation and the bias factor of the resistance can be calculated on the
basis of the uncertainties defined above using:

Vee = V2 +V2+VE+V,2 =30.1007 +0.120° +0.040% +0.070° =0.176

nis

Fie = o | fo) Hs - Hge o = €xp(1.645-0.100)-0.95-1.00-1.02 = 1.142
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By using Egs. 8- 10, adopting a, =0.8, ,, =3.8 and on the basis of the above-mentioned
distribution parameters, the partial factor y. becomes:

_oxp(ay By Vic) _exp(0.8:3.8-0.176)

= =1.49=1.50 31
Ve Lae 1.142 1)

which confirms current practice.

It has to be noted the CoV of the concrete compressive strength measured on control
specimens Vy intervenes both in the numerator and in the denominator of Eq. 31, so that
it has a limited influence on the resulting partial factor yc (see Fig. 14a). This is the reason
why neglecting the influence of the variation of CoV as a function of the concrete
compressive strength on the CoV of the reference resistance model V. is seen as an
acceptable approximation. With respect to the CoV of the variation of the geometrical
uncertainty ¥, , also in this case, neglecting the influence of the cross-section area
remains as a reasonable approximation (see Fig. 14b).

(a) (b)

l.g
1.:5 »V_,),"_l-z_.__o_,___-e-——' s R ———
1.4+
C13¢
1.2¢
1.1}
1
0 0.04 008 0.12 016 0 400 800 1200

CoV nominal column width b [m]
oV,

Fig. 14 Influences on the resulting partial factor y. of (a) the CoV of the compressive
strength (of control specimens, see also Fig. 9) and (b) of the size of the cross section (see
also Fig. 13).

In case the concrete strength is assessed according to Section 8 of EN 13791 [33], the
uncertainties of f;cy and nis are merged in the derived distribution parameters based on the
statistics of the core strength (Vi is,corr and pir,is). For this reason, the terms Vi is,corr and e is
replace the terms (v;+V,;)" and (f,/f,) #, in Eq. 29 and 30) based on the

assumption of a Student t dqigtribution.

It should be noted that the applicability of the partial factors yc and ys to other structural
resistance models depends on the shape of the resistance model (in terms of the sensitivity
to material and geometrical variables) and on the corresponding model uncertainty. A
discussion regarding the applicable condition of yc and ys to other resistance models is
provided in Appendix | of this work.
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Partial factor for shear and punching shear without shear
reinforcement

The calibration of the partial factor for the punching shear resistance model is presented in
the following in a similar manner as presented by [20]. A similar work by [21] for the shear
formulae has shown similar results, so that the same partial factor yv can be used for both
cases. This is an expected and acceptable approach considering that the formulae for
shear and for punching shear share the same theoretical background and show evident
similarities [22].

For the simple case of internal medium-size square columns supporting not too slender
slabs, the design value of the punching shear resistance formula (refer to Formulae 8.94,
8.92 and 8.97 of EN 1992-1-1:2023 [14]) can be reformulated as:

Vi = 2;'1 JBos wdy AV 5 g (32)
V

where bo 5 is the control perimeter, d, is the shear-resisting effective depth, s is the spacing
of the hogging flexural reinforcement, dyy is a size parameter describing the failure zone
roughness (depending on the concrete type and its aggregate properties), a, is the
maximum distances from the centroid of the control perimeter to the point where the
bending moment in the slab is zero and g, is a coefficient accounting for the concentrations
of the shear forces along the control section. For medium-sized columns (b ~1.5d, ), the
square root of the control perimeter by.s can be approximated as:

Jbos =\[4b+7d, =2.64-b"-d)° (33)

where b is the column width, so that Eq. 32 becomes:

Vg = 66.3 d;m B4 fLB g3 'di’; 'a;l/G ﬂe—l (34)

s c
Vv

For the most sensitive variables appearing in Eq. 32, namely 4, and f,, (where the
sensitivity depends on the exponent in Eq.32 and on their variabilities represented by their
corresponding CoVs), the same coefficients of variation ¥, and bias factors x adopted for
calibrating ys and yc can be used for calibrating yv. For the other variables, the following
assumptions can be made:

e Column width 54 : as defined in Eq. 27, namely v = 0.02 for =300 mm and x=1.00
* Reinforcementarea 4, : v =0.02 and = 0.97 (according to [59])

* Barspacing s: ¥ =0.05 and g =1.00 (it is assumed that the governing reinforcement is
distributed over a width of 2.0 m with a standard deviation of 100 mm)

» Size parameter dgy describing the crack roughness on the basis of D __: v =0.10 and
41 =1.00

* Distance ap: ¥ =0.15 and ux =1.00 (this variability is related to the errors in calculating
the position of point of contraflexure, namely stiffness assumptions, calculation
methods, etc., the proposed values are based on author’s experience)

» Coefficient g, : considered in this calibration as deterministic, considering that its
variability has already been considered in the provisions defining it.

The variabilities of the these less sensitive variables are lumped in a random variable
defined as “Residual uncertainties”, with the following distribution parameters:

0.15

) +( 5 )* =0.046 (35)

002, 002, 005, 0.10
= + + +
res,V \/( 3 ) ( 3 ) ( 3 ) ( 3
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. =1.00".0.97"-1.00"-1.00"°-1.00"° =1.00 36
ILI/ESA,V

Statistics of the model uncertainty for calibrating yv

The comparison between test experiments on isolated slab specimens and the calculated
resistance according to subsection 8.4 of EN 1992-1-1:2023 (using mean values provided
in test reports) gives a bias factor between 1.07 and 1.09 and a coefficient of variation
between 0.11 and 0.13 [60]. Also in this case, the coefficient of variation 7, of the ratio
Veew ! Veeae CONtains the uncertainties related to the reported data in the test reports and
can be corrected adopting Eq. 14 (suitably adapted accounting for the different exponents
in Eq. 34). With this respect, the following distribution parameters can be considered:

* Measurement and definition of the failure load: v = 0.03 and x=1.00

» Shear resisting effective depth di: ¥ =0.01 and £ =1.00 (in most of recent tests, the
effective depth has been measured on saw-cuts after testing)

* Concrete cylinder strength fecy: ¥ =0.03 and 4 =1.00 (CoV according to EN 12390-
1: 2001, Table 1)

* In-situ factor 7,: ¥ =0.05 and x=1.00

* Column width b: ¥ =0.01 and g =1.00

* Reinforcement area As: ¥ =0.02 and x=0.97 (almost all test reports provide nominal
values only)

* Bar spacing s: ¥ =0.00 and x=1.00 (the number of bars in the width of the control
specimens can be considered as deterministic)

» Size parameter dqy describing the crack roughness on the basis of D, : v =0.10 and
1 =1.00 (almost all test reports provide specified values)

* Distance ap: ¥ =0.05 and x=1.00 (the variability depends on the position of the load
introduction, the distance between the slab edge and load introduction and accounts
also the act that some of the tests are not perfectly axisymmetric)

» Coefficient §,: ¥ =0.015 and x=1.015(this is due to the fact that punching tests are
never perfectly centric; for the eccentricity, the vectorial average is null, but the scalar
average is larger than 0). For the test eccentricity, it is assumed ¢, =5mmand o, =5
mm; S is calculated according to Table 8.3 of EN 1992-1-1:2023 for a typical test
specimen with b, =400 mm

With these distribution parameters, the CoV of the model uncertainty is reduced from 0.12
to 0.107 and the bias factor increased from 1.07 to 1.10.
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Calibration of yv using the nominal value of the effective depth

For the sake of simplicity, the exponent of the effective depth in Eq. 34 is assumed to be
equal to 1.0. With this simplification, the CoV and the bias factor of the resistance function
can be calculated accounting for the exponents in Eq. 34 as :

2 2
V.. V.
Ver =\/( ;J +[ ;’Sj +VdZ+V:9ZV+I/risV

2 2
= \/(Mj +(%j +(0.050)" +(0.107)" +(0.046)" =0.137

> (37)
113
Ly {j:m -y,mj My oyt = (exp(1.645-0.100)) " -0.95" -0.95-1.10-1.00 = 1.085
) (38)
Adopting «, =0.8 and g, =3.8, the partial factor becomes:
. exp(0.8-3.8-V, ) _exp(08-38:0.137) 39)

My 1.085

This result is similar to the value obtained for yc, but it has to be noted that the two partial
factors have a significant different origin. In the case of yc, the dominant uncertainties are
related to the material strength variables (factor 7, and f., ), whereas in the case of yv,
the dominating uncertainty is related to the resistance model since the concrete strength
appears in the resistance function with an exponent of 1/3. As shown in Fig. 15, where the
contributions to the CoV of the resistance model as a function of the effective depth are
depicted, also the effect of the geometrical uncertainty can become significant for thin slabs
(the value of Vry=0.137 given above is valid for d =200 mm). These findings are
important, since in the adjustment of the partial factors in the case of the assessment of
existing structures, the assessment of the concrete strength can have a significant
influence on yc, whereas its influence on yv is significantly smaller.

0.18 T T T - :
0.16
> [ VRV
0.14 2
012 geometrical uncertainties
2. 0.1¢r
aﬂ,i RV
0.08 F model uncertainty
0.06
0.04
L M
0.02 material uncertainties ‘Gv
0 eevl
0 200 400 600 800 1000
d, (mm]

Fig. 15 Contribution of different basic uncertainties to the coefficient of variation of the
resistance function according to Eq. 37 as a function of the effective depth («,, represents
the FORM sensitivity factor for each basic uncertainty, calculated as oy, =n,-V,/V,, ).
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Calibration of yv using the design value of the effective depth

The fact that the variability of the effective depth can become significant for thin members
(in a similar manner as observed in the calibration of ys) leads to a slightly insufficient value
of the reliability index g for those cases if a constant value of the partial factor y, =1.40 is
adopted (see the blue curves in Fig. 16a-b for d, <200 mm). On the other hand, y, =1.40
is overly conservative for thick members. To avoid these shortcomings, the verification of
the shear and punching resistances of members without shear reinforcement may be
conducted using design values of the shear resisting effective depth. As shown in Fig. 16b
(refer to red curves), an almost constant safety level is obtained using y, =1.29 and

d,=d, A —15mm. This possibility has been adopted in EN 1992-1-1:2023.

(a) e 7y required to achieve i, = 3.8

15F 7, required to achieve ,8@[=3.8 withd

14k et B |
Y 13F i e ————

12t 7, required to achieve f_=3.8 with d,

: d=d_ -15mm i

L.lr

I 0 1 L L 1
(b) achieved f for different partial factors

5.0 T \ r r

achieved f§ with y, = 1.40 and
4.5 I Lf? drwm

40r v—Ah,=38 ]

Bl 3 2t
s achieved f with y, = 1.29 and

d=d _ -15mm
3.0r
25r
20 . . . .
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Fig. 16 Required partial factors y, to achieved the target reliability index S, =3.8 (a) and
(b) obtained reliability indexes with the assumed patrtial factors y, (blue curves refer to the
approach using nominal values of the effective depth whereas red curves refer to the case
using design values of the effective depth).
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Conclusions

This work presents a new calibration of the partial factors for the design of reinforced
concrete structures by applying the methodology proposed by the European standard for
Structural Design EN 1990:2023 [7] together with the most relevant data associated to the
different sources of uncertainties available in the literature. In addition, an explicit
description of the methodology and the assumed statistical values of all uncertainties allow
the adjustment of the partial safety factors in case more precise values for a given situation
are available. This is typically the case for the assessment of existing structures, when
geometrical and material values are assessed on site, or when more refined verification
methods are used (as for instance Non-Linear Finite Elements Analysis Methods). This
procedure as well the statistical values described in this section have been adopted by the
2nd generation of Eurocode 2. Such calibration is performed in a transparent and simple,
yet rigorous, manner on the basis of the content included in Annex A of the 2" generation
of Eurocode 2 (EN 1992-1-1:2023 [14]). The most relevant findings presented in this
section are summarized in the following:

* The application of the exponent sensitivity analysis approach to five of the most
common resistance models for RC structures (axial tension, axial compression,
bending, shear with shear reinforcement, punching shear of slabs without shear
reinforcement) enables showing that the exponents associated to the different
geometrical and material parameters vary from one case to the other, which indicates
that the governing uncertainties can also vary correspondingly. The results of such
analyses show that while a material factor approach (y;, and y.) can be applied to a
wide range of typical resistance models (axial tension and compression, bending, shear
in the presence of sufficient shear reinforcement; where the material and the
geometrical uncertainties are governing), a resistance factor approach (y, ) is more
appropriate for other specific resistance models (shear without shear reinforcement and
punching shear; where the geometrical and the resistance model uncertainties govern).

* The model for the bending resistance of suitably reinforced concrete sections is used
as reference for the calibration of the partial factor for the yield strength of steel
reinforcement. For the calibration of the partial factor for the concrete compressive
strength, the model for the resistance of columns against axial compressive force is
used. Both resistance models are commonly used in practice and represent cases
where the material strengths variables have a significant influence (with an exponent
close to 1) together with the model uncertainties.

» For the steel yield strength, the calibrated value of the partial factor is equal to y,=1.15
confirming current practice if the geometrical uncertainties are to be covered by the
material partial factors. This approach can lead to unsafe designs for slabs with an
effective depth smaller than 200 mm. It is shown that a constant safety level and a more
economic design could be obtained if design values of the effective depth are adopted
together with a reduced partial factor y,. Such approach has been adopted as an
alternative in the 2 generation of Eurocode 2.

* Forthe concrete compressive strength, the calibrated value of the partial factor is equal
to y.=1.50, confirming again current practice. This section demonstrates how the
different sources of uncertainties related to the production, transportation, casting and
testing of concrete are considered in the calibration of its associated partial factor.

* With respect to the resistance partial factor y, for punching shear and shear resistance
of members without shear reinforcement, its calibration is shown for the former
resistance model, yielding a value of y, =1.40 (if geometrical uncertainties are to be
covered by this factor also). A similar value could also be obtained by using the shear
resistance model of members without shear reinforcement. Like the case of the material
factor y,, it is also observed that a constant value of y, =1.40 can lead to unsafe design
of slabs with a shear resisting effective depth smaller than 200 mm. Eventually, it is
shown that more constant safety level and more economic designs can be achieved if
design values of the shear resisting effective depth are combined with a lower value of
the partial factor y, . Such approach is also proposed as alternative in the 2" generation
of Eurocode 2.
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Introduction

The design process of reinforced concrete structures typically consists of three main steps.
First, the structure is conceived considering the constrains and requirements. Experience
and empirical rules (e.g., span/depth ratios) govern this phase, which results in the
definition of the structural members geometry. Second, the relevant load cases are
identified and the action effects are calculated by means of idealised models. Finally, with
the geometry and the action effects for each section, the reinforcement is designed and
dimensioned so that the sectional resistance is larger than the action effects. If the initial
geometry of the structure is not suitable, the process can be repeated.

Typically, to calculate actions effects in statically indeterminate structures, engineers
assume a linear-elastic uncracked mechanical behaviour of the structure, neglecting the
influence of the reinforcement on the stiffness. The main advantages of these assumption
are that the stiffness of the members does not depend on the load level and consequently
no iteration is required. Thus, the process is direct and the results are easily obtainable,
making these assumptions suitable for practical applications. However, for statically
indeterminate systems (Fig. 17a and 17b), a linear-elastic uncracked behaviour does not
provide a completely realistic prediction of the action effects. In fact, because cracking is
neglected, so is the ensuing redistribution of internal forces.

In spite of that, the sectional resistance is generally calculated considering cracking of
concrete and non-linear behaviour of materials, assuming that each section or member can
reach its design resistance. This assumption is not consistent with the assumptions for the
calculation of the stiffness, however, it is certainly true if all sections have a sufficient
deformation capacity. However, a premature failure of the system can occur if this is not
the case. To illustrate this scenario, Fig. 17¢c shows the evolution of the bending moment
(in absolute value) in the sagging and hogging section of a continuous beam under a
distributed load q (see Fig. 17a [61]). Several regimes can be observed: (1) uncracked
behaviour; (2) cracking in the hogging region, with the hogging moment increasing less
than the sagging moment; (3) cracking of the sagging region, with the hogging moment
increasing again more rapidly and (4) plastic regime with reinforcement’s yielding in the
hogging region. In the presented case, after some plastification of the reinforcement in the
hogging region, due to insufficient deformation capacity (failure of the compression zone
or of the reinforcement in tension), the sagging section is unable to reach its design
resistance, leading to failure of the system for a load g* < qq, which is the theoretical failure
load predicted assuming an elastic uncracked mechanical behaviour. Compared to the
predicted linear elastic behaviour (dashed lines in Fig. 17c¢), not only the actual load-
bearing capacity can be underestimated (g* < qu), but also in terms of actual internal forces,
deviations can be expected (differences between continuous lines and dashed lines).
These deviations are one of the components contributing to the uncertainty in calculating
action effects.
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Fig. 17 Redistribution of forces: (a) continuous beam, (b) frame system; (c) bending
moment redistribution between the hogging and the sagging section of a continuous beam
with regimes (1)-(4) (see explanation in the text) and premature failure of the hogging
section.

To ensure structural safety, most current codes of practice adopt a semi-probabilistic
design approach. Accordingly, limit state verifications are performed by means of design
values and adequately calibrated Partial Safety Factors (PSFs), which cover uncertainties
related to geometry, materials, actions effects and models, as shown in Fig. 18. Regarding
the uncertainty in model assumptions (idealization of the actual structure), previous
research was mainly focused in investigating the model uncertainty related to the sectional
resistance, while little effort was put in investigating the uncertainty in action effects.
Depending on the type of action, for the ratio of the actual internal force to the calculated
value, the JCSS Probabilistic Model Code [28] recommends a log-normal distribution with
mean equal to 1.0 and CoV between 0.05 and 0.2. However, the origin of this
recommendation is not clear. As stated in the JCSS Probabilistic Model Code (part 3,
section 3.9.3), to obtain those values “... a more or less standard structural Finite Element
Model has been kept in mind” without specifying the adopted mechanical behaviour. The
authors assume that the recommended values are based on a linear elastic uncracked
mechanical behaviour.

Design values PSF Basic uncertainties

Actions

Uncertainty in representative
values of actions

Modelling of actions

Geometrical properties
influencing actions

E = EQiF i Qo
Geometrical properties
influencing actions effects SRR
Mechanical behaviour :
N . . Material properties T
Uncertainty in action effects infl atn,. ap (_)pb “1';
encing -
o influencing actions ettects Model choices and
Limit state . bound diti
verification %4 £ 3 Model uncertainties in oundary conditions

calculating action effects

System changes during
construction including

. . . creep effects
Modelling of local resistance
Modelling of load

Material properties combinations
influencing local resistance

R‘/ . R{XA,I / T

‘nom”

Geometrical properties
influencing local resistance

Fig. 18 Basic uncertainties and corresponding partial safety factors (PSFs), figure adapted
from [2] and [65], notation consistent with [7].
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Regarding codes of practice, in EN 1990:2002 [2], the model uncertainty in action effects
is implicitly covered by the partial factors for permanent and variable actions (yc and ya).
However, for particular verifications, the designer is allowed to decouple the model
uncertainty in action effects, ysq, from the uncertainty in the representative values of
actions, yg and yq. In those cases, the recommended value for ysq is between 1.05 and
1.15, consistent with the prescriptions of the first codes dealing with the topic, which
proposed a factor ysq equal to 1.15 [64]. This value was originally proposed to consider
uncertainties related to the calculation methodology and tools (“moderately careful or
uncertain studies and calculations”, in French “études et calculs moyennement soignés ou
incertains”, [64]), while statically indeterminate systems and redistribution of forces were
not explicitly mentioned. Additional literature review on this topic can be found in [65]. In
the latest available draft of EN 1990:2023 [7], the model uncertainty in action effects is still
covered by the partial safety factor for permanent and variable actions, presented with
slightly different notation (yr = yr - ysa). It is also specified that yr may be used for both linear
and non-linear calculation, although the different verification types may differ: local
verifications for linear analyses, global verifications for non-linear analyses. In
EN 1990:2023 [7], except for some specific design cases, no recommended values of ysqd
are specified. It is worth noting that one of the possible disadvantages of considering ysd
on the actions side is the impossibility to consider the mode of failure of the system (brittle
vs. ductile), as it depends on the sectional resistance model.

Interestingly, the approach of codes of practice nowadays does not account for the type of
system in terms of uncertainties in modelling and determination of action effects. For
statically determinate systems, the calculation of action effects is only influenced by
equilibrium and geometry, whereas the stiffness and the mechanical behaviour have no
influence on the results, provided that second order effects can be neglected. For statically
indeterminate systems, however, additional phenomena and basic uncertainties contribute
to the uncertainty in action effects, as can be schematically observed in Fig. 18, adapted
from [65] and [2], notation consistent with [7]. As shown in Fig. 17, one of the main
components influencing the calculation of action effects is modelling of the mechanical
behaviour. Indeed, any model is a simplification of the actual structure and leads to a
different degree of accuracy and precision. Generally, more complex models lead to more
precise but not necessarily more accurate results and they require additional parameters
and calculation time, often involving iterative processes and more complex interpretation
of results. Also, time-dependent deformations due to creep can influence the uncertainties
in action effects. Another phenomenon that can increase the uncertainty in action effects,
is the system change during construction (casting of concrete parts which constitute a
statically indeterminate structure at different times time or/and assembly of precast
members). Generally, in the design process, the model of the structure is generated as a
whole and the totality of the load is applied at once, including self-weight. In actual
structures, however, self-weight is applied according to construction stages, permanent
load is incrementally applied after construction and live loads are applied sporadically. In
statically indeterminate systems, this sequential application of the loading can lead to
internal force redistributions, increasing the uncertainty in action effects. In addition, the
internal forces are affected by the uncertainties related to the actual creep behaviour, the
age of concrete at system change and the time at activation of self-weight (removal of
propping or scaffolding). Finally, combinations of different actions, which is generally a task
left to the designer, can lead to further uncertainties in calculating action effects.

As numerical models evolve, they are becoming more and more complex, giving designers
many options to model a structure. For instance, the modelling of boundary conditions, the
type of elements, the interaction between different element types and the adopted solver
can influence the calculated action effects. As there is no standard for modelling structures,
these choices are left to the discretion and the experience of the designer, leading to further
uncertainties in the value of action effects.

The aim of this work is to contribute to quantifying the model uncertainty in action effects
and load-bearing capacity calculations of reinforced concrete structures and clarify whether
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the failure mode of the system influences this uncertainty. This investigation focuses on
uncertainties related to the mechanical behaviour of the structure, see highlighted box in
Fig. 18, by comparing tests results and calculated values. Uncertainties related to
geometrical variability effects on model uncertainties and system changes are not
considered. Based on updated distributions, the partial safety factor ysq is calculated by
means of parametric analyses and case studies. Finally, uncertainties covered by ysq are
clarified and practical implications are discussed.

Investigated structural system and practical relevance

Since there is little experimental data available on statically indeterminate systems, it
cannot be used to perform statistical analyses. To overcome these difficulties, the
experimental response of statically indeterminate systems is obtained by assembling the
response of simply supported beams tested in a 3-point bending setup. This technique has
already been used by [65] with structural members exhibiting brittle failure modes. It is also
applicable to reinforced concrete systems where both brittle and ductile failure modes can
occur. The deformability of supports is also considered by supporting beams on reinforced
concrete columns tested under concentric uniaxial load.

(a) Fy = F +F, (©) (d)
F
F F lr
f Hog i
4 d=0,=0, b F2
F)2 F2 5=0+0,
F, R
(b) b f
R,
2 lF

Fig. 19 (a) Assembled system with beams on infinitely rigid supports and (b) supported by
columns; (c) experimental response of the system (black) assembled with beams (red and
blue) and linear-elastic uncracked model prediction (dashed); (d) Force-deflection (F-0)
response of a beam tested in a 3-point bending setup (red), a column tested in compression
(blue) and a beam supported by two columns (black).

For the case presented in Fig. 19a, the response of the assembled system in terms of
force-displacement relationship (F-0) is obtained by combining the response of various
beams crossing at midspan. For compatibility reasons, the force applied to the system for
a given displacement is the sum of the forces required to produce that same displacement
in each of the beams composing the system, see Fig. 19¢c. For the statically determinate
systems with a beam supported on columns, which constitute the indeterminate system
shown in Fig. 19b, the displacement at midspan is obtained by adding the displacement of
both members as shown in Fig. 19d.

The theoretical response predicted by the model is obtained by using the same technique,
where the F-0 response of each beam is calculated using several models. As an example,
Fig. 19¢c shows the experimental F-6 response of a system composed of two beams and
the response of a linear elastic model. It is important to note that the model uncertainty
related to the sectional resistance calculation is not considered. For this reason, the
predicted resistance of each beam is equalled to the experimental resistance (in Fig. 19¢
R1mod = R1exp and Rzmod = R2exp). With this assumption, the load-bearing capacity
predicted by the elastic model for the system presented in Fig. 19¢c is lower than the
experimental one (Rsysexp), Which results from the superposition of the two experimental
load-displacement curves.
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Fig. 20 (a) F-6 response of an assembled 2-beams system; (b) double-clamped beam and
assumed M-y relationship; (c) experimental M-y relationships of beams used in the
comparison; (d) comparison of bending moment evolution as a function of the load for the
2-beams system (continuous curves) and the double-clamped beam (dashed curves).

To assess whether the assembled 2-beams system (Fig. 20a) is representative of
redistributions occurring in a continuous beam (Fig. 20b), action effects in each beam of
the system are compared with those in a double-clamped beam in the sagging and hogging
sections. The double-clamped beam is subjected to both a distributed load g and a
concentrated force at midspan Q = q-/. All beams used in the comparison have been tested
by [76], have the same cross section (b x h =200 x 400 mm) and variable longitudinal
reinforcement ratios (0.4% < 1 <1.8%). The moment-curvature (M-x) relationships
(measured over a length equal to the effective depth of the corresponding beam) are shown
in Fig. 20c. In the double-clamped beam, the sagging and hogging bending moment are
calculated using the measured M-y relationship to fulfil equilibrium and compatibility. The
shear deformations are neglected. Fig. 20d shows the bending moments at midspan of the
2-beams system as well as the sagging and hogging bending moments in the
double-clamped beam as a function of the normalized load. It can be observed that the
bending moment at midspan of each beam in the 2-beams system (continuous curves)
closely follows the bending moment in the double-clamped beam (dashed red at midspan
and dashed blue at the clamped end). For the case shown in the bottom left of Fig. 20d
(system T4B1 + T7B1), the resistance of the midspan section of the double-clamped beam
is extremely under-designed and its deformation capacity is not sufficient to allow the
clamped section to reach its designed resistance. Overall, except for cases where sections
are extremely under-designed, the redistribution of forces in the assembled system is a
good approximation of the redistributions occurring in a continuous beam. Even when
sections are under-designed, Fig. 20d shows that the redistribution of internal forces
between the 2-beam system and the continuous beam is very similar up to failure. Thus,
the assembled 2-beams system is representative of several practical cases, including
double-clamped beams and continuous beams.

Definitions

Random variables

Depending on the type of analysis performed and the code of practice used, structural
verifications can be performed by comparing action effects to sectional resistances
(approach typically used in the design of new structures) or by comparing the load-bearing
capacity directly to the actions (approach often used in the assessment of existing
structures). In the present work, these two approaches are defined as local and global
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verification methods. For statically determinate structures, both methods lead to the same
result, whereas for statically indeterminate structures, the results are typically different. The
local verification method is typically used in combination with linear elastic analyses (or
analyses with partial redistribution of internal forces) whereas the global verification method
is used with non-linear analyses or calculations based on limit analysis.

To cover both cases, two random variables are defined in this report. The global random
variable Oaqr is defined in Eq. 40, where Rsysexp is the experimental load-bearing capacity
of the 2-beams assembled system and Rsysmod is the theoretical load-bearing capacity
predicted by the model, see Fig. 21a.

RSSCX
Opr =% e (40)

sys,mod

The local random variable 6¢ is defined in Eq. 41, where E; moq is the theoretical action effect
in each member of the system (predicted by the model) and E; ¢, is the experimental action
effect for the theoretical load-bearing capacity (Rsysmod). The random variables are
graphically illustrated in Fig. 21a. The action effects (E;) are proportional to the force carried
by each beam (F;) at each load step where j is index of the beam in the assembled system.

0, =2iee Lien th £ =t d j=[12
e = = wit = an j=[1,2] (41)
E/,mod F_'/‘,mod Kj

As already mentioned, the aim of the present report is to investigate the model uncertainty
in action effects related to the modelling of the mechanical behaviour. The model
uncertainty related to calculation of the sectional resistance is not considered, in fact, it is
removed by equalling the theoretical predicted resistance of each member of the system
to the experimental value.
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Fig. 21 (a) Global and local random variable definition, respectively 8qr and Og, for the
shear force at the support k1 = k2 = 0.5 and for the bending moment at midspan K 1 = 4/l;
and K 2 = 4/l,; (b) elastic over-design ratio definition, {g,.

Elastic over-design ratio

Overdesign of a section can result from several sources. Generally, structures are
dimensioned by considering the envelope of action effects calculated using a linear elastic
uncracked model for the relevant load combinations. As failure can occur for a specific load
combination, this leads to some sections being over-designed with respect to others.
Another source is often related to detailing and serviceability requirements (like minimal
reinforcement ratio, limitation of deformations and cracking control) or fatigue and fire
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requirements. In addition, the effective amount of reinforcement provided is often slightly
larger than calculated, to accommodate commercially available reinforcement bars and
convenient spacings. Sometimes, simplicity of construction leads to uniform reinforcement
diameters, leading to possible over-design. Finally, if various failure modes are involved,
the uncertainty of the resistance model could also lead to over-design of some sections.
To account for these effects, the elastic over-design ratio, defined in Eq. 42 is introduced
to investigate the model uncertainty for action effects.

R,

Cp = 2 ’ (42)

J-opt

This ratio is graphically represented in Fig. 21b and, by definition, cannot be lower than
unity as it is calculated on members that do not cause the failure of the system.

Database and considered models

A database of 93 beams and 75 columns was collected. Tab. 6 and 7 shows details of the
beams and columns database. All beams and columns used in the simulations have well
documented F-6 experimental responses, including the post-peak branch and well as
documented material and geometrical properties. For beams, only 3-points bending tests
are considered.

Tab. 6 Database of beams tested in a 3-points bending setup

Effective LongitudinalShear reinf.

Reference :\eu;rgber of ISp[:1nm] depth reinf. ratio ratio f. [MPa] f, [MPa]
° d [mm] pi [%] pw [%]
[77] 5 1600-2700 175 0.32-229 0.15-0.26 444 460
[76] 21 2000-6000 176-565 0.13-1.94  0.13-0.38  30.9 587-595
[78] 2 2000 170 0.30-1.22 0 34.4-35.3  562-573
[79] 11 645-1075 215 3.77 0.45-1.81 520 414
[80] 8 5400 875-925 0.50-1.75  0-0.08 21.0-38.0 550
[81] 1 10800 1890 0.74 0 33.6 455
[82] 12 3600-6840 457 1.72-346  0-0.20 22.6-43.5  440-445
[83] 3 3000 372 1.51 0-0.21 55.2 464
[84] 2 1400 210 2.46 0.5 42.0 418-426
[85] 3 4200 340-348 0.23-210  0.36 35.3-45.9  336-507
[86] 6 1175-1952  235-244 3.29-3.60 0.22-0.32  37.0-42.2  402-436
[87] 6 1400 160-210 0.84 0-0.19 40.3 510-520
[88] 4 2800-7700 556 0.89 0 32.6-35.6 713
[89] 6 1600 140-210 0.80-1.6 0-0.20 39.9 520
[90] 3 3000-5000 460 1.37 0.09-0.19  23.8-27.0 495
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Tab. 7 Database of columns tested under uniaxial compression

number of Width Slenderness

Reference. tests be [mm] ratio Ac p1 [%] fc [MPa] fy [MPa]
[91] 24 305 4.0 1.72-3.66 31.3-40.0 372-438
[92] 19 200-600 3.0-45 1.50-2.50 33.2 247-475
[93] 6 267-600 3.0 0.28 42.8 458-494
[94] 26 267-600 3.0 0.28 42.8 458-494

Among the beams included in the database, 46 failed in flexure and 47 in shear. Because
one of the aims of this report is to clarify whether a brittle or a ductile mode of failure
influences the model uncertainty, the deformation capacity is determined from the reported
load-deformation relationships. To this aim, the indicator of the deformation capacity of
each beam, which is used to distinguish between ductile and brittle behaviour, is calculated
as the ratio between the deformation at 90% of the experimental post-peak branch &r and
the predicted elastic uncracked ultimate displacement &y, see Fig. 22a for a graphical
representation.
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Fig. 22 (a) F-0 response of a beam tested in a 3-point bending setup with definition of &,
and Og; (b) strain profile of a RC beam section at Ultimate Limit State (ULS); (c) beams
grouped based on their deformation capacity ratio at failure, failure modes and the neutral
axis depth; (d) histogram of the deformation capacity ratio by failure mode (bending in red
and shear in blue).

The failure is assumed to be ductile if the deformation capacity ratio is larger than 10 and
brittle if it is smaller than 5 (intermediate behaviour for 5 < ér / &y < 10). Fig. 22¢ shows the
deformation capacity ratio plotted against the depth of the neutral axis calculated according
to EN 1992-1-1:2023 [95] (see definition in Fig. 22b). It can be observed that beams that
fail in bending and respect the condition imposed by EN 1992-1-1:2023 for performing
plastic analyses (x/d <0.25) [95], generally exhibit a ductile behaviour. As shown in
Fig. 22c and in the histograms of Fig. 22d, shear failures lead to brittle or intermediate
behaviour.

All columns included in the database have a square cross section (width bc between 250
and 600 mm) and a geometrical slenderness ratio of the specimen Ag, (defined as the ratio
of the height of the column over the width bc) between 3 and 4. None of the columns exhibit
a buckling failure.
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Moment-curvature relationships and calculation models

Besides the Linear Elastic Uncracked model (LEU), five additional models are considered
to evaluate the model uncertainty in action effects. An overview of the models is given in
Tab. 8 and the corresponding M-y relationships are shown in Fig. 23a.

For the LEU model, the flexural stiffness is calculated according to Eq. 43. In the Linear
Elastic Fully-Cracked model (LEFC), all sections are assumed to be fully cracked before
applying the load, and the flexural stiffness is calculated according to Eq. 44 where the
location of the neutral axis is calculated according to Eq. 45.

b-h
El, =E, - 12 (43)
1 (xY xY ,(d x ?
EILEFC :bd3Ec{§(Ej +I’l'pl'(l—gj +I’lpl(ggj :| (44)
p+p'-i'
! d . As ! A_S,
x=d-(p+p)n-|A\1+2-——*——1| with = = 45
(p+p) e (p i) P P (45)

where n = Es/E; is the ratio between elastic moduli of steel and concrete. In the Tri-Linear
model (3L), the section is uncracked until the cracking moment M, according to Eq. 46 is
reached. For cracked sections, tension stiffening is accounted for by shifting the M-y line
by a value equal to Axts, calculated according to Eq. 47, as shown in Fig. 23a, see [96].
The Quadri-Linear model, with and without limitation of the deformation capacity,
respectively 4L and 4L-LIM, is identical to the 3L model up to the level of the resisting
moment MRr. Thereafter, the M-x relationship has an infinite plastic plateau in the 4L model
while in the 4L-LIM model, the curvature is limited to match the experimental displacement
at peak load. Finally, the behaviour of the Non-Linear model (NL), in brown in Fig. 23a, is
obtained by discretizing the section in fibres, with each concrete fibre having a uniaxial
stress-strain response calculated according to EN 1992-1-1:2023 [95] for the compression
zone and an elastic-brittle behaviour in tension. The reinforcement is modelled by fibres
with an elastic-perfectly plastic stress-strain response.

Mr =fct % (46)
E,-(h-x)
A —E. 1 . = ﬂ = Mf (47)
Ts 8 pT r IOT p h Zr E]
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Fig. 23 (a) Assumed M-y relationships for the various models; (b) computation of the
deflection; (c) example of the experimental and predicted F-6 responses for beam
VSB3 [82].

Fig. 23b shows the methodology used for calculating the force-displacement relationship
of the simply supported beams for the 3L model. At each load step, the beam is discretized
and the displacement is calculated by updating the flexural stiffness of each element based
on the calculated bending moment. For beams without shear reinforcement, the
displacement due to shear deformations is calculated using the mechanical model
proposed by [97], which is based on [88]. For beams containing shear reinforcement, the
model proposed by [98] is used. Fig. 23c shows the experimental F-6 response of a simply
supported beam (in black, beam VSB3 by [82]) and the theoretical response predicted by
the various models.

Tab. 8 Implemented models for beams

Shear .
C t: Steel
Name Symbol M-y Section deformatio Te_nsw_n oncrete ee
n stiffening o-¢ o-&
Linear Elastic LEU Linear Uncracked No No Elastic Elastic
Uncracked
Linear Elastic | g Linear Fully-cracked  No No Parabola ¢\ tic
Fully-Cracked rectangle
Tri-Linear 3L Tri-Linear Uncracked/ Non-linear Yes Parabola Elast!c/
Fully-cracked rectangle Plastic
Quadri-Linear 4L Quadrl- Uncracked/ Nondinear VYes Parabola Elast!c/
Linear Fully-cracked rectangle  Plastic
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The F-0 response of the columns is modelled using either a linear elastic model (LE) or a
non-linear model (NL). In the LE model, both concrete and the reinforcement constitutive
laws are assumed linear-elastic, Fig. 24a. In the non-linear model (NL), the constitutive law
of concrete proposed by Guidotti et al. 2011 [99] is used, and the increase of strength and
deformation capacity due to transverse reinforcement is considered according to [100]. The
reinforcement is modelled by an elastic-perfectly plastic stress-strain behaviour. Fig. 24b
shows the experimental F-0 response of a column tested under uniaxial compression
(column CAM1 by [93]) and the theoretical response predicted by the two models.
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Fig. 24 (a) Materials stress-strain for linear elastic and non-linear model; (b) example of
the experimental and predicted F-6 responses for column CAM1 [93].

Examples of two beams assembled systems

Fig. 25 shows the experimental and theoretical response, as predicted by the Linear Elastic
Uncracked model, of three characteristic systems. In Fig. 25a, the failure of the system is
controlled by beam 1 in the experimental response and by beam 2 in the model prediction.
Due to concrete cracking, the relative decrease of flexural stiffness for beam 2 is larger
than for beam 1 and, since beam 1 fails in a brittle manner, so does the assembled system.
This cannot be predicted by the LEU model, that in this case leads to an unsafe prediction
(load-bearing capacity larger than the experimental value, 6ar < 1). A slightly larger
theoretical load-bearing capacity with respect to the experimental is also observed in
Fig. 25b, where both beams have a relatively ductile behaviour, but their peak resistance
occurs for significantly different displacements. A rather different result is shown, however,
in Fig. 25¢c, where the experimental peak resistance is reached for a similar displacement
in both beams, leading to a experimental load-bearing capacity of the 2-beams system
which is larger than the value predicted by the model. It must be noted that the examples
in Fig. 25 are for illustrative purposes and are not exhaustive.

(a)
F

S —————

Fig. 25 Examples of theoretical (Linear Elastic Uncracked model) and experimental
response of 2-beams assembled systems: (a) beam DB0530M [80] and S130 [86];
(b) beam DR572 [89] and T1A1 [76]; (c) beam DR382 [89] and VSC?2 [82].

Results

The combination of the 93 beams described in Tab. 6 allows to produce up to 4278
two-beams systems with the corresponding experimental behaviours. For all the
assembled systems, the internal forces and the theoretical load-bearing capacity is
determined according to the models defined above.
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Presentation of the results and distribution fitting

Fig. 26a shows the log-normal probability-plot of 6 defined in Eq. 41 where the internal
forces Ejmod are calculated using the linear elastic uncracked model (LEU). The logarithm
of the random variable (x-axis) is plotted against the normal quantile in terms of standard
deviation o (y-axis). The red, blue and green distributions correspond respectively to {eL
smaller than 1.1, 1.25 and 5 while the continuous line represents the fitting LN distribution.
This type of graphical representation allows to graphically verify if a LN distribution is a
good fit for a random variable. In fact, data lying on a straight line indicate an exact LN
distribution and the slope corresponds to the coefficient of variation (CoV). Whether a LN
distribution is suitable to represent the tail of the distribution has already been discussed in
the past. According to [101], to compare different propositions, a simple fitting criterion with
an arbitrary choice of the distribution is practically non-verifiable and there is a need to have
standardized distribution types to perform adequate comparisons. The present report
accounts for these considerations and, accordingly, a LN distribution is adopted to describe
6e and 6Oqr. In fact, besides being a good fit for the distribution of 6e as shown in Fig. 26,
the comparison with the recommendations of [28] is facilitated.
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Fig. 26 (a) Probability plot of 6e using a Linear Elastic Uncracked model and (b) detail of
the tail fitting; (c) graphical representation of the distribution parameters with varying elastic
over-design ratio; (d) CoV (black) and number of combinations (red).

It can be observed that the LN distribution is a good fit for the distribution, including the tail
regions. Fig. 26b shows the histogram of 6e and the detail of the upper tail fitting. Because
6t is defined as the ratio between the experimental action effect and the calculated one,
the values in the upper tail region are the unsafe cases where Eexp > Emod. The dashed line
in Fig. 26a represents the fitting of the data with a LN distribution (fitting performed using a
linear least-squares fitting algorithm, tail values larger than the 95" percentile of the data
are weighted by a factor equal to 2). Parametric analysis combined with graphical checks
show that this fitting parameters allow to have a good approximation of the tail of the
distribution when the model uncertainty in action effects calculation is determining (upper
tail values, 6 >1) and a good fit of the rest of the distribution when the model uncertainty
is not determining, see probability plots in Figure 26a.

Fig. 26¢ shows the distribution parameters of 6e (mean, 51" and 95" percentile) with varying
elastic over-design ratio ({eL). If one of the beams is largely over-designed compared to the
other (large {eL), redistribution of the force is more likely to occur, resulting in a larger
uncertainty in determining action effects and leading to an increase of the coefficient of
variation of 6, see Fig. 26d. However, as shown in Fig. 20d, if the elastic over-design ratio
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is very large (ZeL > 2), the assembled system is not necessarily representative of a practical
case. In Fig. 26¢, it can be observed that the mean of the distribution is always close to
unity. This is due to the fact that, if the action effect is overestimated in one member, it is
generally underestimated in the other. The red line in Fig. 26d shows the number of
systems that is possible to assemble for a given limit of L. At least 500 systems are
analysed for each {eL value, which is sufficient to perform statistical analyses.

Discussion of the results

Using the same format proposed in Fig. 26, Fig. 27a shows the distribution parameters of
6e (mean, 95" percentile and CoV) for the LEU, LEFC, 3L and NL models (the results of
the LEU model are already discussed in the previous section, they are presented again to
allow for a comparison). For the LEFC model, very large CoVs can be observed. This is
due to the fact that the flexural stiffness can be largely underestimated. For instance, if the
failure of the system occurs with limited cracking in one of the beams (actual experimental
behaviour), the action effect can be considerably underestimated considering the beam
fully cracked. The probability for this scenario to occur is larger for large values of {eL since
the system has a higher probability to fail with one member still in the uncracked state. On
the other hand, for the tri-linear (3L) and the non-linear model (NL), {e. has a limited
influence on the distribution of Be. In fact, for these models, the flexural stiffness depends
on the load level, leading to a satisfactory prediction of the displacement and the internal
forces for each load step. Since non-linear shear deformations and tension stiffening are
considered in the tri-linear model (3L), but not in the non-linear model (NL), displacements
are generally better predicted for the former and lead to a smaller CoV. Fig. 27b shows the
distribution of 8e using the LEU model for systems exhibiting brittle and ductile failure
modes (for details about the failure mode classification see Fig. 22). Since the LEU model
better describes the behaviour of brittle systems (uncracked section), for a given {eL smaller
CoVs are obtained for brittle systems than for ductile systems (see Fig. 27b).
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Fig. 27 CoV (top) and distribution parameters (bottom) of 6¢: (a) for various models and
(b) for the Linear Elastic Uncracked model with various ductility degrees.

Fig. 28 shows the CoV and the distribution parameters of 6ar according to Eq. 40 (ratio
between the experimental and calculated load-bearing capacities, mean, 5t percentile and
CoV) for the various models. Unlike 6g, for which the values in the upper tail region are the
less safe, for Bar the unsafe values are located in the lower tail (6ar < 1), where the
experimental load-bearing capacity (Rexp) is smaller than the one predicted by the model
(Rmod). As for Bk, CeL does not influence the distribution of Bar for the 3L and NL models.
On the other hand, it does for the LEU and LEFC models, but this influence is less
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pronounced than for 6e. Two major trends can be identified: (1) the mean value of 6ar tends
towards unity with increasing refinement of the model (see continuous lines in the bottom
of Fig. 28); (2) the CoV decreases with increasing refinement of the model (top of Fig. 28).
The combination of these two phenomena leads to a 5t percentile of the distributions which
is almost constant (p(0.05) ~ 0.95-0.98 for all the analysed models) despite the fact that
the complexity and the calculation time for refined models increases considerably. A good
compromise for estimating the load-bearing capacity of the system is achieved by using
the LEFC model which does not require an iterative process for the assessment of an
existing structure, but for which the reinforcement needs to be known in each section to
determine the fully cracked flexural stiffness (this means that for designing a new structure,
an iteration is needed).
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Fig. 28 CoV (top) and distribution parameters (bottom) of 6qr for various models.

Fig. 29 shows the statistical values of 6qr for brittle and ductile systems using the LEU and
the 3L models. As already mentioned, {eL only influences the results of the distribution of
6ar for the LEU model whereas it has no influence for the 3L model. For both models, brittle
systems exhibit a larger CoV compared to ductile systems (see Fig. 29, top). Also, due to
the redistribution of forces, the mean value of the distribution is larger for ductile systems.
In fact, both the 3L and the LEU model do not consider plastic deformations, thus
underestimating on average the load-bearing capacity for ductile systems and leading to a
larger safety margin (Rsysexp > Rsysmod). This does not occur for brittle systems that do not
undergo plastic deformations, leading to mean values closer to unity. The combination of
these two effects leads to a larger 5% percentile of Bar for ductile systems (~ 1.00)
compared to brittle systems (~ 0.90).
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Fig. 29 CoV (top) and distribution parameters (bottom) of Oqr for ductile and brittle systems:
(a) using the LEU (Linear Elastic Uncracked) model and (b) using the 3L (Tri-Linear) model.

Plastic models

If a quadrilinear model (Quadri-Linear, 4L) with a plastic plateau without deformation limit
is used, the results will be identical to a rigid plastic investigation according to limit analysis.
In this case, the random variable 6ar cannot be larger than one. In fact, the theoretical load-
bearing capacity (Rsysmod), is always equal to the sum of the single resistances of the
individual beams. For the experimental load-bearing capacity of the system (Rsys,exp), this
scenario occurs only if the experimental peak resistance of the individual beams in the 2-
beams assembled system is reached for the same displacement, as shown in Fig. 25c.
The CoV of the 6ar values for the 4L model are shown in Fig. 30a. The 4L model allows
for unlimited redistribution between the members of the 2-beams system. However, the
beams included in the database exhibit both brittle and ductile failure modes, thus,
redistribution in the assembled 2-beams system can be limited. This leads to large values
of CoV for the 4L model (see Fig. 30a). As an example, the probability-plot of 6ar for feL < 2
is presented in Fig. 30c. It must be noted that the mean value of the log-normal distribution
it is not meaningful for the cases where the maximum value is limited (i.e. to 1 for the 4L
model). In fact, in these cases, a log-normal distribution is not suitable to represent the
whole distribution but only the lower-tail, see Fig. 30c for the 4L model. However, this
choice allows performing comparisons between the different models.

If the deformation capacity of the beams is limited to the experimental displacement at peak
resistance, as in the 4L-LIM model, the CoV of 6ar decreases and does not depend on gL,
see Fig. 30a. Moreover, the 5" percentile of the distribution is closer to unity than for the
4L model. Also, since the deformation capacity is the same as the experimental one, the
predicted load-bearing capacity is not necessarily equal to the sum of the single members
resistance and the value of 6qr is not limited to 1.0 as can be observed in Fig. 30c. If the
4L model is used for systems assembled with beams failing in bending and complying with
the requirements according to EN 1992-1-1:2023 [95] (4L-LIM-REQ model), the CoV of 6ar
reduces considerably with respect to the 4L and 4L-LIM models and the 5" percentile is
very close to unity, see Fig. 30a. The limitations mentioned above for the 4L-LIM-REQ
model are shown in Fig. 30b and include the depth of the neutral axis according to [95]
(x/d < 0.25, Fig. 22b) and the relative resistance of the critical sections (0.5 < R+/R: < 2).
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Fig. 30 (a) CoV (top) and distribution parameters of 6qr for a Quadri-Linear model with a
plastic plateau (4L in red), a Quadri-Linear model with limitation of the deformation capacity
(4L-LIM in blue) and a Quadri-Linear model with a plastic plateau used for beams
respecting the requirements of EN 1992-1-1:2023 (4L-REQ in green); (b) requirements
according to EN 1992-1-1:2023 [95] to perform plastic analyses without explicit checks on
the deformation capacity (4L-REQ model); (c) probability plots for the presented models
with CEL =2.

Deformability of supports

Fig. 31 shows the comparison of the 2-beams system investigated above with the same
system supported on columns (see insert in Fig. 31a). A slenderness ratio Ac =10 is
considered for all columns without accounting for 2" order effects and only cases where
column resistance is not governing are considered. The load-deformation relationships are
produced with the methodology presented in Fig. 19d. The results are presented in Fig. 31
in terms of CoV and mean values of 6 and 6qr (case with {eL = 1.1). Regardless of the
model considered, the CoV of 6 shows a decrease of 1 to 3% while the mean values of 6
also decrease. With respect to 6ar defined as in Eq. 40, a reduction of the mean values
and the CoV can also be observed (minor reduction in the case of the CoV). These results
can be explained by the fact that the deformability of supports leads to an increased
redistribution of forces.

(a) 30 T T " (b) T T T r T -

25 more acourate | i ® Infinite rigid support r’t“\"

| A Supported by columns Tl M
— 20} NI = |
X (Non-Linear) : o % - -
o 15 A E
> (TritLinear) @
[=} Q,
” 10 LET 8
(J
5 i ey A" | (Linear Elastic Uncracked) ] | e ,"wI,A 0,0 2 LEL
oGS L PGS Ll NI

080 085 090 095 100 105 110 LI5S 120

mean(&OR)

0 ] [ | | | |
080 085 09 095 1.00 105 1.10 115 1.20

mean(6,)

Fig. 31 CoV and mean values of the of (a) 6 and (b) Oqr for the 2-beams system on
infinitely rigid supports and supported by columns (slenderness ratio Ac = 10).
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Case study: reinforced concrete frame

As already mentioned, the model uncertainties related to the calculation of action effects
are usually covered by the partial factors for permanent and variable actions (ys and yaq).
In EN 1990:2023 [7], ys and ya are obtained by multiplying ysd4 with yg and yq, which cover
respectively the model uncertainty in action effects and the uncertainty in the representative
values of the actions, see Fig. 18. To estimate the value of ysqs based on the distribution
parameters of Bk, reliability analyses are performed on the 15t floor beam of the RC frame,
shown presented in Fig. 32. To account for various ratios between structural and
non-structural self-weight, the spacing between frames, s, is varied between 4 and 12 m,
see Fig. 32b. This variation covers also the ratio between the structural and non-structural
self-weight in bridges, however, this ratio can be generally larger than 3 for long-span
bridges. The building is designed for a design life of 50 years and for various intended uses.
For each intended use, design loads are assumed according to [102]. Only gravity actions
are considered, wind and seismic actions are assumed to be carried by a bracing system.
In all case studies, action effects are calculated using a linear elastic model with uncracked
sectional stiffness (LEU).
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Fig. 32 (a) Elevation and (b) plan view of the investigated office building; (c) simulations of
50-year live load for s=6 m.

The variability of the structural self-weight, denoted by G, is modelled considering the
geometrical and the specific weight variability according to [28]. For non-structural
self-weight, G2, a general model is not available since it largely depends on the types of
building and on common construction practices of different countries. In this report, the
variability of Gz is modelled using a discrete choice model to consider a large number of
possible combinations of screed, insulation, flooring, ceiling and partition walls. For each
of the above components, mean values and CoV are defined based on experience on
similar buildings in Switzerland. Fig. 33a shows the normal probability-plot of G1 and Gz
distribution resulting from 10’000 simulations. Besides showing that a normal distribution is
a good fit for G1 and Gz, it can be observed that the CoV of Gz is much larger than of CoV
of G1, which reflect the large variability of non-structural self-weight in buildings. These
results refer to a building with an intended use as an office and a spacing s equal to 6 m.
The live load, Q, is modelled according to part 2 of the JCSS report [28] with the influence
area assumed as shown in Fig. 32b (shaded red area). Each simulation lasts 50 years and
leads to a maximum value of EUDL (Equivalent Uniform Distributed Load) as shown in
Fig. 32c. Fig. 33b shows the log-normal probability-plot of the live load distribution, Q,
resulting from 10’000 simulations. It confirms that a LN distribution is a good fit for the
distribution of Q. Besides the office space, the other investigated uses are: residence, hotel,
lobby, retail and classroom. The same methodology described above and shown in
Fig. 32c is used to determine the distribution of Q for each intended use and spacing of the
frame, s.
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Fig. 33 (a) Normal probability-plot of G; and Gy, (b) log-normal probability-plot of Q;
(c) log-normal probability plot of the sectional resistance R for flexural failure and shear
failure; s=6m, intended use as office, design life of 50 years.

Tab. 9 presents the characteristic load values and the distribution parameters as a function
of the spacing s for an intended use as office space. The representative value of the
non-structural self-weight is calculated considering the mean values of the discrete choice
model. It has to be noted that, according to EC1 [102] linear load of partition walls cannot
exceed 3 kN/m to assume the load uniformly distributed. This threshold is satisfied in the
discrete choice model used for calculating the distribution of Go.

Tab. 9 Characteristic value and distribution parameters of G1, G2 and Q for an intended
use of the building as office space and increasing spacing (s) between frames
Distributions
GGy G/Q  Gi[kN/m] G, [kN/m] Q [kN/m]
Mean CoV [%] Mean CoV [%] Mean CoV [%]

S Gk Gax Q«
[m] [kN/m] [kN/m] [kN/m]

4 17.4 12.4 12.0 1.41 2.49 0.99 4.48 12.9 13.6 0.79 35.0
5 24.2 15.5 15.0 1.56 2.64 0.99 4.42 16.1 13.6 0.73 32.7
6 31.9 18.6 18.0 1.71 2.80 0.99 4.34 19.3 13.6 0.69 31.4
7 40.4 217 21.0 1.86 2.96 0.99 4.29 22.5 13.6 0.66 30.2
8 48.0 24.8 24.0 1.94 3.03 0.99 4.27 25.8 13.6 0.63 294
9 58.3 27.9 27.0 2.09 3.19 0.99 4.23 29.0 13.6 0.61 28.7
10 67.2 31.0 30.0 217 3.27 0.99 4.21 32.2 13.6 0.60 27.8
11 79.2 34.1 33.0 2.32 3.43 0.99 4.18 35.4 13.6 0.59 27.9
12 92.3 37.2 36.0 248 3.60 0.99 4.15 38.6 13.6 0.57 27.6

The shear resistance and resisting bending moment, denoted respectively with Rshear and
Reriex, are calculated according to Section 8 of EN 1992-1-1:2023 while their variability is
calculated using the statistical distributions of materials strength, geometric and models
variabilities according Section 1 of this report. Fig. 33c shows that a log-normal distribution
is a good fit for both resisting moment and shear resistance calculation variabilities. It can
also be observed that the CoV of the shear resistance calculation is much larger than the
resisting moment calculation. This is mainly due to the large uncertainty in the model
uncertainty for the calculation of the shear resistance for members with shear
reinforcement, see [104].
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Tab. 10 Statistical parameters of the random variables used to perform reliability analysis
for the investigated case studies. If a range is given, the value varies for buildings with
different spacing s and intended use

Variable Distribution M V [%]
Eg+ Normal 0.98 1.00 4149
Es Normal 1.00 13.6

Eq Log normal 0.550.80 19.158.3
Rriex. Log-normal 1.09 1.12 8.184
Rshear Log normal 1.07 1.14 20.4 22.9
6 Log-normal 1.00 6.5

Tab. 10 presents the distribution parameters of the random variables used to perform the
reliability analyses for all the investigated case studies. The limit state function is formulated
in the classical form as shown in Eq. 48. The uncertainty in calculating action effects is
considered as an independent random variable that multiplies the action effects calculated
using the adopted mechanical model. In the presented case studies, a Linear Elastic
Uncracked (LEU) model is adopted, and each section is designed so that R/E =1.
Therefore, the distribution of 6t is assumed for a LEU mechanical behaviour considering
CeL< 1.1 as shown in Tab. 10, see Fig. 27.

gR,E)=R-E=R—(E; +E;, +E,) 0, (48)

Vsa =H op €Xp(Qpp ':Btgz Vo) with Vor <20% (49)

Sensitivity factors a, are calculated for each variable using the FORM (First Order Reliability
Method) analysis. Based on the sensitivity factor relative to the model uncertainty in action
effects (aee), the partial safety factor ysqis calculated using Eq. 49 where Bigt.s0y is assumed
equal to 3.8 according to EN 1990:2023 [7]. The choice of Bt depends on the level of risk
acceptance at the societal level and is not treated in this report. For details regarding the
FORM analysis and the derivation of the partial safety factors, refer to [105]. In addition to
the case studies described above, a parametric study was performed to investigate the
influence of Vo, Vr and G/Q on ysq. In particular, Vq is varied between 15 and 70%, VR is
varied between 5 and 25% and G/Q is assumed equal to 1.5 and 3.5, where G = G1 + Go.

Fig. 34a and 34b present the results of the parametric analysis while Fig. 34c and 34d
present the results of the investigated case studies. For all plots two axis labels are
provided, on the left axis indicating the value of aeg, on the right indicating the corresponding
value of ysq calculated using Eq. 49.

Fig. 34a shows the variation of aee and ysdq as a function of Vq for various values of Vr while
Fig. 34b shows the variation of aee and ysq for two selected values of Vr with G/Q equal to
1.5 and 3.5. Generally, results from the parametric analyses show that aee, and
consequently ysq, decrease with increasing values of Vr and Va. Also, the ratio G/ Q has
no influence if Vr is large, on the other hand, if Vr is small, an increase of ysq is observed
for larger values of G/Q. Fig. 34c and 34d show that the results obtained from the
investigated case studies are within the boundaries found with the parametric analyses.
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Fig. 34 aec and corresponding ysq as a function of Vq resulting from: (a) parametric analysis
for various Vg; (b) parametric analysis for two selected Vr and G/Q = 1.5 and 3.5; (c) case
studies for various Vg; (d) case studies for two selected Vs and G/Q = 1.5 and 3.5.

These results can be explained considering that the sensitivity factors, a, represent the
weight of each random variable for a defined limit state function and the sum of their square
is equal to unity by definition. Thus, if the weight of one variable increases in the limit state
function, the weight of the other variables must decrease. This explains the finding that for
flexural failures (with lower CoVs of the resistance model), the required ysq factor is larger
than for shear failures (where the CoV of the resistance model is significantly larger).
Nevertheless, this influence can be compensated by the fact that for flexural failures, which
are typically more ductile than shear failures (see Fig. 22), the load-bearing capacity shows
smaller uncertainties (smaller CoV and higher mean value of ratio 6ar as shown in Fig. 29.
In other words, underestimating an action effect when the behaviour is ductile behaviour
has typically smaller consequences then when it is brittle.

Based on the results of the parametric analysis, the performed simulations and the obtained
distributions of 6B, it is reasonable to assume a value of ysq¢ between 1.05 and 1.15 as
initially specified by [64] but based on significantly different motivations. It is important to
note that the model uncertainty related to changes of the structural system during
construction (including the redistributions due to creep) is not covered by the estimation of
the factor ysq presented in this report. This means that for structural systems subjected to
significant system changes (e.g. high-rise buildings), a sensitivity analysis should be
performed to determine the most relevant parameters influencing the calculation of action
effects and load bearing capacity.

It is a matter of fact that the model uncertainty related to the action effects significantly
depends on the complexity and the level of statical indeterminacy of the structure. In fact,
only the influence of geometrical uncertainties can have an influence in statically
determinate structures, whereas the uncertainties can increase for highly indeterminate
complex structures. In addition, for complex structures, additional uncertainties can be
expected with respect to the models implemented in commercial analysis software tools
and the choices by the designer in modelling the structures. This applies for linear elastic
calculations, but also to a larger extent for nonlinear analyses. These considerations, which
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were not the aim of the present work, deserve to be investigated in the future also
accounting for the increasing complexity of the analysis tools used nowadays.

Conclusions

This section investigates the model uncertainty in action effects and load-bearing capacity
calculations for statically indeterminate concrete structures accounting for the type of
mechanical model used and for various failure modes. Based on the presented
investigations, the main conclusions are:

1.

Compared to more refined models, the Linear Elastic Uncracked model leads to larger
CoV of model uncertainty in load bearing capacity calculation (6ar); however, the mean
of the distribution is larger, leading to similar tail’s distribution, thus, similar safety
margin;

For Linear Elastic Uncracked models, an over-design of one or more components of a
statically indeterminate system influences the CoV of the model uncertainty in action
effects calculation (6k);

Refined calculation models lead to more accurate results and generally to lower CoV
of the internal forces ratio 6e and of the load bearing capacity ratio Oagr;

The failure mode influences the model uncertainty in load bearing capacity calculation
but it does not influence the model uncertainty in action effects calculation. Larger
CoVs of OBqr are observed for brittle systems, independently of the calculation model.
Plastic calculation models with unlimited deformation capacity, if performed without
ductility requirements (4L), lead to very large CoV and can lead to unsafe results.
Limiting the deformation capacity, or verifying that ductility requirements are met
reduces considerably the CoV.

Considering supports deformability allows larger redistribution of forces and leads to
slightly smaller CoV.

Parametric analyses and investigated case studies show that the partial factor ysq to
cover the uncertainties of the internal force calculation ranges between 1.05 and 1.15.
It must be noted that the estimated ysq factor does not account for uncertainties related
to structural system variations during construction or structural modelling of complex
structures. These additional uncertainties, which deserve to be investigated more in
detail, significantly depend on the complexity of the structure, the construction method,
the tools used and the experience of the designer.
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Introduction

In parallel to the more thorough study on conventional reinforced concrete (RC) structures,
a similar investigation is presented in this report on steel-concrete composite structures. In
fact, since in Switzerland steel bridges are rare compared to steel-concrete composite
beam bridges, this study focuses on the latter (i.e. steel bridges are not considered). As
already mentioned, the aim of this investigation is to quantify the model uncertainty in action
effects related to the modelling of the mechanical behaviour. The model uncertainty related
to calculation of the sectional resistance is not considered, It is removed by making the
theoretically predicted resistance of each member of the statically indeterminate composite
system equal to the experimental value. By adopting the same technique used for RC
structures and presented in Chapter 2, one wants to determine whether the composite
structures behaviour is similar to that of RC structures; in other words, to determine if the
model uncertainty covered by the partial factor ysq4, see Fig. 18 and [135], should be
differentiated in function of the material/code and its respective design modelling
assumptions. Although the analysis technique is similar to that used for RC systems, some
differences in the mechanical modelling and verification methods do exist and are
discussed herein.

But before, in this introduction, a discussion on the partial factor for structural steel is
conducted, again in analogy to that for concrete and reinforcing steel. The introduction ends
with a section on random variables definition in model uncertainty.

In the first part of this Chapter, the technique already proposed and validated for textile
reinforced concrete [65] and RC beams in Chapter 2 is used to assemble statically
indeterminate structures. Specifically, experimental force-displacement responses (F-0)
are obtained by assembling simply supported steel-concrete composite beams tested in a
3-point bending setup, Fig. 35 illustrates such a system. In a second part, the technique is
further developed to relate such systems to continuous steel-concrete composite beams
and study those.

To illustrate the concept, in Fig. 35 one can see that the experimental response of the
system (“sys”) is obtained by superposing two simply supported beams crossing each other
at the concentrated load application point. Note that the composite beams represented are
in this case both subjected to positive bending. By imposing a displacement at the loading
point and knowing the experimental F-6 response (load-deflection) of each beam as
obtained from the literature, the F-6 response of the system can be determined by adding
the force acting in each member of the system simulating a displacement-controlled test.
Thus, prior to any analysis in this investigation, an experimental database with all relevant
and sufficiently well reported tests was created and is presented in the next section.
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Fig. 35 Example of assembled system with two composite beams; experimental response
of the system (black) assembled with beams (red and blue) and linear-elastic uncracked
model prediction (dashed).

Partial resistance factor for structural steel
According to SIA codes

For the design of new structures, the SIA 260 and SIA 263 codes prescribe the use of a
characteristic value of yield strength f, or of the ultimate strength, fu (usually denoted
simply as f, and f,), which are related to a certain value of elastic yield strength Re or
ultimate strength R, “guaranteed” by the manufacturers, usually defined as 5% fractiles of
the respective distributions [66]. For structural steel, the resistance side factor of safety —
yu — is equal to 1.05 for cross-section, element and stability checks, which all depend on
f, [67]. This factor covers the material uncertainties (specific to steel properties f, and E)
and the model uncertainties (in the resistance models).

For existing structures, to update the value of resistance used in the examination of a
structure, it is required by Annex C of SIA 269 to define a target safety level by means of
the reliability index S, (SIA 269, Annex B.1: “The structural safety requirement is specified
using the target value of the reliability index or by the individual risk.”) [68]. As introduced
by Table 2 of Annex B of SIA 269, the target value g, is a function of the consequences of
a structural failure r and the efficiency of interventions EFM. The estimation of both r and
EFM as a function of actual cost (cost of failure, repair, safety and risk reduction) requires
many assumptions. Instead, one can also assume some reasonable values for these two
quantities, which leads for example for a highway bridge to assume: important
consequences of a failure (5 < r < 10), and efficiency of interventions EFM = 1 (according
to SIA 269 Annex B.3, which yields a reliability index g, = 4.4.

Then, following the assumption of Annexes C.1 and C.2 of SIA 269, it is presumed that the
resistance parameter of interest, here the yield strength, follows a log-normal distribution
and the updated examination value can be obtained as given below, equ. (50) and (51):

apBySrn—02
Staet = Fomaes - €7 (50)
with :
Sz =In(v; , +1) (51)

Note that the definition of the characteristic value of, for example, yield strength f« as a
fractile of the distribution, is not needed here.

According to current knowledge as well as developments within the Eurocode 2nd
generation, the approach described in the Swiss codes (SIA 269:2011) for updating
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material properties for existing structures is somewhat inconsistent with the safety factor
calibration framework for the design of new structures. In the SIA for new structures, the
safety factors are calibrated using the material and model uncertainties present in the
various load-bearing capacity verifications. But, in the evaluation of the updated design
value of f,qact, See Eq. 50, the term &g (representing the variability accounted for in the
design value calibration) only depends on the statistical distribution of the steel yield
strength, thus the inherent uncertainty in the resistance model or empirical equation is not
accounted for in fq act. Therefore, it seems that the approach following the guidelines of SIA
269:2011 is somewhat simplistic compared to the inherent nature and origin of the current
safety factors. Furthermore, as was the case in the first generation of Eurocodes, the
current safety factors result in safety levels that are not necessarily uniform across all
design equations and "not even within a single design rule" as stated by Knobloch et al
[71].

Proposed partial resistance factors in line with the upcoming Eurocode 3 Part 1-1,
EN 1993-1-1:2022 [70]

In view of the above observations, to retain the current format of equations proposed by
the Swiss standards with the corresponding factors of safety, a consistent method for
obtaining characteristic (i.e. nominal) values for both new and existing structures is to base
the calibration on the steel production requirements that are introduced in Annex E of
EN 1993-1-1:2022 [70] as well as in accordance with EN 1990. Even if the new informative
Annex E is about calibration of partial factors for buildings and not bridges, interest is less
pointed towards the actual calibration values to be used in the new Eurocode 3, which stay
similar to the former ones, but more on the information about steel properties presented in
Table E.1 of Annex E [70].

As a matter of fact, during the recent SAFEBRICTILE project [73], whose aim was to
contribute to the harmonization of reliability levels across design rules for steel structures,
material and geometrical properties of various steel products were consistently collected
[71]. Based on the collected data, statistical distributions for the most relevant mechanical
and geometrical properties for a wide range of products and grades commonly used in
Europe were specified. The latter are now included in Tables E.1 and E.2 of Annex E of
EN 1993-1-1:2022. The distributions, assumed log-normal, are specified with their mean
value, coefficient of variation (CoV), 5% fractile and 0.12% fractile values [71]. As
mentioned by Knobloch et al., the last two values “may mainly be used by producers of
steel construction products to verify the compatibility of their production statistics with the
basic assumptions underlying the recommended values of y,, in the standard” [71]. This is
in line with the Swiss prescription of a minimum requirement for the 5% fractile that needs
to be guaranteed by producers and which is related to a characteristic value of material
strength used in design. Also, SAFEBRICTILE concluded that the value of the partial safety
factor yu :

1. i =1.0 as recommended in EN 1993-1-1 for stability verifications is only justified
when the nominal values are directly taken as f, = Ren and f, = Rm (the lower value of
the specified range) from the relevant product standard.

2. when using the values in the tables of the design codes (EN 1993-1-1:2022 or SIA
263:2014) for steel according to EN 10025 (all parts), EN 10210 (all parts) and EN
10219 (all parts) and Table 5.2 for steel according to EN 10149 (all parts), the partial
safety factor ym1 shall be increased.

In the current National Annex for Switzerland, yus =1.05 is used. This adequately covers
the difference between option 1) and 1) based on reviews by ETH Zurich [74].

Thus, the safety factors ymo = ym1 = 1.05 cover the choice of option b) with sufficient reliability
and are already well established in Switzerland by SIA 263. Finally, defining the safety
factors ymo and ym1, which are both used in verifications with f, as the strength value, with
the same numerical value is also based on practical considerations: this avoids
inconsistencies and “jumps” in the load-bearing capacity at the transition between structural
components with and without a stability issue.
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Regarding existing structures, the authors believe the approach and Table E.1 of Annex E
of EN 1993-1-1:2022 also apply for structural steels since those produced in the early
1970s with the introduction of the Euronorm 25/72 [72] and the starting of a European steel
properties database [73]. However, in this case, it is proposed to compare the statistical
distribution of the measured Ren, or Rm, against the one specified by Table E.1, which can
lead to the four situations described in Fig. 36. If it cannot satisfy a steel grade listed, cases
c or d, then in order to obtain an equivalent production steel grade, it is proposed that the
nominal steel grade that would correspond in Table E.1, i.e. the value fy,n.om, is varied such
that the test result distribution satisfies the production requirements with regard to this
equivalent steel grade. For example, in the case of Rep, the ratio Rer,mean/Rer,min and CoV
assumed for the presumed steel grade are to be considered to find the nominal steel grade
value fy,nom and thus the fx, to be used in the verifications [75]. Examples of following both
the approach from Annex C of SIA 269 and the one presented above lead to either similar
values or conservative ones with the adapted Annex E approach, which is logical since it
includes more uncertainty sources.
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Fig. 36 Schematic representation of the verification procedure for production data for
compatibility with annex E [71].

Model uncertainty, random variables definition

In design and modern codes, the quantification of the model uncertainty is based on the
global load bearing capacity of the system (Annex C of EN 1990:2023 [7]). Also, the
sectional resistance is often calculated considering material’s non-linearities while action
effects are usually calculated with a simplified linear-elastic mechanical behaviour, incl. in
the case of composite structures [108]. In some rare cases, plastic analyses or non-linear
analyses are performed to determine action effects and load-carrying capacity. In this
investigation, the model uncertainty related to the calculation of the sectional resistance
(and the resistance of each beam) is not investigated. On the other hand, the load-bearing
capacity of the system adopting various mechanical behaviour is investigated. In other
words, the random variable is referred to as the model uncertainty related to the global
load-bearing capacity 6s, as defined in the previous chapter, Equ. [40] and [65], repeated
below for simplicity:

0 = Ogp = 222 (52)

Rsys,mod
Two typical cases of mechanical behaviour modelling are shown in Fig. 37, where:

Rsysexp peak value of sum of experimental responses (black in Fig. 37)
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Rgysmoa sum of the individual model F-6 responses (blue in Fig. 37 left and red in
Fig. 37 right) at dsysmod, determined as the peak value of the modelled response of the
cross-beam system

(a) Linear-Elastic (b) Elastic-Plastic
F F R,
sys,exp
T - T DS
R:ysreap
% 3
0 12 0 0 0 0

Fig. 37 Modelling of the mechanical behaviour: a) linear-elastic and b) elastic-plastic.

Herein, the resulting distribution of the random variable éur is fitted with a log-normal
distribution and to graphically check the accuracy of the tail distribution approximation, data
are represented in a probability plot, see previous Section for details on this representation.
As for the reinforced concrete elements, the tail fitting is performed on the 5" percentile of
the overall data; essentially the latter will be used to discuss the results. Note that by
computing a 5™ percentile, one uses the most commonly defined percentile level for
representative values. In this way, some considerations concerning the model partial factor
value, namely jsq, can also be made.

Experimental database collection

The first step of the work is the collection of test data to perform the analyses. To do this,
careful gathering and screening was undertaken to collect enough simply supported beam
tests. The experiments retained in the database must contain well-documented information
(geometry, load-displacement response, material properties). Unfortunately, there is limited
literature on experiments with typical bridge girders. Most of the data collected reflect
experiments on composite beams with cross-sectional dimensions closer to those used in
conventional building designs. Nevertheless, it was possible to collect the results of 81
experiments. This set of experiments includes both beams tested under positive (45) and
negative bending (36). The failure mode observed during the experiments was either in
shear, in fracture of steel or crushing of concrete. The screened literature list is summarized
in Tab. 11.
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Tab. 11 References for the composite beams database

Author

Year

Title

Positive M Negative M

Barbato et al. [109]

2014

Probabilistic nonlinear response analysis of

steel-concrete composite beams

1

Wang & Chung [110]

2006

Integrated analysis and design of
composite beams with flexible shear
connectors under sagging and hogging
moments

Toprac [111]

1965

Strength of three new types of composite
beams

Gattesco [112]

1999

Analytical modelling of nonlinear behaviour
of composite beams with deformable
connections

Nie et al. [113]

2007

Experimental study of partially shear-
connected composite beams with profiled
sheeting

Nie et al. [114]

2004

Experimental studies on shear strength of
steel concrete composite beams

Fabroccino et al. [115]

1998

Non-linear analysis of composite beams
under positive bending

Fabroccino & Pecce [116]

2000

Experimental tests on steel-concrete
composite beams under negative bending

Zhao et al. [117]

2011

Simplified nonlinear simulation of steel-
concrete composite beams

Yan et al. [118]

2017

Numerical and parametric studies on steel-
elastic concrete composite beams

Zhang et al. [119]

2020

Experimental and theoretical study on
longitudinal shear behaviour of steel-
concrete composite beams

Zhou et al. [120]

2020

Experimental investigation of the vertical
shear performance of steel-concrete
composite girders under negative moment

Men et al. [121]

2020

Behaviour of steel-concrete composite
girders under combined negative moment
and shear

Men et al. [122]

2021

Web shear buckling of steel concrete
composite girders in negative-moment
regions

Men et al. [123]

2022

Shear capacity investigation of steel-
concrete composite girders in hogging
moment region

Ban & Bradford [124]

2013

Flexural behaviour of composite beams
with high strength steel

Zhao & Yuan [125]

2010

Experimental studies on composite beams
with high-strength steel and concrete

Chapman & Balakrishnan [126] 1964

Experiments on composite beams

Hoffmeister [127]

1997

Plastische Bemessung von
verbundkonstruktionen unter verwendung
realitdtsnaher Last-verformungsanséatze

Gomez Navarro [128]

2001

Experimental study of the behaviour of
composite beams under negative bending
moments

Baldwin [129]

1973

Composite bridge stringers

TOTAL

45

36

For each experiment, the following information is collected and kept in the database (in an

Excel sheet, with separate files containing the numerical values of the F-6 curves):

* Material properties: Yield strength of steel (flange and web if given), concrete
compressive strength, reinforcement yield strength.

* Geometrical properties: steel section dimension, (built-up or rolled section), slab height
and width, span length.

» Slab connection: full or partial connection, connectors rigidity and strength
* Load configuration

* Test results: Ultimate Load, Ultimate Moment, Shear ratio (Vut/Vw,pi), F-6 response.
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Two-beams assembled system

Sectional analyses

Three different types of section analyses are performed to predict the moment-curvature
(M- ) relationships. The structural section analysis models are simple and are intended to
reflect the types of analysis that are performed by the majority of engineers, see Fig. 38. In
most cases, the Linear-elastic (LE) model is used to determine the distribution of forces
within the structure and to determine the load-carrying capacity, while knowing that a
certain margin can exist thanks to the redistribution of forces if plastic hinge formation can
happen. This means that the structure is designed according to the resistance of the
element that reaches yielding first.

In some cases, a plastic analysis can also be performed to consider the redundancy of a
system and the redistribution of internal forces. In this case, the simplest and most efficient
way is to use an elastoplastic (EP) model with or without imposed deformation capacity.
This model is equivalent to the LE model until reaching the yielding limit, then a plateau is
defined, which can have a deformation capacity limit or not.

A type of cross-sectional behaviour models more representative of reality consists of
Non-Linear (NL) models. NL models can be defined in multiple ways, depending on the
non-linearities accounted for. Non-linearities can arise from material non-linearity
(constitutive law) or geometric non-linearity. In the current study, it has been chosen to only
account for material non-linearity. This choice is explained by the fact that most of the
structural analyses carried out by engineers use simple and efficient models such as the
LE and EP models. It is rare that highly refined non-linear models are used, so it seemed
that the consideration of the non-linearity of the material(s) is sufficient to be representative
of engineering practice, without considering more complex models in the current study (i.e.
with geometric non-linearities).

To determine LE and EP models slope, the NL curve (rigidity) initial slope in the elastic
stage is used, see next subsections.

M
Y EP

R.exp

LE

LE : Linear - Elastic
EP: Elastic - Plastic
NL: Non-Linear (materials)

Xy X

Fig. 38 Sectional analysis models.

Non-Linear model

This paragraph presents the assumptions used in the non-linear model to determine the
moment-curvature relationship of steel-concrete composite sections. The section analysis
is performed numerically using a fibre-based model, Fig. 39 presents the algorithm
procedure. The material properties are experimental values taken from the test database.
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1. Input

The informations relative to the beam
experiments are integrated in the numerical
model :
- section geometry
- materials strength (web, flanges and
reinforcement yield strength, concrete
compressive strength) ru ke Iy

2. Discretization into layers ity Sfem

The cross-section is discretized into

horizontal layers containing the following -

X : EPsh 0.4f cm|- ;
information : (prEN1993-1-14:2020) AEtm § (EN1992-11)
- material type (steel, concrete or 1 i
reinforcement) &y eu € &l ol e
material strength
layer dimension
vertical position of the layer
3. Iterative procedure
iteration step i M
1. curvature yiis set
2. Neutral axis is chosed arbitrary
3. computation of the strain in each fiber
el ; i M,
5. Normal force of each fiber Nf.= o
*A/ JJ JJ
J
6. Ny =2N £
. Nup#0: Sfep 2 with new neutral axis
—0:M. = *
‘;' )](V"” _; '*AI’[’% Ny,
A i+] = Xi 8 .
: Xi X

Fig. 39 Algorithm procedure for the non-linear model.

The ultimate curvature is reached when one of the extreme fibre fractures. If the section is
subjected to positive bending: the concrete slab crushes, or the bottom steel flange
fractures. Under negative bending, the slab is not considered but the fracture of the
reinforcement becomes determining (over the fracture of the steel in compression, the
experiments being designed to avoid flange stability problems, see also the subsection on
the influence of the section class). The fracture criteria for the fibres are thus conventionally
fixed as the following: ecu1 = 3.5%0 for concrete (specific deformation at crushing) and
&u = 5% for all steels (specific deformation at ultimate strength).

The initial elastic stage slope (rigidity) of the NL curve is used to define the LE and EP
models slope.

Structural analyses load-deflection response

The different moment-curvature relationships were calculated using the models presented
above. With this information, the load-displacement curves (F-6 response) can be
determined for each beam and each model (LE, EP, and NL) as presented in Fig. 40. The
computation is performed analytically by integrating the curvature along the beam,
respecting the boundary conditions. For each load step, the deflection at midspan can be
determined and the load-deflection curve can be constructed until reaching the
experimental failure load.
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Fig. 40 Algorithm procedure for the non-linear model: (a) bending moment M (x) and
curvature y(x)along the beam and (b) the resultant F-6 curves for different analysis
approaches.

Each of the beams obtained from the literature presented in Tab. 11 was analysed to
determine the F-sresponses according to the different models investigated. In addition, the
experimental F-6 curves have been digitized, which allow to perform comparisons.

Response of the assembled two-beams systems

As described in the introduction, structural responses of statically indeterminate structures
are determined by combining the experimental F-5 responses of two simply supported
beams as shown in Fig. 41. To evaluate the model uncertainty, the F-6 response of the
system is compared with the response of the models resulting from the structural analyses
adopting various mechanical behaviours.

Fsys:FA+FB

|

Fg/2}

Fig. 41 lllustration of the statically indeterminate system assembled with two simply
supported beams.

In total, four different mechanical models are compared as illustrated in Fig. 42. In addition
to the three models presented in Subsection 3.3.1, an additional model is investigated:
Elastic-Plastic with limited deformation capacity (EPLim). This model is implemented to
reduce uncertainties related to the deformation capacity before failure of one of the beams.
For the model with limited deformation capacity, the deformation capacity of each beam is
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limited by imposing it as the deflection at the peak load, as reported in the experimental
F-6 responses. The use of limited deformation capacity can be explained by the section
class requirements to perform plastic analyses.

These four models are believed to be representative of common engineers’ practice in the
calculation of internal forces and load-bearing capacity.

(a) Linear-Elastic (b) Elastic-Plastic
F F Rsys,mod
syse
Rm mod T o
sysew
RH ep RE, P
Ppesrinn P . o SR TS N PR -
)/ \ ’ i \
p ,
e
f f
4 4
0 ! 0
sysep sysem
Elastic-Plastic
c (limited deformation capacity) d
[paci;
F R, ooa F
—— e
sys,exp Rsys,exp
RS P Rsep
Rl b _——lo
/ \ - - \
J /
/7
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0 [
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Fig. 42 Four mechanical models to study the response of the assembled two-beams
system: (a) Linear-Elastic; (b) Elastic-Plastic; (c) Elastic-Plastic (limited deformation
capacity) and (d) Nonlinear.

Ductility class indicators

Initially, differentiation according to the type of action (positive or negative bending) was
used as a mean of differentiating ductile from brittle behaviour. Observing the results, no
significant correlation with the failure mode was noticeable.

Then, to better differentiate the type of failure behaviour considering instability effects, the
ductility of each beam according to the experimental force-displacement response was
used. Herein, the ductility indicator chosen is the ratio between the displacement at failure
6r and the displacement at first yield &y, see Fig. 43. The first yield displacement o, is
calculated with the elastic stiffness of the section (according to the geometric
characteristics of the section and yield strength of materials given in the test report). As for
the displacement at failure 6r, it is characterized as the maximum displacement before
failure or when the resistance falls to 90% of the maximum bearing capacity of the beam
(if a downward part is observed in the experimental force-displacement response).
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Fig. 43 Typical experimental force-displacement response and beam ductility indicator.

Furthermore, each experimental beam was classified according to the standardized
ductility indicator, namely its cross-section class. This is the criterion in structural steel
codes for defining the allowed calculations methods in section and/or for calculating internal
forces, each beam being classified according to slenderness limits for its web and flanges
in function of the panel supporting conditions and loading mode. Tab. 12 summarizes the
most restrictive slenderness limits given in EN 1993 [130], that is for panels in pure
compression. These limits were chosen because in composite beams under negative
bending, most of the web panel is under compression.

Tab. 12 Cross section class definitions and corresponding slenderness limits
Cross-

section Internal forces Section resistance h, / ¢t (web) ¢ /t (flange)
w f

class

1 Plastic Plastic <33¢ <9¢

2 Elastic Plastic <38¢ <10¢

3 Elastic Elastic <42¢ <14 ¢

4 Elastic Elastic reduced

Where the expression for the steel grade coefficient is:

235
e= 2 (53)

The indicators ductility and cross-section class are evaluated in Fig. 44a and 44b by plotting
the ductility of each beam against the web slenderness (as this is the main determinant
panel in our case), in order to establish whether a significant relationship could be
observed.

(a) Section class (b) Section class
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Fig. 44 Web slenderness h,/t, against beam ductility a) beams with medium web
slenderness, up to 2.2, b) all beams, incl. those with high web slenderness.
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Most of the sections of class 1 (blue dots) are very ductile, while the ductility tends to
decrease for the higher classes of sections (red dots). In Fig. 44b, the black dots represent
beams with high web slenderness that are closer to a bridge-type section, but were
designed to study shear force behaviour and contain stiffeners to be able to use the
contribution of the web panels with a direct tensile force. In this case, the rotation capacity
necessary to activate this tension diagonal through the web panel must be sufficiently large,
which in some cases results in quite high ductility values. Furthermore, as these
experimental beams shown in Fig. 44b were tested in shear (with very short spans), it
implies that the section could not even reach the plastic moment resistance and therefore
the ductility indicator (as we calculate it) is all the greater because &, is reached earlier.

Discussion of the results

Herein, only the analyses carried out with the cross-system combinations regrouped in
function of their cross-section classes are presented in detail. The experiments are
separated into 2 groups: the first group containing beams with section class 1 and the
second group containing beams classified as class 2 and above. The cross-system
combinations therefore do not consider the moment direction (positive or negative), but the
cross-section class. First the section classes 1 are combined together, then the higher
classes are combined with each other, while the last type of combination consists of a
class 1 beam with a beam class 2 and above. A summary of the processed combinations
is given in Tab. 13. Since beams classified as class 1 are usually those under positive
bending, a comparison between these two classification schemes can be made and is
presented below. All the same for beams classified as 2, 3, or 4, which are most likely to
be under negative bending, and the combinations of the above that are typical of a
combination M+ and M-.

The main results are presented in terms of the global model uncertainty (6,;) obtained by
performing the analyses according to the different mechanical models presented above
(LE, EP, EPLim, NL). For each model, the results are represented in the form of a
probability plot. The data are fitted with a lognormal distribution. The lognormal probability
plots also allow checking the accuracy of the tail distribution approximation. On the x-axis
is reported the random variable 6, (logarithmic value) while on the y-axis is reported the
normal quantile in terms of standard deviation. For an exact log-normal distribution, the
points should represent a straight line in the probability plot.

Tab. 13 The different models and cross system combinations between cross-section
classes

LE EP EPLim
F
5 5 J J
CLASS 1
- 903 comb. 903 comb. 903 comb. 903 comb.
CLASS 1
CLASS 2/3/4
- 595 comb. 595 comb. 595 comb. 595 comb.
CLASS 2/3/4
CLASS 1
- 1505 comb. 1505 comb. 1505 comb. 1505 comb.

CLASS 2/3/4

Linear-Elastic model results

Fig. 45 shows the log-normal probability-plot of 8ar defined in Eq. 41 obtained with the LE
model. Note that in this figure and herein, the legend in blue correspond to whole dataset
statistics, whereas the legend in red correspond to tail approximation statistics. For the tail
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approximation, one can observe that the 5% percentile is always around the value 1.0. For
the combinations between class 1 beams the tail fitting of the actual distribution is close
along the curve. The behaviour is not linear but the gap is nevertheless small. The same is
true for beam combinations of class 2 and higher. The behaviour is quite homogeneous
over the whole distribution. When the two class types are combined, a linear behaviour is
obtained on the lower half of the curve with a rather low coefficient of variation, which
reflects quite well the determining cases when the weakest beam (class 2 and higher)
reaches failure.

(a) Class 1 (b) Class 2/3/4 (c)5 Class 1 + Class 2/3/4
5 7 5 7
41 . 4 P
34 Tail approx.: S 3 3 ~
o] Ave=LIS 2 avp=127 Vs 5| Avg=113 F L
o CoV =9.0% CoV =11.8% || cov=61% /
Z 11 p0.05)=099 19 p(0.05)=1.04 1 p(0.05)=1.02
=
s 04 0+ 04
oL )/ Full dataset: -1 4 -1
27 n =903 27 S =9 £ n=1505
31 I.,;/” Avg=1.10 31 A Avg=121 -3 1 Avg=1.14
41 CoV=94% | -41 S Cov=118% | -4 CoV =9.5%
5 - . : -5 B : y -5 A :
0.5 1 1.5 2 0.5 1 1.5 2 0.5 1 15 2
R, /R R /R R_/R
exp mod exp mod exp mo

Fig. 45 Probability plots of 6qr for LE model and cross-sections combinations composed
of:(a) Class 1 only (b) Class 2/3/4 combined and (c) Class 1 with Class2/3/4.

Elastic-Plastic model results

For class 1 sections, better approximation of the lower tail distribution and a fractile 5%
(p(0.05) = 0.90) are obtained, see Fig.46. The coefficient of variation is relatively small
6.1%. The main reason for this good fit is that the most extreme values have been removed
because the elements with brittle behaviour are not part of the first group due to the
classification according to the cross-section.

On the other hand, for classes with a cross-section greater than 1, different behaviour can
be observed. In this case, the EP analysis shows values that can be very low. The lower
part of the distribution has a very different shape from the rest of the distribution with a very
high CoV = 31.3%. Nevertheless, this result is expected because the EP model is not
suitable for this section type as it does not allow for ductile behaviour.

When the two types of sections are combined, an intermediate behaviour can be observed
in Fig. 46a and 46b. Having at least one of the beams with ductile behaviour allows for an
improvement by tightening the distribution compared to the fully brittle case.

(a) Class 1 (b) Class 2/3/4 (c)5 Class 1 + Class 2/3/4
5 i 5
4 , 4 4
34 Tail approx.: ; / 3 : 34 :
2] Avg=100 | / 2] Avg= 1.51 j 5] Avg=119
" CoV=6.1%| / CoV = 31.3% 1] cov=158%
2 17 p0.05)=0.90 |/ 11p(0.05)= 0.87 | p(0.05)=091
= al / i 0 |
s 0 ] 0
< 17 Full dataset: -1 L4
2] 7 n =903 Sl il n =595 2 r n = 1505
231 Avg =097 34 Avg =0.97 =34 Avg =097
41 / CoV=3.1% | -4 CoV= 42% -4 CoV=3.1%
-5 . . -5 . . -5 4L .
0.5 1 1.5 0.5 1 1.5 0.5 1 1.5
exp/ Rmod mp/ Rmod REW/Rmnd

Fig. 46 Probability plots of 6qr for EP model and the different cross-sections combinations
composed of:(a) Class 1 only (b) Class 2/3/4 combined and (c) Class 1 with Class2/3/4.
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Elastic-Plastic model with limited deformation capacity results

When considering the deformation capacity observed during the experiment within the
EPLim model, see Fig. 47, for experiments using beams with cross-section class 1, the
results remain identical to the EP case (Fig. 46) because their ductile behaviour allows a
large deformation capacity and thus the addition of this constraint in the model has no
impact on the results. On the contrary, for experiments using beams with a more brittle
behaviour, this additional parameter allows to improve the results by avoiding
overestimating the deformation capacity. The 5% fractile p(0.05) = 0.92 and the coefficient
of variation CoV = 22.9% are improved.

For the combination of 2 types of behaviour (1 ductile beam and 1 brittle beam), considering
the deformation capacity of the brittle beam leads to a significant improvement in the
probability distribution of the results. This implies that a plastic calculation, to a certain
extent, could be used if the deformation capacity of each section is carefully considered
(i.e. some redistribution can be admitted as long as the deformation capacity of the beams
with a rather brittle behaviour is not overestimated).

(a) Class 1 (b) Class 2/3/4 (c)5 Class 1 + Class 2/3/4
5 i 5 7
4 41 4
34 Tail approx.: 3 3 ;
2] Avg =1.00 5] Avg =137 5] Avg=106
O CoV=6.1%| , CoV=22.9% 1 CoV =7.9%
2 11p0.05 =090 |/ 11 p(0.05)=0.92 1p(0.05) =0.93
=1 al / i 01
s 0 ] 0
&L Full dataset: -1 L4
21 / n =903 21 Ve n=>595 £ n = 1505
-3+ Avg =097 31— Avg = 0.98 =31 Avg =0.98
-41 ' CoV=3.1% | -41-~ CoV =3.4% -4 CoV = 2.4%
-5 . " -5 " . -5 : . .
0.5 1 1.5 2 0.5 1 1.5 2 0.5 1 L5 2
R_/R R_/R R_/R

exp’ mod ep’ mod

Fig. 47 Probability plots of 6qr for EPLim model and the different cross-sections
combinations composed of:(a) Class 1 only (b) Class 2/3/4 combined and (c) Class 1 with
Class2/3/4.

Non-Linear model results

The non-linear model results as probability plots of 6qr in Fig. 48 provide a good
approximation for ductile beams with a distribution tail that precisely follows a lognormal
distribution. In this case, considering the non-linearity allows for a good approximating of
the real behaviour of the statically indeterminate cross system.

For larger cross-sectional areas, however, different behavioural modes are observed at the
other extreme of the distribution. These different modes are due to the instabilities that
these experimental beams may experience. If the behaviour is close to brittle, then the
model results can become bad because the model only considers the non-linearity of the
materials and not the instability problems, thus making the model no longer suitable.
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(a) Class 1 (b) Class 2/3/4 (c)5 Class 1 + Class 2/3/4
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Fig. 48 Probability plots of 6qr for NL model and the different cross-sections combinations
composed of:(a) Class 1 only (b) Class 2/3/4 combined and (c) Class 1 with Class2/3/4.

3.3.11 Summary tables and discussion

In the following tables, the results for Bar for the different models and cross system
combinations, separated according to the two differentiations: moment direction (M* & M)
or cross-section classes (1 & 2 or higher), are summarized and compared.

First, when looking at Tab. 14, an improvement in the 5t percentile and in the tail fitting/
lower tail approximation (represented by the Mean and CoV) for the cross-section class 1
combinations can be observed. This can be attributed to the removal of the more brittle
beams from this group.

Tab. 14 Comparison of all results of 6qr for the different models and cross system
combinations for positive moments or cross-sections class 1 (in blue whole dataset
statistics, in red tail approximation statistics)

M+/M+ Class1/Class1
Mean. CoV % p(0.05) Mean. CoV % p(0.05)
1.17 15.0 1.10 9.4

LE
1.15 8.7 0.99 1.15 9.0 0.99
0.96 4.8 0.97 3.1

EP
1.28 22.3 0.87 1.00 6.1 0.90
0.97 3.8 0.97 3.1

EPLim
0.99 6.1 0.89 1.00 6.1 0.90
0.97 34 1.00 3.8

NL
0.99 6.2 0.89 1.02 5.3 0.93
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Tab. 15 Comparison of all results of 6qr for the different models and cross system
combinations for negative moments or cross-sections classes 2, 3 and 4

M-/M- Class2+/Class2+
Mean CoV % p(0.05) Mean CoV % p(0.05)
1.18 12.4 1.21 11.8
LE
1.09 4.5 1.01 1.27 11.8 1.04
0.98 1.6 0.97 4.2
EP
0.97 1.8 0.95 1.51 31.3 0.87
0.98 1.6 0.98 34
EPLim
0.97 1.8 0.95 1.37 22.9 0.92
NL 0.99 2.1 0.99 3.7
0.98 1.9 0.95 1.31 19.6 0.94

In Tab. 15, no improvement when using the cross-section classification can be observed.
A reduction of fractile 5% values is noticeable because the ductile cases considered in the
first analysis are removed and thus the tail behaviour is closer to what we expect (i.e. it
removed what could be seen as outliers before, too ductile as designed for shear study).
As discussed in the previous subsections, the experiments and their combinations show
different behaviour, with the lower part of the distribution having a very different shape from
the rest of the distribution.

Tab. 16 Comparison of all results for the different models and cross system
combinations for negative/positive moments or cross-sections class 1 with classes 2, 3
and 4

M+/M- Class1/Class2+

Mean CoV % p(0.05) Mean CoV % p(0.05)
1.14 9.3 1.14 9.5

LE
1.17 7.8 1.02 1.13 6.1 1.02
0.97 3.4 0.97 3.1

EP
1.40 23.7 0.93 1.19 15.8 0.91
0.97 3.2 0.98 24

EPLim
1.22 16.0 0.93 1.06 7.9 0.93
0.99 3.6 0.99 3.1

NL
1.25 16.3 0.95 1.01 3.9 0.94

In Tab. 16, one can see that the 5" percentile values are not improved with the use of the
cross-section classification, but a better approximation of the lower tail can be observed,
with in particular a large reduction of the CoV values.

From the above, it is concluded that:

* The section class, which can be said to be linked to the failure mode, appears to
influence the model uncertainty of action effects calculation regardless of the analysis
performed. Systems combining Class1 beams only show lower CoV and smaller 5th
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percentile than combinations of Class1/Class2+. Furthermore, Class1/Class2+ show
lower CoV than Class2+/Class2+ combinations.

¢ Since a better representation and modelling of the different beam behaviour within an
indeterminate static system can be achieved by relying on the cross-section
classification, one shall always refer to the cross-section classification to validate the
use of linear or plastic internal forces redistribution. Also, this is an interesting result as
this classification is used every day by engineers in practice and potentially provides an
elegant solution for differentiating the value of the model uncertainty partial factor in the
verification of the global load-bearing capacity of indeterminate static systems.

* There is also a clear observation of 2 regimes, a relationship between the failure mode
and the Bqr distribution shape.

* The model uncertainty reduces when more refined analyses are performed. However,
and inversely, the work effort increases in terms of input data, time and calculation
complexity.

The main questions that remain are the representativity of both the beam in a cross system
and the database used in this section to determine the resulting probability density
functions for the random variable 6qr and the corresponding values of the model partial
factor ysq. The indeterminate static systems modelled should be representative of common
structural systems in practice. Referring to our research domain, this corresponds to
continuous composite bridges. The crossing of a ductile and brittle beam can be considered
as the model that is the closest to our common structural system but are two beams
crossing each other at midspan representative of our common longitudinal structural
system?

This question is addressed in the following subsections by proposing an extension of the
modelling technique using the results from experiments on simple composite beams to
continuous composite longitudinal structural systems.

Longitudinal continuous systems

To extend the results obtained on cross systems, crossing of two simply supported beams
(SSB), another statically indeterminate system is hereby studied. It must be ensured that
this hypothetical system can be representative of a common longitudinal system such as a
continuous composite bridge. It is therefore necessary to analyse and relate both systems,
to observe how to adequately represent the behaviour of a continuous beam by
superposing or combining simply supported beams.

In this case, it seems appropriate to combine beams that are loaded in different directions
(i.e. positive and negative bending) which allows the representation of both the sagging
and the hogging regions of a continuous girder. Since this is an over-constrained problem,
different conditions analysis between both systems are carried out, namely static and
kinematic (using curvature as well as displacements). It is shown, by further modelling of
both systems using different beams, that they lead to similar relations.

Static conditions

The first step is to investigate the static conditions that must be satisfied for each of the two
static systems chosen. Fig. 49 shows the determination of the load-carrying capacity for
each system. To explain the reasoning, the simplified assumption that both beams in the
cross-system have equal span lengths is made.

As for the longitudinal system, it is defined as a symmetrical two spans system with the
same properties as the assembled two-beams system (identical span length and the cross-
sections are taken from the crossed system (i.e., sagging region = SSB under positive
bending, hogging region = SSB under negative bending). This means that ultimate moment
capacity is equal in both systems. The longitudinal system is loaded with two identical
concentrated forces located in the centre of each span. To compare both systems, the
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maximum load-carrying capacity is determined assuming that plastic hinges can form in
both the hogging region and the sagging regions (plastic design).

Crossed system Longitudinal system

Fo,=F,+Fp

ET—08 & 17

M} =RL/A4 f Mg } M ™ }
M; =RL/4 M -2/L = R/2 (M +M)4/L = R+R RY/2
=R"+K me, =R'+R/2

sys, 1

Fig. 49 The two statically indeterminate systems considered and their respective static
conditions requirements.

After analysing both systems as summarized in Fig. 49, the cross-system configuration
does not reflect the behaviour of a continuous beam. This is because the section subjected
to negative bending has an equal "weight" to that of the positive section, whereas in the
longitudinal system the bearing capacity is influenced twice as much by the capacity of the
sagging regions. To be statically equivalent, the crossed system must contain 3 beams.
Two times the same beam (in case of a symmetric longitudinal system) in positive bending
for one beam submitted to negative bending.

Kinematic conditions

The second step is now to investigate the kinematic conditions of both systems, and it is
less obvious to find a relationship between them. On the one hand, the experimental
database contains isostatic beam deflections, which are quite different from the deflections
of a continuous girder. On the other hand, analysing and comparing beam deflections of
different systems is possible, even after concrete cracking and during redistribution of
internal forces by integrating the curvature along each beam as presented in Subsection
3.3.4 to obtain the load-deflection response of each system.

In the static cross-span system, the imposed displacement at mid-span is identical for each
beam, but for continuous girders this assumption must be confirmed. To represent as best
as possible the response of a continuous system using the same experimental database,
the method is to approximate the deflection of a continuous beam by the deflections of
simply supported beams. Let's define first the sagging and hogging regions. Fig. 50
represent the elastic moment distribution along a 2 spans continuous beam loaded as
before with two identical concentrated forces located in the centre of each span. Based on
the elastic moment distribution and consideration about the concrete cracking zone under
hogging, a total length of the hogging zone equal to 0.6L is assumed (to be validated later,
see Subsection 3.4.3).

The reasoning is now to consider each part of the continuous beam as a separate isostatic
system (to be able to refer back to experimental data) and at the same time ensure the
continuity of the deflection along the whole continuous beam. This means that at the zero
moment points (points of intersection) the displacements must be equal, dimp,2 = dimp,1, @S
presented in Fig. 51. Note that this does not ensure continuous slope at the points of
intersection.
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Elastic distribution of internal forces for

constant rigidity along the beam
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Fig. 50 Two-spans continuous beam with elastic moment distribution and definition of
hogging and sagging regions.

0.3L

Fig. 51 Kinematic conditions imposed on the two-spans continuous beam.

For comprehension purpose, analysis is made separately for sagging and hogging region.
Considering the sagging region, an approximation from simply supported beam to
continuous beam mid-span displacement is done by comparing the behaviour of both
systems. In Fig. 52, deflection of isostatic beams that are not connected at intermediate
support is shown in blue and that of the continuous system is plotted in black. Considering
constant rigidity along the beam, the mid-span displacements in the elastic range can be
computed. In this case, the mid-span displacement of the continuous beam can be taken
as approximately 70% of the displacement of the same beam if simply supported.
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Sem = PLY(67EI)
d¢s = PL*/(48EI)

cont ~ V7 Ossp
SSB : Simply Supported Beam

Fig. 52 Comparison between deflections at midspans from a two-span continuous beam
and two Simply Supported Beams (SSB).

The focus is now put on the intersection between the 2 regions, as a relationship between
the mid-span displacement and the one at the point where bending moment is null needs
to be found. Considering the rotation diagram along the beam, it is possible to determine
this relationship using the assumption that the hogging region is equal to 0.6 times the span
length (see Fig. 50). Considering the integration of the curvature along the beam, as
presented in Fig. 53, it is possible to estimate the ratio between null moment and mid-span
deflections as being equal to 80%. However, as the assumption of a constant rotation in
the hogging part of the beam has been made, the value found is slightly overestimated.
Furthermore, the analysis was done based on the deflection of an isostatic beam. In the
case of the continuous beam, it is expected that the deflection at the point of zero moment
is lower since the rotation at the intermediate support must be equal to zero. An
approximation closer to reality would lead to lower ratio values, around 0.65-0.7, instead of
considering 0.8. Finally, one shall note that this factor is also largely influenced by the
difference in stiffness between the hogging and the sagging regions. In composite bridges,
stiffnesses at supports are usually significantly higher since applied moments are higher
and cracking has to be limited. Thus both the steel section as well as the rebars quantity
(typically 1.5% vs 0.8% [131] are higher at supports, which also explain why the ratio values
are lower.

sutel- 0dL = 835 =3§,

o2 0dL = 3% =5, =35
l 0.3L 0.3L l

) . . 'l §
= SI 5. Ve Q ® 5. 51 =
imp,1 - =~ imp, 1
> o

Fig. 53 Relationship between curvature and displacements at the intersections (dimp,1) and
mid-span locations (51).

L/10 Om\p.l

Concerning the hogging region, it is straightforward to determine the ratio between the
deflection of the simply supported beam and the one at the intersection. With the
assumption made on the hogging region length (0.6 times the span length), the
displacement can be calculated from the deflection of the isostatic system and it is equal
to 0.62 for a concentrated load at mid-span (which is represented by the intermediate
support reaction in our case).
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L,= L : span of the assumed two-span continuous beam

L, : span of the experimental SSB used for representing the hogging region

Fig. 54 Relationship between displacements at the intersections (dimp,2) and support
location (62).

Summary and validation of the conditions between static systems

To confirm the assumptions made in determining the forces and deflection relationships
given in Fig. 55, validation according to some simple cases has been performed. A random
selection of sectional behaviour was chosen, and the two systems were modelled to check
whether the behaviour matched the relationships derived from the static and kinematic
conditions. Four cases were analysed with, for the span section, always the same moment-
curvature relationship. For the support section, 4 different moment-bending relationships
are given in Fig. 56; they were chosen to observe the influence of the stiffness ratios
between the two sections and are given in Tab. 17. In addition, case A was defined to show
a brittle behaviour (no plastic behaviour as indicated by the dotted line in Fig. 56).

Longitudinal system Crossed system

F'+iF Fr+iF

'
\J Scont

>
S
é

t L t L t
Longitudinal Simple span combination (or cross system)
system
(L, 2P, Bcont) (L1, F7, 81) (Lo, F7, B2) (L1, F7, 81)
Force (F) 2F+F F* F F*
Deflections _ 5 _
Ocont 0.7 & 61 = (0.6L4/L2)/0.65 8, = 0.55 &2 0.7 &4

(%)

Fig. 55 Summary of the forces and deflection relationships linking the longitudinal
(continuous beam) and the simple span combination systems.
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span section
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Fig. 56 Validation cases, span and support moment-curvature relationships.

Tab. 17 The different stiffness ratios and behaviour type for the four cases analysed

Stifiness ratlo Support section behaviour

(Isup/lspan) (brittle/ductile)
CASE A 15 brittle
CASE B 1.5 ductile
CASE C 0.75 ductile
CASE D 3 ductile

CASE A

The results for case A are shown in Fig. 57. The dashed lines show the deflections
according to a simply supported beam for the support section (red) and for the span section
(black). The line (blue) defines the behaviour of the continuous beam. For the span section
the correction factor is taken as 0.7 as described in Fig. 55; according to the same figure,
the correction for the support section should be 0.55, based on the assumptions and
analysis carried out. It turns out that to obtain a behaviour identical to the continuous beam,
in this case with a stiffness ratio equal to 1.5, the necessary correction should be taken as
0.68. The dashed line with black crosses is performed by adding both force-displacement
responses of the simply supported beams after correction factor for the imposed
displacement (which represent the crossed system). It is observed in Fig. 57 that first yield
at midspan is reached at the same point for both systems, and the failure (occurring at the
support section) is attained for the same displacement.
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CASE A
F
| |
W_ deo -
Response of continuous beam
Superposition of scaled responses of the two SSBs
[ J

with span cross section

—— - Response of simply surpoported beam

e "~ Scaled response of SSB with support cross section ~ With support section

Scaled response of SSB with span cross section ~ Response of Simply Supported Beam (SSB)

Mid-span deflection &

Fig. 57 Forces-deflection curves for case A.

CASE B

For case B, the moment-curvature relation is equivalent to the case A with the exception
that the support section shows ductile behaviour. Again, a correction factor of 0.68 is
applied to the simply supported beam result of the support section. The resulting curve
(dashed line with black crosses) show that the behaviour of the continuous beam (blue)

can still be well approximated, see Fig. 58.

CASE B

e !

Ocont
Response of continuous beam

Superposition of scaled responses of the two SSBs
[ J

— T

Scaled response of SSB with span cross section ~ Response of Simply Supported Beam (SSB)

Mid-span deflection 0

Fig. 58 Forces-deflection curves for case B.

CASE C

For case C, the stiffness ratio between support and span section is lower than previously
and equal to 0.75. This time, the needed correction factor is smaller, since the span section
is stiffer. Also, the hogging moment region becomes smaller, and the span region behaviour
is more important in this case. The correction factor applied this time is equal to 0.55 to get
a good approximation of the simulated curve (dashed line with black crosses) with the

continuous beam behaviour (blue), both in terms of shape and values, see Fig. 59.
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CASE C
£ { i

Response of continuous beam

Superposition of scaled responses of the two SSBs

% Scaled response of SSB with support cross section  with support section

Mid-span deflection &

Fig. 59 Forces-deflection curves for case C.

3.47 CASED

As the stiffness ratio is now increased to 3 between support and span section, the
behaviour of the support is now more important in simulating the behaviour of the
continuous system. As shown in Fig. 60 the correction factor needed is now 0.8 to get a
good approximation of the simulated curve (dashed line with black crosses) with the
continuous beam behaviour (blue), both in terms of shape and values.

l l CASE D

«5mm

5mm

Response of continuous beam

\U]‘x.l}\’\]llﬂl‘ of scaled responses of the two SSBs

) al \ Scaled response of SSB with span cross section Response of Simply Supported Beam (SSB)

Vs with span cross section

Mid-span deflection d

Fig. 60 Forces-deflection curves for case D.

3.4.8 Recapitulation of main results and correction factors
For the 4 cases, the correction factors for the imposed displacement are given in Tab. 18.

Tab. 18 Summary of correction factors for the imposed displacement

CASE A CASE B CASEC CASED 1st estimate
Span correction 0.7 0.7 0.7 0.7 0.7
Support correction  0.68 0.68 0.55 0.8 0.7
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Based on the results obtained for these 4 cases, one can observe that the correction factor
for the span section is a good approximation to convert from the simply supported system
behaviour to the continuous beam one. However, for the support section, the correction
factor value varies and depends on the stiffness ratio between both sections. Nevertheless,
even if the support correction factor ranges between 0.5 and 0.8, the average is nearly the
same as the factor for the span section and in first approximation the results of cases C
and D can be considered as rather extreme cases. Thus, to best represent the continuous
systems by means of cross systems, the value 0.7 as a first estimate can be used for both
correction factors. Furthermore, the cross system without correction of the imposed
deflection can be considered representative enough and the results would not improve by
adding a random variable on this correction factor.

In all of the above cases, the comparisons have been performed for simply supported
beams with equivalent span length. It goes without saying that if the two beams do not have
the same span length, the force-displacement response of the beam tested in negative
bending must be corrected with respect to the span length of the beam in positive bending,
i.e. with the following factor (L+/L>)? as presented in Fig. 55.

Approaching continuous system behaviour (composite
bridges)

Using the reasoning developed in the previous section, a new set of simulated tests is

created to represent longitudinal systems (continuous composite bridges). The approach

here differs from the one for concrete structures for two reasons linked to the focus on

composite girder bridges:

* The stiffnesses at supports are usually significantly higher, as shown by the larger steel
sections as well as rebars quantity used in these regions.

* Their design is predominantly influenced by the low ductility of composite beams,
especially in the intermediate support areas. This is due in particular to the web’s
slenderness which can get very high.

In span regions, the ductility problem is not predominant because almost the entire web is
subjected to tension, which eliminates the problems associated with stability. In the most
common case, the span sections are considered to have a very ductile cross-section class
(class 1), whereas the cross-section class at the supports is easily class 3 or 4. This means,
among other things, that the design of such a structure should not admit plastic
redistributions from the support to the span sections due to the low ductility of the support
section(s), which considerably complicates the design and requires a fastidious verification
according to elastic stress distributions within the sections. Nevertheless, thanks to the
doctoral studies of Ducret [132] and Laane [133], it has been shown that a certain
redistribution can be admitted between the support and span internal forces as even in
class 4 the resisting moment can be sustained under a certain rotation range. Considering
the available rotational capacity at the support, it was shown that a plastic calculation in
span is possible as long as the sagging moment does not exceed 90% of the plastic
moment capacity (which limits the plastification and thus the rotation in span so as not to
require too much rotation capacity at the support). This criterion should allow for the support
section to maintain its resistance (even for section classes 4, the reduced elastic resistance
EER) while the span section is in the plastic behaviour.

To best reflect the behaviour of a composite bridge, it was decided to combine experimental
beams according to the classifications that can be found in a composite bridge. The
assembled system always consists of 3 beams (2 simply supported beams tested under
positive loading and 1 beam submitted to negative moment classified as cross-section
class 3 or 4).
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Tab. 19 First assembling scheme, completely symmetrical longitudinal system
Assembled longitudinal system

1%t beam (span) 2"Y beam (support) 3" beam (span)

(L1, F*4, 81) (Lz, F, &2) (Ls, F*3, 83)
Force (F) F*y (Lo/Ly) Fp Identical to 1%
Deflections (&) 04 (L4/Lp)? 87 Identical to 1%
Cross-section class 1 3or4 Identical to 1%
Nb of experimental beams available 36 28 NA

In a first assembling scheme, the analysis is performed by duplicating the experimental
beam representing the span region. This allows to represent a completely symmetrical
longitudinal system; Tab. 19 gives the information needed to assemble the system, which
leads to a total of 1008 possible combinations. If the beam representing the support section
does not have the required length (i.e. the same length), it can nevertheless be adapted
using the length ratios for both the imposed displacement and the force. These adjustments
allow to obtain the same bending moment-deflection behaviour, the difference being only
in the integration of the curvature diagram on a span length corrected to be equal to that of
the reference beam (i.e. the span beam section under sagging moment).

In a subsequent assembling scheme, an additional variable is added by using a different
beam for each of the two spans as presented in Tab. 20, which leads to a total of 36288
possible combinations. However, to remain consistent, it is necessary that the system
remains symmetrical (the spans on each side of the support must be of equal length). This
ensures an approximately equal negative section area on each side of the support. It is
therefore necessary to also correct the 3 experimental beam (representing the second
span) to adjust its length in relation to the 1st experimental beam.

Tab. 20 Second assembling scheme, non-symmetrical into symmetrical longitudinal
system

Assembled longitudinal system

15t beam (span) 2" beam (support) 3" beam (span)
(L1, F*1, 81) (Lz, F, &2) (Ls, F'3, 83)
Force (F) Fy (Lo/L4) F (Ls/L4) F5
Deflections (6.) 61 (L1/L2)2 62 (L1/L3)2 63
Cross-section class 1 3or4 1
Nb of experimental beams available 36 28 36

Models

In addition to the four models used in the previous sections, two models are added to

represent the differentiation between span and support behaviour with moment-rotation:

* Allowing the beam in span and under sagging moment to behave elastic-plastic and
reach its plastic capacity while limiting the support section to its elastic limit capacity
(EPLE) (plLE),

* Allowing the beam in span and under sagging moment to behave elastic-plastic but only
reach 90% of its plastic capacity while limiting the support section to its elastic limit
capacity (EP9OLE) (pILE90%)

The assembled longitudinal systems behaviour will be compared using now in total six
(instead of four as previously) different models as presented in Fig. 61.
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Fig. 61 The six models compared to study the assembled longitudinal systems.

Linear-Elastic model results
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The results obtained with the LE model are shown in Fig. 62. The results are very similar
for both assembling schemes (completely symmetrical or not symmetrical longitudinal

systems).

The linear elastic model leads to an over-design ratio as it does not consider any ductility,
as already observed with the cross system in Subsection 3.3. This elastic over-design ratio
influences the model uncertainty, the distribution shape for load bearing capacity (6qr). The
behaviour is quite homogeneous over the whole distribution. The 5 percentile is slightly
above unity and the CoV are low. The assumption that there is no redistribution possible
from the support to the span sections is in contradiction with the usual behaviour of such
systems, even if made out of cross-section classes 2 to 4.
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(a) 1** assembling scheme (b) 2" assembling scheme
5 5
4 / 4 f—
34 Tail approx.: 3 S
2 Avg =121 / 2 Avg=1.18
© CoV =8.6% CoV =6.7%
= 17 p0.05) =1.04 19 50.05) = 1.05
=]
s 01 04
& /
-1 Full dataset: -1
27 n=1008 | -2] n=36288
31 Avg= 121 -31 Avg =122
-4 1 CoV=10.1%| -41 CoV = 92%
-5 T -5 .
0.5 1 1.5 2 0.5 1 1.5 2
R /R R mod

exp’ Tmod ep

Fig. 62 Probability plots of Bqr for the LE model for the (a)1st and (b)2"? assembling scheme
of longitudinal system, see Tab. 19 and 20 respectively.

Elastic-Plastic model results

For the EP model, it is again the least conservative of all (i.e. similarly to cross systems)
with 5t percentile values around 0.92, see Fig. 63. The results are quite similar for both
assembling schemes, with a better tail distribution fit for the scheme 2.

3.5.3

1** assembling scheme (b)

(@

2" assembling scheme

Avg= 1.16 |
CoV=13.1%
1p(0.05) = 0.93

Avg=1.07
CoV=9.9%

S = N W kW

5
3 4
Tail approx.: : N
74 2
1
0

1 p(0.05)=0.91

Quantile

" Full dataset:
n=1008

Avg =0.97

CoV = 2.9%

n— 36288
Avg =0.97
CoV=3.0%

=21
31
4 1

1 15 2

mod

5 = . :
0.5 1 15 2

exp’ Tmod exp

Fig. 63 Probability plots of 6qr for the EP model for the (a)1st and (b)2"¢ assembling
schemes of longitudinal system.
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Elastic-Plastic model with limited plasticity results

The resulting probability plots of 6ar for this model are very similar to the previous results
from the EP model, which means that the added constraint of plasticity limitation does not

play any role.

(a) 1** assembling scheme (b) 2 assembling scheme
5 5 -
41 A 4
{ Tail approx.: 4
3 Avg“: 197 | z Avg=1.09
& 2 CoV=13.0% CoV=10.3%
= 11p0.05)=0.93 14p(0.05) = 0.91
g 04 04
s
-1 /" Full dataset: -1
27 A n=1008 21 n=36288
-31 Avg =097 -31 Avg=0.97
-4 1 CoV =2.9% -4 1 CoV=3.0%
-5 = : : -5 - K :
0.5 1 1.5 2 0.5 1 1.5 2
R /R /R
exp’ " mod exp’ *mod

Fig. 64 Probability plots of 6qr for the EPLim model for the (a)1st and (b)2"¢ assembling
schemes of longitudinal system.

Non-linear model results

The resulting probability plots of 8ar for the NL model shown in Fig. 65 provide a very good
approximation of the real behaviour with a distribution tail that follows precisely a lognormal
distribution, as was already the case for the statically indeterminate cross system. Given
that the beams behaviour is sufficiently ductile, the nonlinearity allows for a good
approximation of the real behaviour of the longitudinal system. This reflects well the usual
behaviour of such systems.

(a) 1** assembling scheme (b) 2" assembling scheme

Avg =1.04
CoV=62%

Avg=1.03
CoV=5.6%

5

4

34 Tail approx.:
2

1

0

= p(0.05)=0.93( / p(0.05)=0.94 f /
§ ] )/
-1 " Full dataset: -1
27 n=1008 21 n=136288
31 Avg=0.99 31 Avg=0.99
-4 1 CoV=31% | -41 CoV=32%
-5 — : -5 L :
0.5 1 15 2 05 1 15 2
R _/R /R
exp’ " mod exp’ " mod

Fig. 65 Probability plots of 6qr for the NL model for the (a)1st and (b)2"¢ assembling
schemes of longitudinal system.

The second scheme, which has 36 times the combinations of the first but more uncertainty
due to the correction on the 3 beam, leads to very similar values, with a slight reduction
of the CoV of the tail approximation.

These good results can be traced back to the behaviour of the longitudinal system, with
redistribution between the support and the span sections, with plastification in the spans
and sufficient rotation capacity at the support section. In this model, the support section
does not remain elastic up to failure, as shown in in Fig. 61. This condition will be enforced
in the two last models, namely (EPLE) and (EP90LE).
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Elastic-Plastic model in span only, elastic on support (EPLE)

The resulting probability plots of 6ar for this model are among the least conservative, with
the EP model. This is not surprising since it considers redistribution and plastic behaviour
in span section. The behaviour is quite homogeneous over the whole distribution. Thus, as
long as the support section rotates without losing its strength, i.e. without exceeding its
elastic capacity, the model should give good predictions. This is indeed the case with 5t
percentile values between 0.96 and 0.92. The CoV however is quite high in comparison
with the other models, so there is room for improvement. This could be the case with the
next and last model EP90LE.

(a) 1** assembling scheme (b) 2 assembling scheme
5 5
41 4
34 Tail approx.: - 3
2] Avg=1.29 2 Avg=1.14
& CoV=17.1% CoV=123%
= 11 p0.05)=0.96 19 5(0.05)=0.92
g 01 / 04
g
-1 7 Full dataset: -1
27 A n=1008 | 27 n=36288
31 = Avg=1.19 | -37 Avg=1.18
41 Cov=126%| 41 CoV=12.1%
54— : : -5 2 ; .
0.5 1 1.5 2 0.5 1 1.5 2
R /R R /R
exp’ " mod exp’ *mod

Fig. 66 Probability plots of 6qr for the EPLE model for the (a)1st and (b)2" assembling
schemes of longitudinal system.

Elastic-Plastic model in span limited, elastic on support (EP90LE)

The resulting probability plots of Oar of this model are as expected somewhat better than
those from the EPLE model. The 5" percentile values are very close to unity and the CoV
are smaller than with the previous model. This is in line with previous works, but does not
constitute a confirmation of the correctness of the limitation to 90% of in-span plastic
capacity since there is no requirement on the rotation needed to reach this load capacity.

(a) 1** assembling scheme (b) 2 assembling scheme
5 5
41 4
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2] Avg=1.37 2 Avg =124
& CoV =16.9% CoVi=12:9%
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g 07 0
&
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el n=1008 | -27 n=36288
-3 Avg=120 | -31 = Avg=1.19
41 7 CoV=11.3%| -41 CoV =10.7%
5 . . -5 s ! .
0.5 1 1.5 2 0.5 1 1.5 2
R _/R R /R
exp’ " mod exp’ *mod

Fig. 67 Probability plots of Oqr for the EP90LE model for the (a)1st and (b)2" assembling
schemes of longitudinal system.

Summary of models of longitudinal system and discussion

A summary of all results of 6ar is given in Tab. 21. When compared with the results from
the cross system, see Tab. 14, Tab. 15 and Tab. 16, one can see that the models show
the same trends, with a reduction of 5" percentile values when considering plastic
behaviour and also probability plots and tail behaviour closer to the expected distribution.
Not surprisingly, the models that consider redistribution and plastic behaviour in span
section give good results. The best results are obtained with model EPOOLE, with the beam
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in span and under sagging moment allowed to behave elastic-plastic but only reach 90%
of its plastic capacity while limiting the support section to its elastic limit capacity. Thus,
under the assumption that the support section rotates without losing its strength, i.e. below
that of its elastic capacity, it is a good choice to use this model in design. The validity of
this requirement is not part of this research, it has been studied and validated in previous
works [132, 133].

With respect to the corresponding value of the partial factor, it was not possible to carry out
a complete study as for the reinforced concrete. However, when compared the values
found in Tab. 21 are similar to values for the model uncertainty related to the global load-
bearing capacity found for the reinforced concrete structures as can be seen in Tab. 22
Thus, it is reasonable to conclude, with the same limitations inherent to this report, that the
partial factor ysq to cover the uncertainties of the internal force calculation ranges between
1.05 and 1.15.

Tab. 21 Comparison of all results of 8qr for the different models of longitudinal system

15t assembling scheme (completely 2" assembling scheme
symmetrical, 1008 comb.) (36288 comb.)
Avg. CoV % p(0.05) Avg. CoV % p(0.05)
LE 1.21 10.1 1.22 9.2
1.21 8.6 1.04 1.18 6.7 1.05
Ep 0.97 2.9 0.97 3.0
1.16 13.1 0.93 1.07 9.9 0.91
97 2. . .
EPLim 0.9 9 0.97 3.0
1.17 13.0 0.93 1.09 10.3 0.91
NL 0.99 3.1 0.99 3.2
1.04 6.2 0.93 1.03 5.6 0.94
1.19 12.6 1.18 121
EPLE
1.29 171 0.96 1.14 12.3 0.92
1.20 11.3 1.19 10.7
EP90LE
1.37 16.9 1.03 1.24 12.9 1.00

Tab. 22 Comparison of results of 6qr between Reinforced concrete and steel-concrete
structures

RC structures Composite structures

Avg. CoV % p(0.05) Avg. CoV % p(0.05)
LE 1.16 to 1.23 9.1t012.9 0.99 to 1.00 1.18 to 1.21 6.7 to 8.6 1.04 to 1.05
cracked

3-linear 1.13101.30 8.5t017.2 0.97 t0 0.98

EPLim 1.09 to 1.17 10.3t0 13 0.911t0 0.93

EP9OLE 1.24 t01.37 12.9t016.9 1.00 to 1.03
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Conclusions

To quantify the model uncertainty in calculating the load-bearing capacity for statically
indeterminate composite structures, an experimental database with all relevant and
sufficiently well reported tests on composite beams was created; it includes both beams
tested under positive (45 tests) and negative bending (36 tests). This database is an
achievement and can be used and extended in the future. The study on statically
indeterminate structures built with this database reached the following conclusions:

The section class, which can be said to be linked to the failure mode, appears to
influence the model uncertainty of the load-bearing capacity calculation regardless of
the analysis performed;

Since a better representation and modelling of the different beam behaviour within an
indeterminate static system can be achieved by relying on the cross-section
classification, one shall always refer to the cross-section classification to validate the
use of linear or plastic internal forces distribution;

This classification being used every day by engineers in practice, potentially provides
an elegant solution for differentiating the value of the model uncertainty partial factor
(ysd) in the verification of the global load-bearing capacity of indeterminate static
systems;

The representativity of the beam in a cross system and the database used has been
shown to have the potential to be extended to a more common structural system in
practice, namely continuous composite bridges;

There is also a clear observation of 2 regimes, a relationship between the failure mode
and the 6Oqr distribution shape;

Plastic and non-linear models, used to calculate the load bearing capacity, give lower
CoV if performed with limiting the deformation capacity. Also mean values closer to unity
are observed for Oqgr;

The partial factor ysq to cover the uncertainties of the internal force calculation can be
taken similarly to reinforced concrete structures, i.e. it ranges between 1.05 and 1.15.
Further differentiation with the section classification was not addressed in this study and
would need to perform a large parametric study. Also, as for reinforced concrete
structures, it must be noted that additional uncertainties, which depend on the
complexity of the structure, the construction method, the tools used and the experience
of the designer deserve to be investigated more in detail.
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Introduction

In this Section, the partial safety factors (PSFs) for permanent actions, used for designing
new structures and for the assessment of existing ones, are updated for the case of
reinforced concrete (RC) road bridges based on available statistical distributions of
geometrical, material, traffic and model uncertainties. In road bridges, permanent loads
result from the self-weight of structural and non-structural elements, which include the
pavement, safety barriers and if present, non-structural curbs. In the latest available draft
of EN 1990:2023 [135], the recommended partial safety factor for all permanent loads,
denoted with yai, is equal to 1.35 and covers the uncertainty in the representative value of
permanent loads and the model uncertainty in action effects calculation. For the model
uncertainty in action effects calculation, the JCSS Probabilistic Model Code [28]
recommends a Log-Normal distribution with mean 1.0 and CoV between 0.05 and 0.20,
but no clear background is provided. These values are confirmed in Sections 2 and 3 of
this report (additional references on this topic can be found in [65] and in Section 2). As
mentioned above, the recommended values of PSFs for structural and non-structural
self-weight EN 1990:2023 [135] are the same. However, the latest available draft of
EN 1991-1-1:2023 [138] recommends to assume a deviation of the pavement thickness of
[-20%, +20%)] or [-20%, +40%] depending on whether the pavement has already been
replaced or not. In order to clarify whether these values are reasonable, data collected from
measurements on various bridges in Switzerland will be analysed and it will be assessed
whether there is a need to decouple the two partial safety factors for structural and non-
structural self-weight, respectively. Traffic variability will also be considered using Weight
In Motion (WIM) data collected in several locations in Switzerland. To estimate the partial
safety factors, parametric reliability analyses, covering a wide range of scenarios, are
performed based on the updated statistical distributions using the First Order Reliability
Method (FORM). Finally, to investigate if a sufficient level of safety is achieved with the
proposed partial safety factors, reliability analyses are performed using more refined
methods on selected case studies.

Statistical uncertainties influencing structural self-weight

The self-weight of structural members in concrete bridges is affected by three main
variables: (1) the specific weight of concrete, (2) the dimensions of concrete and (3) the
reinforcement content (typically expressed in kg/m? and calculated on the basis of nominal
dimensions). The bar diameter, the geometry and the specific weight of the reinforcement
show also some variability affecting the self-weight, but these are negligible since the
production is highly optimized and standardized. The same considerations apply also to
composite bridges, where the largest source of variability for the structural self-weight is
generally related to the reinforced concrete deck. Fig. 68a shows the probability-plot of the
specific weight of concrete obtained from around 3’500 samples (150x150%150 mm)
collected in Western Switzerland between 2014 and 2021 (courtesy by TFB SA, only
samples with an air content smaller than 2.5% are included in the analysis). These data
are obtained from raw concrete samples produced using siliceous limestone aggregate
found typically in the Swiss plains (specific weight equal to 26.7 kN/m3). The resulting CoV,
neglecting the lowest part of the distribution, is 1.4%, significantly smaller than the value
recommended by the JCSS report of 4% [28] (which is based on the publication 115 of the
CIB report [139]). It is also much smaller than the value proposed by Ellingwood of 10%
[27], however, this value also included the geometric and reinforcement content variability,
therefore, not directly comparable. It must be noted that the values shown in Fig. 68a refer
to the production of concrete in a limited area, thus, different statistical values could be
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found in similar studies in different locations where several aggregate types and
petrography’s can be found.
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Fig. 68 (a) Normal probability-plot of concrete specific weight; (b) equivalent bridge deck
thickness as a function of the span (values from Menn, 1982 [141] in blue circles and some
investigated bridges of Tab. 23 in red squares); (c) CoV of the sectional area (A;) variability
using tolerances as standard deviations [142] (dashed red) and statistical distributions
according to the JCSS report [28] (contionuous red); ratio of permanent load over traffic
load (G/Q) for varying span in blue.

Fig. 68c shows the coefficient of variation of the sectional area for increasing span of the
bridge assuming that tolerances according to [142] correspond to standard deviations
(dashed red line) and using the statistical distributions recommended by the JCSS report
[28] (continuous red line). It can be observed that the importance of the geometric variability
decreases with increasing cross-sectional dimensions. In fact, tolerances do not increase
linearly and are limited for elements larger than a fixed threshold (e.g. 30 mm for
cross-sectional dimensions larger than 2’500 mm [142]). Thus, the geometrical variability
has a relatively small influence on bridges with spans larger than 30 m.

Although geometric variability has a stronger influence on the structural self-weight of short
span bridges, in these cases permanent loads are generally less significant compared to
traffic loads. This is illustrated in Fig. 68c (continuous blue curve), where the ratio between
permanent load (obtained from the empirical relationship plotted in Fig. 68b) and
characteristic traffic loads (according to SIA 261:2020 [143]) is presented as a function of
the span length L. One can observe that the ratio G/Q varies between 0.5 for bridges with
a short span (~10 m) and 4 for bridges with longer spans (~50-100 m).
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Fig. 69 (a) Longitudinal reinforcement ratio (red) and reinforcement content expressed in
kg/m?3 (black): (a) bridge Haute-Rive built in 1972 and (b) bridge Brocard built in 1964, see
Tab. 23.
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Figs. 69a,b show the reinforcement content in two reinforced concrete bridges calculated
using the original drawings considering both prestressing and passive reinforcement. While
the longitudinal reinforcement ratio (red line) is almost constant along the longitudinal axis
of the bridge, the reinforcement content expressed in kg/m? increases close to the supports
due to increased shear reinforcement and the more heavily reinforced transversal
elements. However, close to the supports, as the load is directly transmitted to the latter,
the reinforcement weight is less significant for the action effects. It must be noted that the
reinforcement content in a bridge depends on several factors, such as the amount of
prestressing, the structural system and the year of construction (generally, the
reinforcement ratio of new structures being larger compared to older structures due to
current more stringent requirements in terms of durability and serviceability as well as a
reduced amount of prestressing).

Statistical uncertainties influencing  non-structural
self-weight

In addition to the structural self-weight, other non-structural loads contribute to the
permanent load in road bridges. These include pavement, safety barriers and, if present,
non-structural curbs. The same considerations made in the previous section for reinforced
concrete elements apply also to reinforced concrete curbs while lane separation elements
and safety barriers should be considered according to the corresponding specifications. In
this Section, the self-weight variability of the pavement is investigated whereas the
variability of the other permanent actions is neglected. In particular, since the variability of
the pavement thickness has a larger impact than the specific weight variability, the focus
will be put on the former while the pavement specific weight variability is assumed based
on available literature [144, 145, 146]. Specifically, in this Section, a mean value of
24.0 kN/m? and a CoV = 4% is assumed, as found by Hugenschmidt on bridges that were
demolished in Switzerland [147].

Fig. 70a shows some typical cases of pavement thickness variability in the transversal and
longitudinal direction. In particular, in the transversal direction, thickness variations occur
mostly due to pre-existing deformations of the deck before surfacing which are generally
caused by self-weight, transversal prestressing or imperfections during construction. In the
longitudinal direction, two main scenarios can occur as illustrated qualitatively in Fig. 70a:
if the precamber and the deformations caused by prestressing exceed those caused by
self-weight, the pavement will be typically thicker close to the supports while in case of non-
prestressed bridges or if precamber and prestressing are not sufficient to compensate
deformations caused by self-weight, the pavement is typically thicker at midspan. In
addition, the imperfections of the concrete surface just after casting add an aleatory
component to the variability of the pavement thickness. An additional source of uncertainty
is related to the resurfacing of the pavement with partial replacement and correction of the
deflections/settlements after some decades. The effects described above can be more or
less significant and are generally combined in actual bridges.

Fig. 70c shows the pavement thickness for one of the analysed bridges as part of this work
using the Ground-Penetrating-Radar (GPR) technique. GPR measurements are performed
by emitting electromagnetic waves which are reflected differently by the materials
composing the different layers (i.e. bituminous pavement, concrete substrate). The
propagation time of the electromagnetic waves is then recorded and converted to a
dimension by determining the propagation speed of the wave in each layer. In all the
analysed bridges, including this example, the propagation speed in the pavement is
calibrated by means of control cores extracted at various locations along the bridge (red
dots in Fig. 70c). For details about GPR measurements and calibration see [147, 148, 149].
The plot in Fig. 70c shows that, in this case, in the transversal direction, the pavement is
up to 50% thicker close to the edges. Also, the mean value of the thickness is significantly
larger than the specified nominal value defined in the original drawings, suggesting that the
pavement thickness was probably increased during resurfacing. Fig. 70b shows the ratio
between the mean of the measured thickness and the specified nominal value for 7 bridges
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build between 1963 and 1994 which were investigated as part of this research (raw data
provided by Bridgology SA), see Tab. 23 for details.

Tab. 23 Details of the bridges where pavement thickness measurements are performed,
raw data provided by Bridgology SA

. . Construction Span Nt:\mlnal
Bridge Location Typology thickness p* CoV [%]
year [m] [m]
A1 1.3- 17.0-
Viaduc du Brocard  Martigny-G. St. 1964 Box-girder 19.6-25.0 0.050 1'7 20'02
Bernard (km. 60.060) ) )
A21
Pont de Rive-Haute Martigny-G. St 497, Hollow-Core 15 0200 0.050 23 16.3-193
Bernard Slab 2.4
(km. 250.875)
N9 Hollow-Core 2.0-
Jonction de Vennes Lausanne 1963 Slab 39.0 0.070 2'2 19.0-21.6
a .
(km. 7.039)
Passage Supérieur LeN.9 . .
Daillet Sion-Sierre 1992 Multi-beam 33.5 0.060 14 9.4-10.8
(km. 105.161)
Passage Supérieur N.g . 1.3-
Sierre-Ouest Sion-Sierre 1992 Slab 36.0 0.075 14 11.1-13.9
(km. 113.392)
. o N9
\F/:;ggr‘f?ﬁjrg‘;s Sion-Sierre 1994 Boxgirder 27.473.0 0075 1.7 108138
(km. 116.104) )
. o N9
Yiaduc ?Sej d')'es Sion-Sierre 1994 Boxgirder 27.473.1 0075 17 8499

(km. 116.104)
*The bias is defined as the mean of the measured thickness in each span over the nominal thickness:
M= tDav mean / tEav nomina

It can be observed that the bias factor y, defined as the ratio between the measurements
mean and the nominal thickness for each span, is generally between 1.1 and 1.7, which
justifies the increase of the nominal value recommended by [138] of 20 or 40%. The mean
measured thickness is never found to be smaller than the nominal value. Also, it can be
observed that for smaller spans, the bias ratio increases. This could be related to the fact
that for short span bridges, the pavement thickness can depend mainly from requirement
related to the level of the approaching road.

Considering the equivalent thickness of the concrete section, heq, as shown in Fig. 68b and
a standard pavement thickness of 100 mm, the pavement weight is relatively more
significant for smaller spans than for larger ones, accounting up to 25% of the total
permanent load for spans between 8 and 12 m. Since the bias is also larger in those cases,
potentially unsafe scenarios are more likely to occur. Considering all the measurements
within each span, the CoV of the pavement thickness ranges between 8.4 and 21.6%, see
Tab. 23. Despite a slightly larger upper limit, these values are in line with previous
researches which presented a CoV between 8 and 15% [145, 146].
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Fig. 70 Typical pavement thickness variability in road bridges (a) qualitative transversal
and longitudinal distributions; (b) ratio between the actual mean and the nominal pavement
thickness as a function of the span for the investigated bridges; (c) greyscale map of the
measured pavement thickness of the Rive-Haute bridge as an example, see Table 23 (raw
data provided by Bridgology SA and analysed as part of this research)
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Updating of other statistical uncertainties

In addition to the variability of the permanent loads in road bridges described above, an
accurate estimation of the variability on the resistance side and of the traffic loads is
necessary to calibrate the PSFs. In fact, all variabilities contribute to the limit function, which
separates the safe structural domain from the unsafe one. In the First Order Reliability
analysis Method (FORM), the relative contribution of the single variabilities is represented
by the sensitivity factors, a, which is the partial derivative of the limit state function with
respect to the investigated variable. Per definition, the sum of the squares of all sensitivity
factors corresponds to 1.0. Thus, if the weight of one variable increases, the weight of all
the others must decrease (see [105] for further details on the meaning of the sensitivity
factors and FORM analysis). Therefore, to accurately estimate the sensitivity factor of the
permanent loads, in the following sections, the variability of the materials parameters, traffic
loads and resistance models will be investigated.

Materials strength

Regarding the reinforcement yield strength, fy, assumptions made in Section 1 of this report
are assumed for new structures. For existing structures, these assumptions are verified on
the basis of an existing database referring to steel produced in Switzerland [151]. The data
of more than 2’500 tests conducted between 1960 and 1994 for steel classes llla and llIb
according to SIA 162 [152] (specified 5% characteristic value fyx = 451MPa) are considered
in this evaluation. Figs 71a and 71b show the mean and the CoV of the reinforcement yield
strength, fy, as a function of the year of production and of the bar diameter. The mean value
increased with time, associated also with a decrease of the CoV. This was most likely due
to the optimization of the industrial production processes over time. For bars with larger
diameters, the yield strength shows a decreasing trend. In some cases, when products are
categorized by steel type (based on the producer), the distribution deviates from the typical
Log-Normal (LN) distribution, see difference between Roll-S and Box-Ultra in Fig. 71c. This
was perhaps the result of two different products grouped under the same designation. In
fact, the two distributions can clearly be identified and show similar CoV. Overall, the CoV
resulting from the analysed data for existing structures is in line with Section 1 where a
CoV =4.5% has been assumed for new structures. These values are also confirmed by
other publications [154, 24]. Previous researches [156, 27] report larger CoV, up to 10-12%,
however, they are based on a more limited amount of data and different steel grades. With
respect to the variability of the actual cross-section of the reinforcement bars, it is implicitly
accounted for in the evaluation of the yield strength since the latter is calculated on the
basis of the nominal cross-sectional area.
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Fig. 71 Mean and coefficient of variation of steel yield strength, respectively top and
bottom: (a) as a function of time; (b) as a function of the bar diameter; (c) log-normal
probability plot of two common steel products available in Switzerland.

Fig. 72a shows the log-normal probability-plot of the yield strength (proof-stress at 0.1%
irreversible strain) and the tensile strength of prestressing strands, respectively. The
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probability-plot of the Young’'s modulus is presented in Fig. 72b. Data refer to tests carried
out in Switzerland in the period between 1968 and 1979 (see [26]). In particular, Fig. 72a
shows that the CoV of the yield strength of prestressing strands is similar to that of passive
reinforcement, confirming the assumptions made in Section 1, namely CoV =4.5% and is
consistent with value reported by other researches [158, 27, 159, 154, 30]. In addition, the
mean value of the Young's modulus is equal to 195 GPa with a CoV of 2.8%. This value is
also consistent with results published by other researchers [158].

Fig. 72c shows the probability-plot of the concrete compressive strength at 28 days
(fecuve28) Of various concrete strength classes (C20/25, C25/30, C30/37, C35/45).
Distributions are obtained from ~3'500 compression tests performed on concrete cubes
with an edge size of 150 mm in Western Switzerland between 2014 and 2021. Tests
include concretes used in residential buildings and engineering works with a void content
lower than 2.5% and various exposure classes, see Tab. 24 for details.

Tab. 24 Distribution parameters of the concrete compressive strength variability at 28 days,
data provided by TFB SA for samples with void content lower than 2.5%, collected in
Western Switzerland between 2014 and 2021. The columns on the right refer to the
concrete classification on the basis of the exposure (defined as concrete type according to
the Swiss national annex to EN 206 [161])

Mean Mean
Strength Number £ CoV P(0.05) Type Number Exposure P CoV P(0.05)
of tests e o of tests Class coube2s g
Class N O s VI
C20/25 86 35.5 141 279 A 86 XC1, XC2 35.5 14.1 27.9
A 227 XC1, XC2 40.0 17.2 29.8
B 347 XC3 413 144 323
C25/30 737 43.8 18.9 31.6 XC4, XD1, XF2,
D 120 XF3, XD2a 53.2 10.4 44.6
P2 43 ND 50.8 9.9 43
A 75 XC1/XC2 44.8 13.6 35.8
B 121 XC3 56.9 9.2 48.7
C 1583 XC4/XF1 51.1 11.8 41.8
C30/37 2470 517 142 406 XC4, XD3, XF2,
F 173 (OobxAn 521 152 402
XC4, XD3, XF4,
G 438 XD2b 56.1 15.9 42.7
P2 80 ND 62.5 13.3 49.8
C 83 XC4, XF1 56.7 8.7 48.9
XC4, XD3, XF2,
C35/45 167 592 109 492 | 40 XD2b, XAA 035 113 524
XC4, XD3, XF4,
G 44 XD2b 62.6 8.0 54.7

Data follows a log-normal distribution (see Fig. 72) which is in line with recommendations
of [28] and [135]. As it can be observed, the actual characteristic value of each concrete
class (defined as the 5" percentile of the distribution) is generally slightly higher than the
specified value (difference from 1.6 to 4.2 MPa). Also, the difference between mean value
and 5" percentile varies between 7.6 and 12.2 MPa, which is more or less in line with the
typical assumption (between 8 and 10 MPa, see [95]). Besides the strength class, on the
right-hand side of Tab. 24, concrete samples are classified based also on their exposure
class, see [161]. Tab. 24 shows that a larger mean compressive strength is generally
obtained for concretes with more stringent exposure requirements (e.g. for a C30/37
strength class, fc.cube 28 Of Type G concrete typically used in engineering works is 56.1 MPa
while that of Type A typically used in buildings is 44.8 MPa). This over-strength is related
to the minimal cement content requirements and to the fact that exposure requirements are
often governing in the mix design. This justifies also the large mean compressive strength
of concretes used for underwater piles and slurry walls (Type P2). Overall, the resulting
CoV for the concrete compressive strength is located in the upper range of results
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published in the literature, see Section 1 and Torrenti & Dehn [46]. The empirical rule:
fem - foc = 8 MPa, provided in EN 1992-1-1:2023 [95] is generally confirmed, although,
slightly higher values are obtained. However, it must be noted that these values are specific
to the current Swiss concrete production situation which will probably evolve due to
environmental requirements.
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Fig. 72 Log-normal probability plot of: (a) yield strength (red) and tensile strength (blue) of
prestressing strands; (b) elastic modulus of prestressing strands; (c) concrete compressive
strength at 28 days (f;cuve,28) for various concrete strength classes (all exposure classes
included in the analysis), see Tab. 24.

Traffic loads

The aim of this investigation is not to reproduce a realistic scenario from the structural point
of view but to quantify the variability of the traffic loads without considering the uncertainties
related to the calculation of action effects and the transversal load distribution. To this
purpose, a simply supported bridge with a width of 3 m (single lane) and span varying
between 6 and 24 m is used, as shown in Fig. 73a.

Traffic load is simulated using Weight In Motion (WIM) measurements which were
performed during more than 20 years at 14 stations located in Switzerland. After being
classified considering the vehicle type, the measurements are combined and directly
applied on the structure (this simulation procedure is denoted as “direct WIM” in the
following, for details regarding WIM data classification and generation of direct-WIM loads,
see [163]). Action effects calculated from direct WIM simulations are then compared with
those obtained using a representative load model, assumed according to the
SIA 261:2020 [143], which is derived from EN 1991-2:2003 [164]. As already mentioned,
the aim of this investigation is to quantify the variability of the traffic load in terms of CoV of
the action effects. Since the investigated bridge is not representative of a real case (single
lane), the bias of the action effects (Ewim/Erep) is not significant for this investigation. For
this reason, the adjustment factors dacta, and aact,q,i are set equal to 1.0 (not in accordance
with SIA 261:2020 [143]).

Direct WIM simulations are performed using both the weekly maxima traffic loads
distribution, obtained from WIM measurements, and the 50-year maxima traffic loads
distribution, derived from the weekly maxima as explained further on. To determine the
50-year maxima distribution, the weekly maxima events are considered as
Independent-ldentically-Distributed (1ID) variables. Based on this assumption, if Fx(x) is the
common Cumulative Distribution Function (CDF) of the weekly maxima traffic load, and
Fn(y) is the CDF of the 50-year maxima traffic loads, with Y = max{X1, X,..., Xn}, Fn(y) is
obtained from Eq. 54, with N equal to the number of weeks in 50 years (~2'607). Thus, the
CDF of Y, the 50-year maxima distribution is obtained by taking the Nt" power of the CDF
of X, the weekly maxima distribution.

Fy(0)=P[(X, <)) (X, <00 (X, <»]={Fm} (54)
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If N is a large number, the 50-year maxima distribution is either a Gumbel Extreme Values
(GEV) Type-l or a Type-ll depending on the tail approximation of the [ID variable. In
particular, if the tail of the Probability Density Function (PDF) of the weekly maxima
distribution follows a Log-Normal (LN) or a GEV Type-I distribution, the 50-year maxima
distribution will be a GEV Type-I (for additional details about the theoretical derivation and
sample maxima distributions, see [165]).
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Fig. 73 (a) Investigated structural system and representative load model according to [143]
with the adjustment factors Qactoi=Q actqi= 1.0; (b) typical histogram of the bending
moment at midspan obtained from the weekly maxima direct WIM simulation (Ew) and
tail fitting using a LN (red line) and a GEV Type-I distribution (blue line) with tail fitting
details; (c) ratio between the bending moment at midspan obtained from direct WIM
simulation with weekly maxima distribution and the bending moment at midspan obtained
with the representative load model (Mwim/Mrep), tail fitted using a LN distribution for a span
of 10 m and 20 m; (d) same data presented in (c) but tail fitted using a GEV Type-I
distribution; (e) 50-year maxima distributions resulting from the weekly maxima
distributions presented in (c) and (d).
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Fig. 73b shows a typical histogram obtained for the bending moment at midspan using the
weekly maxima traffic distribution and the tail fitting using both a LN and a GEV Type-I
distribution presented respectively in red and blue. As presented in the tail fitting details of
Fig. 73b, with example 1 and 2 corresponding respectively to a span of 10 and 20 m, the
most suitable distribution type depends on the specific case. Since the accuracy in
approximating the tail fitting of the weekly maxima distribution influences significantly the
distribution of the 50-year maxima and it is not possible to know a priori the best tail fitting
distribution, both, a LN and a GEV Type-I distributions are used in the following to fit the
tail of the weekly maxima distribution for each span L. Fig. 73c shows the probability-plot
of the ratio between the bending moment at midspan obtained using the traffic weekly
maxima distribution (Mwiv) and the bending moment obtained with the representative load
model (Mrep) fitted using a LN distribution for a span L =10 m and L =20 m. The same
cases are presented also in Figs 73d but using a GEV Type-I distribution. In Figs 73c and
73d, the fitting is performed considering only points on the upper part of the distribution
(P> 0.5). Fig. 73e shows the resulting 50-year maxima distribution using the weekly
distributions of Fig. 73c and 73d. Since the PDF tail of the GEV Type-I distribution shows
a slower decrease than the LN distribution, it leads to larger bias and CoV. Based on the
analysed spans, the CoV of the traffic load effects is found between 10% and 18% for the
weekly maxima traffic load distribution and between 6% and 10% for the 50-year maxima
traffic load distribution.

Variability of resistance calculation

The variability of the sectional resistance calculation is quantified by means of Monte-Carlo
simulations performed considering the variability of the materials strength, the calculation
models and the geometry. More specifically, this work focuses in quantifying the variability
of the resisting bending moment calculation and the variability of the shear resistance
calculation for members with shear reinforcement. To this purpose, the models provided in
Section 8 of EN 1992-1-1:2023 [95] are implemented (provisions 8.1.1 and 8.1.2(1) for
bending and 8.2.3(1-3,5,7,8) for shear). In addition, to investigate the influence of the
cross-sectional dimensions (see Fig. 68c), a concrete section with constant width and
depth, h, varying between 0.35 m and 1.4 m is investigated.

The variability of the materials strength is assumed according to Section 1 of this report
while the geometric variability is assumed according to [28], except for the effective depth
which is assumed according to Section 1, see Tab. 25. With regard to the model uncertainty
for the calculation of the resisting bending moment, with failure occurring on the steel side,
the value proposed in Section 1 is assumed while the model uncertainty for the calculation
of the shear resistance in members with shear reinforcement is assumed according to
[104]. Tab.25 gives an overview of the statistical parameters used to perform the
Monte-Carlo simulations. For details on the implemented models,
see EN 1992-1-1:2023 [95].

Tab. 25 Statistical distributions assumed for performing Monte-Carlo analyses to quantify
the variability of shear resistance for members with shear reinforcement and bending
moment resistance for RC members

Random variable CoV - V[%] Bias - y Reference

fe 10.0 1.18 Section 1 and Subsection 4.3
Nis 12.0 0.95 Section 1

fy 4.50 1.08 Section 1 and Subsection 4.3
d 5-(200/d)*® 1 —0.05-(200/d)** Section 1

Ac 2.0-6.0 1.00 JCSS report, 2001 [28]

6R Flex steel 4.50 1.09 Section 1

OR shear 19.4 1.1 Pejatovic et al. [104]

Fig. 74a and 74b show the resulting CoV (Vr) and the bias factor (u) for the calculated
resistances as a function of the section depth h. For each section depth, 10’000 simulations
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are performed for both shear resistance and bending moment resistance to determine the
coefficient of variation and the bias factor. Fig. 74c shows the probability plot for the case
of h=0.35m.

Fig. 74a shows that for the calculation of the bending moment, the CoV decreases with
increasing depth, h. This is due to the fact that the relative variability of the effective depth
(d) is less significant for larger members. In fact, according to the formula in Tab. 25, an
effective depth d=1.2m leads to p=0.985 and V=1.51% whereas for d=0.2m,
p=0.95and V=5%. On the other hand, for the calculation of the shear resistance, the
variability of the effective depth is less significant, leading to a less pronounced reduction
of CoV for larger members. Fig. 74b shows that for the shear resistance calculation, the
bias varies between 1.20 and 1.25 while for the calculation of the bending moment, the
bias varies between 1.14 and 1.16.

It can be noted that, regardless of the beam depth, the coefficient of variation Vr is much
larger for the calculation of the shear resistance than for the calculation of the resisting
bending moment. This is mainly due to the large model uncertainty for shear resistance
calculation, see Tab. 25. Fig. 74c shows also that a Log-Normal (LN) distribution is a good
fit for the resistance variability both for the calculation of shear and bending moment
resistance, in line with the recommendations of [28] and Section 1.
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Fig. 74 Variability of bending moment and shear resistance calculation for a beam with
fixed width and varying depth between 0.35m and 1.4 m: (a) Vr and (b) u; (c) LN
probability-plot of sectional resistance calculation for a beam with depth equal to 0.35 m.
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Calibration of ys1 and ys2 using FORM

As already discussed in the previous sections, the variability of the structural and
non-structural self-weight is significantly different in road bridges. Therefore, the partial
safety factor for permanent loads, yai, is treated separately for structural and non-structural
self-weight, denoted with ye1 and yaz, respectively. To estimate their values, parametric
FORM analyses are performed covering a wide range of scenarios. The statistical
distribution parameters of action effects (E), sectional resistance (R) and model uncertainty
in action effects calculation (6e) are presented in Tab. 26.

The statistical distributions of the actions effects due to the structural and non-structural
self-weight, respectively Ec1 and Eaz, are obtained on the basis of the considerations made
in the previous sections which are resumed in Tab. 27 and 28. To account for the large
uncertainty related to the traffic loads, a wide range of CoVs is considered on the action
effects due to the latter (Vea). Also, since the variability of the sectional resistance
calculation varies largely depending on the failure mode, the latter is investigated
considering a wide range of the CoV (VR). Finally, the statistical distribution parameters of
the uncertainty in action effects calculation are assumed according to Section 2. In
particular, for a Linear Elastic model with uncracked sectional stiffness, a CoV of 6.5% is
assumed as shown in Tab. 26.

Regarding the representative values of the actions, the self-weight for reinforced concrete
members is calculated using the nominal dimensions and the specific weight equal to
25 kN/m?2 [138], including the reinforcement. The pavement load is calculated considering
a representative thickness of the pavement of 100 mm (i.e., not accounting for the increase
of 20-40% recommended in [138]) and the specific weight equal to 24 kN/m3 [138]. Finally,
the representative value of the traffic load (Q) is considered as a function of the permanent
loads (G = G1+G2). Specifically, the ratio of the action effect due to permanent loads over
the action effects due to traffic loads Ec/Eq, is assumed equal to 4 and 0.5, which
correspond respectively to a long and a short span bridge.

The limit state function is formulated in the classical form as in Eq. 55 while yai is calculated
according to Eq. 56 with the sensitivity factors, a, obtained from the FORM analyses.
Besides the uncertainty related to the representative value of the permanent loads, yai
covers also the model uncertainty in the action effects calculation, denoted with 6e. Thus,
to account for this uncertainty, aci, Vi and pei are calculated as in Eq. 57.

The value of Bigts0y is assumed according to [135], equal to 3.8. Indeed, the choice of Bt
depends on the risk acceptance at a societal level and is not treated in this work.

g(R,E)Y=R-E=R-(Eg g +Ez+E,)) 0,

Vei= ﬂG[-eXP(aGi-ﬁ Vo)

2 2 2 2
a = |la” +a V = V"4V = . (57)
Gi \/ ¢ OF Gi \, ¢i O Hei ’ugi Hor
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Tab. 26 Distribution type and parameters of random variables used for the parametric
analyses

Random variable CoV - V[%] Bias - p Reference
EG1 Normal 1.00 3-6

EG2 Normal 1.10-1.30 15-25

EQ Log-normal 0.7-1.0 4-26

R. Log-normal 1.09-1.12 4-24

6E Log-normal 1.00 6.5

Fig. 75 shows the sensitivity factors a, smaller than 1 by definition, and the partial safety
factors y, larger than 1, obtained from the parametric analysis as a function of the
coefficients of variation Vr and Va. As already mentioned, two ratios of Ec/Eq are
investigated, namely 4 and 0.5, which correspond respectively to a long and short span
bridge (the ratio total permanent load / total live load (G/Q) for bridges with increasing span
is shown in Fig. 68c). For a long-span bridge, Fig. 75a and 75c¢ show that Vq does not
influence ys1 and ys2 while an increase of Vr leads to smaller values of ys1 and yez. In fact,
since traffic loads are less significant compared to permanent loads, their variability does
not lead to a remarkable change of the sensitivity factor (a), and consequently on the partial
factors (y). On the other hand, for short span bridges, an increase of both Va and Vr leads
to a decrease of ys1 and ye2. Overall, for the investigated scenarios, the required value of
ye1 varies between 1.1 and 1.2, whereas ya2 varies between 1.3 and 1.8.

Based on the results of the parametric analysis, the proposed values for yc1 and yac2 are
1.2 and 1.5, respectively. To cover the cases where yaz2 is larger than 1.5, an increase of
the representative value of the pavement thickness as required in [102] and in [138] is
justified (an increase of the nominal value by 20% covers the cases where ya2 is larger
than 1.5: 1.2x1.5=1.8).
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Fig. 75 ag1, ac2 [0,1] and ya1, va2 (>1) as a function of Vq and Vg for a road bridge with
Ec/Eq equal to 4 and 0.5, which correspond respectively to a long and short span bridge.

Validation of the proposed partial factors for a particular
case

To investigate if a sufficient level of safety is achieved with the proposed partial safety
factors, more refined reliability analyses are performed on two bridges with a maximum
span of 20 and 30 m, respectively. Fig. 78a shows the longitudinal scheme and the
transversal cross-section of the investigated bridges.

Both bridges are designed to fulfil the requirements of traffic loads for new bridges,
according to [143], and for existing bridges according to [168], while representative
permanent loads are calculated according to [138] (but no increase of the nominal
pavement thickness is considered). Dimensioning is performed according to Section 8
of EN 1992-1-1:2023 [95] with a reinforcement ratio in the tension zones ranging between
0.4 and 0.8% and the post-tensioning tendons designed to carry the remaining required
tension force at ULS (the average compressive concrete stress due to prestressing P/A. is
1.75 and 2.05 MPa for the bridge with maximum span of 20 m and 30 m, respectively). The
considered partial factors for the dimensioning are ys = 1.15 and yc = 1.50 whereas the
currently recommended partial factors for the permanent actions ys1 = ye2 = 1.35 as well
as the proposed combination ys1 =1.20 and ye2=1.50 are considered. The strain
difference in the prestressing steel and the hyperstatic moments due to prestressing are
calculated considering: (i) an initial prestressing stress of 0.7y, (ii) the tendon’s geometry
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shown in Fig. 77c, (iii) the friction losses according to EN 1992-1-1:2023, and (iv) 15%
losses due to relaxation, shrinkage and creep.

For the refined reliability analyses, the variability of the geometry and the specific weight is
modelled considering that a certain correlation exists between two points in the same
element. This correlation is expressed by the Pearson correlation coefficient, which is
denoted with pcc and is calculated according to [28] as shown by Eq. 58, where § is the
correlation length, characteristic of the member type (e.g. equal to 6 m for slabs and walls
and 10 m for reinforced concrete beam) and Ar is the distance between the points. The
parameter pcco represents the correlation between two far away points in the same element.

@ (b) © thinner thicker.
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Fig. 76 (a) Property of a reference point P* and property of a point at a distance Ars and
Ar; considering the Pearson correlation coefficient pc.; (b) decrease of p.c from a reference
point; (c) typical simulations of pavement thickness variability in road bridges.

Fig. 76a illustrates the correlation between the property of a reference point, P*, and the
property of two different points, P(AR1) and P(ARz), part of the same structural element,
respectively at a distance Ars and Ar> from the reference point, see Fig. 76b. Fig. 76b
shows the decrease of pcc as a function of the distance Ar. For a distance between the
points larger than the characteristic length (&), pcc = peco, With peco = 0.85 in this particular
case, assumed according to [28]. If multiple points are involved, instead of a single
coefficient, the correlation is represented by a symmetric matrix [n x n] with n equal to the
number of investigated points. The symmetry of the matrix is due to the fact that pcc is
calculated considering only the distance between points and not the direction.

Pe(Ar)=p, + (1= p.o)-exp(—(Ar/5)) with p,, =085 (58)

Correlation of the pavement thickness and specific weight in different points of the same
bridge is modelled using the same procedure and the characteristic length d = 6 m.

Fig. 76¢ presents the resulting pavement thickness modelled by discretizing the surface of
the bridge deck and implementing the longitudinal, the transversal and the aleatoric
variability (see Subsection 4.3). The correlation is implemented using the methodology
described above. The longitudinal and transversal thickness variabilities, which account for
the pre-existing deformations, are modelled assuming a parabolic profile in both directions
with the ratio tlong,support/ fiong,midspan  @nd ttransv,center/ttransv,edge defined by the distribution
presented in Tab. 28. Tab. 27 presents the distribution parameters assumed for modelling
the variability of the structural self-weight. The geometric variability is modelled according
to [28] as shown in Fig. 68c. For the reinforcement content, the statistical parameters
presented in Tab. 27 are assumed, see also Fig. 69.

Tab. 27 Statistical parameters for modelling of the structural self weight

Random variable CoV - V[%] Bias — u Mean value
Ac 2.0-50 1.00 -
pconcrete [kN/m3] 4.0 - 24.0
Reinforcement content [kg/m3] 15.0 - 130.0
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Tab. 28 Statistical parameters for modelling of the pavement load

Random variable CoV - V[%] Bias — u Mean value
tiong,support / tiong, midspan 20.0 1.00 -

tiransv,center / firansv,edge 20.0 1.00 -

t/ thominal 4.0 1.00 -

Vol | VOlominal 22.0 1.25 -

Ppav [KN/m?3] 4.0 - 24.0

The aleatoric variability, t/fminai is not related to pre-existing deformations but to
imperfections of the concrete substrate and paving placing precision. The variability of the
total volume of the pavement is defined by a distribution with mean 1.25 and CoV of 22%,
in line with previous research and the findings of this work. It is important to note that cases
where the nominal thickness is increased as a maintenance strategy are not considered as
variability.

To obtain the variability of the action effect at a given position for both structural and
non-structural load, a Monte-Carlo simulation is performed using the statistical distributions
in Tab. 28 and 27. For each draw, the load pattern (load of each discretized element) is
defined accounting also for the correlation and the action effect at a given position is
calculated using a finite element (FE) model with 2D elements as shown in Fig. 77a.

Due to the large number of simulations, the influence surfaces/lines are calculated for
each investigated cross-section and internal force (i.e. shear and bending moment).
Subsequently, the action effect (E), is calculated by performing fast matrix operations. As
an example, Fig. 77b shows the influence surface of the bending moment at midspan for
one beam of the half-section.

/%( Limited curvature /\
G

= Fixed paints \/
0

(d)

Influence surface Moment at mid-span of the beam .

i i

| 0
l 22.5m { 30.0m { 22.5m {
1 + + 1

! I I 1

Fig. 77 (a) FE model for calculation of influence lines/surfaces; (b) influence surface of the
moment at midspan of the beam; (c) automatically determined profile of the prestressing
tendon given the constraints on the curvature and the mandatory passing points;
(d) longitudinal profile of the investigated bridge.

For both investigated bridges (maximum spans of 20 and 30 m, respectively), 2x2x2 = 8
different scenarios are investigated, as presented in Tab. 29. Specifically, they include two
different traffic configurations (unidirectional and bidirectional), two vehicle typologies (up
to42tor 96, i.e., without and with mobile cranes) and two distribution types for fitting the
tail of the WIM weekly maxima traffic loads (LN and GEV Type-l). For each scenario,
reliability analyses are performed at the support and midspan section, denoted respectively
with S1 and S2 in Fig. 78a. The following failure modes are considered: (1) shear failure
for sections S1, (2) flexural failure with failure occurring on the steel side for both sections
S1 and S2 (3) flexural failure with failure occurring on the concrete side for section S1. For
the bridge with maximum span of 20 m and 30 m the ratio between the neutral axis depth
and the effective depth in section S1, is respectively x/d=0.36 (x=469 mm) and
x/d=0.40 (x=625mm), justifying such a failure mode. As a comparison with the
parametric reliability analysis, the ratio Ec/ Eq for the sections of the investigated bridges
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ranges between 0.55 and 1.25, thus, covered by the limit cases of 0.5 and 4.0 considered
for the FORM calibration of yc1 and ye2 shown in the previous subsection.

Tab. 29 Scenarios considered for calculation of the reliability index Bsoy

Weekly maxima

Scenario Traffic configuration Vehicles class tailfitting
1 Unidirectional Including mobile cranes GEV

2 Unidirectional Including mobile cranes LN

3 Unidirectional Without mobile cranes GEV

4 Unidirectional Without mobile cranes LN

5 Bidirectional Including mobile cranes GEV

6 Bidirectional Including mobile cranes LN

7 Bidirectional Without mobile cranes GEV

8 Bidirectional Without mobile cranes LN

The traffic load variability is considered using the WIM measurements introduced in
Section 4.3.2 while the variability of the structural and non-structural self-weight is modelled
using the methodology presented above. The variability of the resistance calculation is
calculated as in Subsection 4.3.3 while the variability of the model for calculation of action
effects is assumed according to Section 2, as for the parametric analysis.

To reduce the time needed to perform the crude Monte-Carlo (MC) reliability analyses, the
Importance Sampling technique (MC-IS) is adopted. Accordingly, a FORM analysis is first
performed to determine the design point and subsequently, the Monte-Carlo simulations
are then performed around that point. This technique requires a smaller number of
simulations to determine the reliability index B (see [169] for details about Monte-Carlo
analysis and the Importance Sampling technique).

The limit state function is formulated in the classical form as for the parametric reliability
analyses in Eqg. 55. For each analysis, the limit state function is evaluated ~100°000 times
to calculate the reliability index . Overall, for all the investigated scenarios, sections and
failure modes, ~5’000°000 simulations were performed.

Fig. 78b-d and 78e-g show the Bsoy Obtained from the MC-IS reliability analyses. The points
corresponding to the same scenario refer to the different sections, failure modes, partial
factors for permanent loads and different spans investigated. It can be observed that the
Bsoy obtained with the proposed partial factors ys1 and ya2 is similar to the one obtained
with the current partial safety factors. Thus, the overall structural safety remains
unchanged. However, the partial safety factors reflect better the uncertainties they are
supposed to cover. This observation is further supported by the fact that Bsoy is generally
less dispersed with the newly proposed values. Fig. 78b-d shows that for new bridges,
regardless of the scenario, Bsoy is generally larger than 4.5, indicating that a safety margin
is present if compared to the target value Bigtsoy = 3.8. On the other hand, Bsoy calculated
using reduced traffic loads for existing bridges shown in Fig. 78e-g, is much closer to Bigt,s0y
(however, it must be noted that for existing structures, the value of Bit,50y may be reduced).
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Fig. 78 (a) Longitudinal scheme and cross-section of the investigated bridges, resulting
Bsoy calculated with the current (circles) and the proposed partial safety factors (squares):
(b-d) considering adjustment factors Qactqiand aactq,i according to [143] for new structures
and (e-g) according to [168] for existing structures. The blue squares have been shifted to
the right to improve readability of the plots, however, they refer to the same scenario as the
red circles.

Modelling of the structure, evolutions of structural system
and designer’s choices

It has to be noted that the proposed values for the partial safety factors ys1 and ye2 are
based on the model uncertainties for the action effects analysed in Sections 2 and 3. As
already discussed in Section 2, the model uncertainty related to the action effects
significantly depends on the complexity and the level of statical indeterminacy of the
structure. In fact, in statically determinate structures, where the internal forces depend
almost only on the actions and on equilibrium, the model uncertainty related to the internal
forces is very small and only depends on the geometrical uncertainties which has an almost
negligible effect. In these cases, the assumed values for the model uncertainties of the
action effects calculation can be considered as overly conservative. At the other side, for
highly indeterminate complex structures, the model uncertainties can be significant,
particularly in the case of system changes during construction. With this respect, the exact
construction sequence is not necessarily known during the design, the creep deformations
which affect the redistributions of internal forces are also affected by significant
uncertainties, and above all, these effects are usually not accounted for in a detailed
manner. In this context, the deformation capacity of the critical cross sections associated
to the governing failure modes plays also a significant role. In case of ductile behaviour, all
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these types of uncertainties have little influence on the load-bearing capacity since plastic
redistributions of the internal forces can adjust a difference between calculated and actual
internal forces (see Section 2). On the other side, for brittle behaviour, the possibility of a
redistribution of internal forces is limited, so that the model uncertainties in the actions affect
calculation can play a major role. In addition, for complex structures, additional
uncertainties can be expected with respect to the models implemented in commercial
analysis software tools and the choices by the designer in modelling the structures. This
applies for linear elastic calculations, but also to an even larger extent for nonlinear
analyses. These considerations, which were not the aim of the present work, deserve to
be investigated in the future also accounting for the increasing complexity of the analysis
tools used nowadays which can give to the designer the impression of a precision which
cannot be reached for the reasons explained above.

To solve these problems, an increase of the complexity in the analysis, the consideration
of a larger number of load combinations and scenarios, as well as a detailed analysis of
the effects related to system changes during construction are not necessarily to be
recommended. Also, designer’s choices regarding structural modelling a complex structure
in an apparently more detailed manner can lead to further uncertainties in calculating action
effects. In fact, the increasing complexity of commercially available software makes it more
difficult to verify the assumptions. For instance, the modelling of the load, the selection of
the finite element, the interaction between different finite elements, the definition of the
reference axis, the modelling of prestressing, the modelling of the system changes etc. are
more or less conscious choices whose influences should be evaluated by the designers.
In addition, an analysis with increasing complexity can even be counterproductive since it
would increase the probability of human errors. According to the authors, it is more
reasonable to invest time in thinking which is the most suitable and reasonably safe
modelling, trying to evaluate qualitatively the potential uncertainties and interpret correctly
the results.

These considerations are not the aim of this paper and further effort should be put in
investigating this topic.
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Conclusions

This section investigates the sources of structural and non-structural self-weight variability
in road bridges along with other variabilities influencing structural safety in reinforced
concrete structures. Based on the presented work, the main findings are:

1.

Structural self-weight variability in bridges is mainly caused by geometrical,
reinforcement content and concrete specific weight variability. Geometrical variabilities
are less significant for large members. The CoV for structural self-weight of common
members is generally between 3 and 6%;

Variability of the pavement thickness in a road bridge can be significant. For each span
of the investigated bridges, the ratio between the measurements mean and the nominal
thickness is generally located between 1.1 and 1.7 (larger for smaller spans).
Considering all the measurements within each span, the CoV of the pavement
thickness ranges between 8.4 and 21.6%. In some cases, the ratio between the
measurements mean and the nominal thickness is larger than 2 suggesting an increase
of the nominal value during resurfacing;

Distribution parameters of materials strength based on Swiss measurement are
generally in line with values specified in Section 1. However, the CoV and bias factor
of concrete strength for the analysed data are larger than data found in international
literature. This over-strength is probably to be attributed to an increase in cement
content to meet durability and workability criteria by producers;

The variability of the traffic load for the weekly-maxima events is found between 10 and
18%. Extrapolation of 50-year maxima distributions depends significantly on the tail
fitting accuracy of the starting distribution. Considering log-normal and Gumbel
distributions for the tail fitting leads to CoV of the traffic load variability between 6 and
10%;

According to the parametric reliability analyses, the required value of ys1 for self-weight
to reach the target value of the reliability index Bigts0y = 3.8 lies between 1.1 and 1.2
while ya2 for other permanent actions is between 1.3 and 1.8 in case the nominal
pavement thickness is considered as reference value. Reliability analyses performed
on selected case studies including various failure modes confirm that ye1 = 1.2 and ya2
= 1.5 lead in general to sufficiently safe results for the design of new and the
assessment of existing structures. With respect to the reference value of the pavement
thickness, an increase of 20% of the nominal value as recommended in Eurocode 1 is
justified;

Structural system changes during construction and significant differences between
modelling of complex structures and actual behaviour are not accounted for in the
partial safety factors on the load side described above. If relevant for the structural
system, depending on its complexity and particularly in case of governing brittle failure
modes, if the behaviour cannot be improved with sound detailing during the design
process, the structure should be modelled in a reasonably conservative manner and
the results interpreted accordingly.
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Based on the investigations described in this report, the following partial factors for
persistent and transient design situations are proposed for a target value of the reliability
index ﬁtgp,5o =3.8 (CC2).

e For reinforcing steel:

e If the verification is conducted with nominal values of the geometrical dimensions,
the value ys = 1.15 is confirmed

e If the verification is conducted on the basis of design values of the effective depth
dy = dnom— 15 mm, the partial factor for reinforcement may be reduced to ys = 1.05.

e For concrete:

e The value yc = 1.50 is confirmed.

e For structural steel:

e The value ym; = 1.05 is confirmed.

e For shear in slabs without shear reinforcement and for punching according to EN 1992-
1-1:2023:

e If the verification is conducted with nominal values of the geometrical dimensions,
the value yv = 1.40;

e If the verification is conducted on the basis of design values of the effective depth
dy = dnom — 15 mm, the partial factor for shear and punching may be reduced to yv
=1.30.

e The partial factor ysqs covering the model uncertainties in the action effect calculation
lies between 1.05 and 1.15 depending on the other uncertainties. This factor is implicitly
accounted for in the partial factors ye and yq . Alternatively, ye and yq can be calibrated
assuming following statistical values of the model uncertainty: bias factor u = 1.0 and
CoV =6.5-8%. It has to be noted that these factors and statistical values do not account
for potential uncertainties related to the modelling of complex structures and/or the
influence of system changes in the case of structures with limited deformation capacity
and limited possibility to redistribute internal forces at ultimate limit state.

e For the permanent actions:

e Since the uncertainties of the self-weight of the structural elements and the non-
structural elements are different, it is recommended to use two separate partial
factors, namely ygs for structural and yg2 for non-structural elements.

e The default value of the factor for the structural self-weight is ygr = 1.35 as in
current SIA 260. ys1 may be reduced to 1.20 in case the modelling of the structure
is conducted by the designer in a sufficiently reliable manner (sufficient experience
with respect to the type of structure / software used / influence of the modelling of
the structure on the results based on similar calculations on similar structures) and
if the influence of changes in the system during construction is accounted for in a
sufficiently reliable manner (method used / material parameters assumed /
experience of the designer with respect to the influence of the assumptions on the
results). The same reduction is allowed also in the case of statically determinate
structures.

e The partial factor for the self-weight of non-structural elements yg2 = 1.50 is
proposed. For the pavement of road bridges, in addition to yg2 = 1.50, the nominal
thickness should be increased by 20% in accordance with EN 1991-2:2023 [138].

e For the variable actions:

e The design values are derived on the basis of reliability analyses (out of the scope
of the present research since the calibration of traffic loads, including their design
values, are currently investigated in other research projects [170, 171]). The
characteristic values can be determined by dividing the design value by a nominal
partial factor yq = 1.50.

e The above partial factors are valid for the design of new structures and for the

assessment of existing structures where the related variables have not been assessed
by direct measurements.
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e For the assessment of existing structures, where the dimensions have been measured
on site and/or the material strengths have been assessed from tests on samples taken
from the existing structure, the partial factors may be adjusted using the procedure
described in this report and the statistical values derived from the measurements. As
a first step, the following partial factors may be assumed:

e For ys and yc¢, the values provided in Annex A (Adjustment of partial factors for
materials) of EN 1992-1-1:2023 may be used,;

e For the structural self-weight, the values of yss described above should be used;

e For the other permanent actions, ys2 = 1.20 may be used the dimensions are
measured on the existing structure.
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Applicable range of the combination of partial factors yc and ys.........ccccccvrrrrnneen 139
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The aim of this appendix is to give a simple illustration of the applicable condition for the
combination of the two basic partial factors, yc and ys.

As is pointed out in Subsection 1.3, for the cases where the sum of the exponents ny and
ny is significantly lower than 1, the partial factors applied to material strength variables are
not suitable anymore. Due to this reason, in the following, only the resistance models with
the sum of n« and ny, is equal to or close to 1 is considered (ng + ny=1). For this type of
cases, the applicable range depends on the variability of the basic uncertainties involved,
as well as the shape of the resistance function.

The typical resistance models for the design of RC structures analysed in Subsection 1.3
will be used as references to help explain the applicability of yc and ys.

In terms of the shape of the resistance functions, the models analysed in Subsection 1.3
can be categorized into three types, namely:

* Type I: the axial compression and tension force resistance model neglecting second
order effect and confinement reinforcement (Fig. 1a-b of Subsection 1.3.1):

R=Cy (f, A" (frws A" = Cor (f, - A" ([ D)™

For this type of resistance models, the contribution from longitudinal reinforcement
depends on the yield strength f, and the reinforcement area As, while the contribution
from concrete depends on the compressive strength f; s and the cross-section area A
(A4, =b*for square cross-section). Due to this reason, f, and As share the same
exponent » . Similarly, f; . and Acshare the same component 7 , .

* Type II: the bending resistance for a suitably reinforced beam (Fig. 1c of Subsection
1.3.1):

Iy A Sewis b-d e

R=f A -d(l-————)=C,-f, ‘A -d-
fv ’ ( 2.-f;,ais.b'd) ’ f; ' ( -f;"As

=C, (ﬁ A, ,d)n/'y .(j;’m bdz)"/°

For the bending resistance model, in addition to f, and As the contribution from
longitudinal reinforcement also depends on its effective depth d (which influences the
lever arm between the tension and compression chord); similarly, in addition to £ ais, the
contribution from concrete depends on the width of the cross-section b and the effective
depth d. It should be noted that since the effective depth d has an exponent two in the
part of the equation representing the contribution of concrete strength.

e Type lll: the shear resistance of a beam with shear reinforcement analysed with the
closed-form model (clause 8.2.3 of EN 1992-1-1:2023) [14](Fig. 1d of Subsection 1.3.1):

R=Cy(f, A, /s:d)" (fou b-d)"

For the shear resistance model, the contribution of the shear reinforcement depends on
its cross-section area Asw and spacing s, and also on the effective depth d of the
longitudinal reinforcement. On the other hand, the contribution of concrete depends on
the width of the cross section b and the effective depth d. Due to this reason, the
geometrical variables Asy and s has the same exponent as f,, and b has the same
exponent as f; gis.
These three generalized types can be considered as the typical forms for the resistance
models for reinforced concrete structures. For example, the eccentric axial load resistance
model can be considered as a combination of the axial force resistance (Type |) and the
bending resistance model (Type Il). It is thus useful to use these three general types to
discuss the problem of the applicable range of the combination of the two basic partial
factors.
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When yc and ys are applied, the achieved reliability level for a given resistance model can
be calculated by rearranging formulae (Egs. 8-10 of Subsection 1.3.3). The result is:

G ) 1
p= (1
Ve * @
% _\/ 2 2 2 22 22 22 22 (2)
RM z nv, = \/z nj,gw Jj.geo + nfc fe + nfc nis + nfy m + )
Rm n, 7} oo ng. ny ng,
oo === LT =TT w1 - g (3)

nom

Where njgeo, Vigeo and pjgeo refers to the exponent sensitivity factor, the CoV and the bias
factor for the j*" geometrical variable; ¥, and u, refers to the CoV and bias factor for the
model uncertainty (all basic uncertainties are assumed to follow lognormal distribution).

It can be observed that for the three generalized types of resistance models, the
contribution of geometrical and material uncertainties to the variability of the resistance
model depends on the exponent partition between ny and nr. Similarly, the effect of the
partial factors y. and y,also depends on the values of these two exponents. For a given
resistance model belonging to the three generalized types, when the range of ns (or

equivalently of nr) is known, the applicability of the partial factors y. and y; depends on
its model uncertainty.

(a) Model Type 1 (e.g. axial force resistance  (b) Model Type Il (e.g. bending resistance (¢) Model Type 1II (e.g. shear resistance

neglecting second order effet) for a suitably reinforced beam) for beam with shear reinforcement)
ny, n, n,
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Fig. 1 Envelop of the allowable CoV for model uncertainty for different types of models to
achieve the target reliability with the combination of y. and y, for (a) Model Type I;
(b)Model Type Il and (c) Model Ill (solid parts of the curves and the solid markers represent
the ranges of ng, and ns. that correspond to the cases analysed in Subsection 1.3, see Fig. 1
of Subsection 1.3.1).
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When the probabilistic modelling of the geometrical and material variables introduced in
Subsection 1.4-1.7 are assumed, the allowable model uncertainty to achieve exactly the
target reliability (4, ) for the three generalized types of resistance models can be
calculated. Assuming dmom = 200 mm, the allowable CoV of the model uncertainty for
different levels of u, (bias in the model uncertainty) is plotted in Fig. 1 of this appendix. The
CoV of model uncertainty of the axial compression resistance model (7,.) and the bending
resistance model (¥, ) are also plotted in Fig. 1a-b of this appendix respectively. It can be
observed that:

* Due to the different contributions of geometrical uncertainties, the allowable model
uncertainties differ significantly for the three types of resistance models;

* For the axial compression resistance model and the bending resistance model, it is
confirmed that the combination of y¢c and ys will yield conservative design results for the
analysed cases since their model uncertainties are lower than the allowable levels.

This simple analysis shows that the combination of y¢c and ys can potentially be applied to
a variety of different resistance models for RC structures when the distribution parameters
of the model uncertainty fall within the applicable range. When the resistance model takes
a more complex form that cannot be categorised to the three generalized model types, the
applicability of yc and ys can be tested by calculating the achieved reliability level with
Egs. 1-3 of this appendix based on a proper exponent analysis covering the application
range of the resistance model.
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Notation for Section 1

aq The design value of a geometrical property
@nom The nominal value of a geometrical property
ap The maximum distances from the centroid of the control perimeter to the point where the

bending moment in the slab is zero

as The ratio of cross section area over spacing of flexural reinforcement in flat slab

b The width of the cross section

bos The control perimeter for punching shear resistance model

by Geometric mean of the minimum and maximum overall widths of the control perimeter

d The effective depth of the cross section

dy Design value of the effective depth of the cross section

dag The size parameter describing the failure zone roughness

dm Mean value of the effective depth

mes Measured value of the effective depth

Anom Nominal value of the effective depth

dv The shear-resisting effective depth

fe Concrete compressive strength

fo.ais Actual uniaxial in-situ concrete compressive strength in the structure

feep Concrete compressive strength of the control specimens (cylinders)

fe,cube Concrete compressive strength of the control specimens (cubes)

fois Compressive strength of a core taken at a test location within a structural element or
precast concrete component expressed in terms of the strength of a 2:1 core of diameter
>75mm

fox Characteristic concrete compressive strength

fois Characteristic concrete in-situ strength

fe,spec Specified product uniaxial concrete compressive strength

fi The i basic variable in the resistance function

fo Tensile strength of prestressing steel

foo.1 The 0.1% proof-stress of prestressing steel

fs Stress at ultimate limit state of reinforcement defined by Robert Maillart

fi Tensile strength of reinforcement

f, Yield strength of steel reinforcement

fya Design value for steel yield strength

fi Characteristic value for steel yield strength

Ty spec Specified characteristic value for steel yield strength in product grading

fym Mean value of steel yield strength

ki Factor accounting for the effect of the speed of loading for concrete specimen
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h The height of the cross section

n; The exponent sensitivity factor for the i basic variable in the resistance function

Ne The exponent sensitivity factor for £,

Ny, The exponent sensitivity factor for f,

s The spacing of shear reinforcement

As Cross section area of concrete

As Cross section area of flexural reinforcement

Asw Cross section area of shear reinforcement

Co the residual constant coefficient in the power-multiplicative form approximation of the
resistance function

Eq4 Design action effect

E;, Strain hardening modulus

Feq The design values of actions used in the assessment of Ey4

Mgy Design flexural resistance of cross section

Mg exp The flexural resistance measured in laboratory tests

Mg caic The calculated flexural resistance

Nrexp The resistance of short columns measured in laboratory tests

NR caic The calculated resistance of short columns

Ps Probability of failure

Ry Design resistance

Rm The mean value of the resistance variable

Rnom The nominal value of the resistance variable

Xi The characteristic value of a material or product property

Vi The CoV of the i basic variable in the resistance function

Vg The CoV of the resistance variable

VRexp The punching shear reistance measured in laboratory tests

VR calc The calculated punching shear resistance of slab-column connections

Vrm The CoV of the resistance accounting for the influence of material, geometrical and model
uncertainties

VNis_iocation The CoV of of the variability of n;s within a structural member

Qg The First Order Reliability Method (FORM) sensitivity factor for action effect

ar The FORM sensitivity factor for resistance

ag The FORM sensitivity factor for the " variable in the resistance model

B Reliability index

Be A coefficient accounting for the concentrations of the shear forces along the control
section of punching shear

Brgt Target reliability index

o Standard deviation of a random variable

On(r) Standard deviation of the logarithm of the resistance variable

e Partial factor for concrete compressive strength
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s Partial factor for steel yield strength

w Partial factor for the punching shear resistance model without shear reinforcement
VRd Partial factor associated with the uncertainty of the resistance model

Yim Partial factor for a material property

m Partial factor for a material property in the “material factor approach”

R Partial factor for the resistance variable in the “resistance approach”

s Strain of reinforcement steel

& Ultimate strain of reinforcement steel

Euk Characteristic ultimate strain of reinforcement steel

Oc Model uncertainty variable accounted for in the calibration of ¢

Os Model uncertainty variable accounted for in the calibration of ys

n The conversion factor for a material

Neore-actual The coefficient representing the difference between f, s and £ s

Nis The in-situ factor for concrete strength

Wi The bias factor for the /" basic variable

Urm The bias factor of the resistance represented by the ratio between its mean value and its

nominal value

o Longitudinal reinforcement ratio

] Strength reduction factor in ACI 318-19

X Vector of basic variables in structural resistance model
Aa The deviation in the geometrical property a

Notation for Section 2 and 3

RC Reinforced Concrete

PSF Partial Safety Factor

CoV Coefficient of Variation

LE Linear Elastic

LEU Linear Elastic Uncracked

LEFC Linear Elastic Fully-Cracked

NL Non Linear

4L Quadri Linear with plastic plateau

4L-LIM Quadri Linear Limited deformation capacity

4L-REQ Quadri Linear with plastic plateau and ductility requirements
3L Tri-Linear

F Force

(] Displacement

oy Displacement at maximum load predicted with a linear elastic uncracked model
Or Displacement at 90% of the F & post-peak branch

May 2025 145



1782 | Recalibration of partial safety factor for actions ad resistances in bridges

R Load-bearing capacity

Rexo Experimental load-bearing capacity

Rmod Theoretical predicted load-bearing capacity
M Bending moment

M, Cracking bending moment

Mg Resisting bending moment

X Curvature

Xr Curvature at the cracking bending moment
XR Curvature at the resisting bending moment
Oar Global random variable

O Local random variable

Eexp Experimental action effect

Enmod Theoretical predicted action effect

Ie Column height

A Geometrical slenderness of a column (height / width)
Ip Beam span

b Width of the section

be Square column section width

d Effective depth of a cross section

c Concrete cover

X Neutral axis depth

Xe Center of gravity of the concrete section

o] Bottom longitudinal reinforcement ratio

o) Top longitudinal reinforcement ratio

Pw Shear reinforcement ratio

fe Concrete compressive strength (uniaxial)
fot Concrete tensile strength

fy Steel yielding strength

E. Concrete elastic modulus

Es Steel elastic modulus

n E./E;

El Flexural stiffness

Axrs Decrease of curvature due to tension stiffening
q Distributed load

Q Concentrated force

QeL Elastic over-design ratio

VF Partial factor for actions including model uncertainties [7]
1% Partial factor for action values [7]
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Yo Partial factor for permanent actions including model uncertainties [2]
Yo Partial factor for representative values of permanent actions [2]

Ya Partial factor for variable actions including model uncertainties [2]

Yq Partial factor for representative values of variable actions [2]

Ysd Partial factor covering uncertainty in action effects (model uncertainty)
Ym Partial factor for the material including model and geometrical uncertainties
Ym Partial factor for material properties

YRd Partial factor covering uncertainty in the resistance model

Frep Representative value of action variables

Xk Characteristic value of material strength

@nom Nominal value of geometrical variables

Eq4 Design value of actions

R4 Design value of resistance

o Standard deviation

a Sensitivity factor

Notation for Section 4

RC Weight In Motion

WIM Partial Safety Factor

FORM First Order Reliability Method
MCIS Monte-Carlo Importance-Sampling
IID Independent-ldentically-Distributed
CDF Cumulative Distribution Function
PDF Probability Density Function

GEV Gumbel Extreme Values

LN Log-Normal

CoV Coefficient of Variation

GPR Ground Penetrating Radar Measurements
PSF Partial Safety Factor

PSFF Partial Safety Factor Format

B Reliability index

fe Concrete strength

fy Steel yield strength

fo Characteristic value of the tensile strength of prestressing steel
Os Sectional reinforcement ratio

Ac Concrete area

heq Equivalent depth of concrete deck
w Width of concrete element
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G Permanent load

Gy Structural self-weight

G, Non-structural self-weight

Q Live load

6 Model uncertainty in action effect calculation
Vol Volume

a Sensitivity factor

Aact Actualisation factors for the traffic load model
v Coefficient of Variation of the resistance

u Bias factor
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Résumé des résultats du projet :

Despite advancements in standard probability modeling, the specific uncertainties each partial factor covers remain debated and are
not clearly defined in codes. As siatistical data evolves, partial safety factors must be updated to maintain appropriate safety levels,
preventing either insufficient safety or excessive costs. This project dlarifies the uncertainties each pariial factor addresses and
updates them based on new statistical data, focusing on road bridges and assessing variabilities in both resistance and action
factors. While the semi-probabilistic approach and the comresponding Partial Safety Facior Format (PSFF) is mostly used,
comparison with full probabilistic reliability calculation using Monte Carlo method is made. A database of selected WIM is validated
and used for the extrapolation of action effects of 50-year maxima distribution of traffic load. It is found to depend significantly on the
tail fitting accuracy, the best compromise and stable results being obtained using weekly maxima evenis.

Regarding materials and resistance, new statistical data were collected, analyzed and used to re-evaluate the material partial safety
factors for concrete and steel (reinforcement, prestressing strands and structural), as well as the resistance faciors. A focus is made
on the uncertainties in reinforced concrete resistance and comesponding partial safety factors were evaluated using new stafistical
data and exponent sensitivity analysis. It confirms the suitability of a material factor approach for a wide range of typical resistance
models (axial tension and compression, bending, shear in the presence of sufficient shear reinforcement), while a resistance factor
approach is found more adequate for specific models like shear without reinforcement and punching shear. For typical resistance
maodels, it confirmed the current partial safety factors for steel yield strength and for concrete compressive strength. Also for
steel-concrete structures, the partial safety factors cumently used in the standards are generally confirmed. For both new structures
design and assessment of existing structures (depending on the available information), the information and calculation procedure
needed for possible adjustments of the partial factors is given. The most lllustrative is the positive effect of using design effective
depth of slabs for specific models to achieve a more constant safety level and reduce the resistance model partial factor. For
assessment, the partial factors that may be assumed in an initial analysis are given as well.

Regarding model uncertainties in calculating (in statically indeterminate systems) action effects and load-bearing capacity of
structures, a sufficient amount of data is required to perform stafistical analyses. To achieve this, the experimental response of
statically indeterminate systems is obtained by adopting a simple and effective technigue which allows using experimental resuits
available in literature. A large database of reinforced concrete and steel-concrete component experiments, validated, is created and
now available. The analyses are performed considering various mechanical models and failure modes. memmmme
simple linear models with uncracked sectional stiffness lead to higher uncertainty in load-bearing capacity calculations, they offer
similar safety margins as more refined models (i.e. non-linear). The study also shows section deformation capacity (linked to failure
mode) influences model uncertainties; the over-design ratio of the members does as well. The partial factor covering the model
uncertainties in the action effects calculation lies within 1.05 - 1.15 depending on the other uncertainties. It is implicitly accounted for
in the permanent and variable action effects partial factors, while the influence of the failure mode type for specific cases is covered
by the relevant partial resistance factors.

Regarding the recalibration of partial safety facitors for permanent loads, it is found that structural self weight variability in bridges is
mainly caused by geomefrical, reinforcement content and concrete specific weight varability. As for the other permanent loads, a
focus is put on the thickness and weight distribution of pavement. With respect to the default value of 1.35, the study show that the
partial safety factor for the self-weight of reinforced concrete may be reduced under some conditions (modeilling by experienced
engineer, or of statically determined structures), but must be increased for self-weight of non-structural elements.
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Atteinte des objectifs :

The research objectives of the project were attained. At the end of the report, based on the investigations carmied out and
for a target value of the reliability index of 3.8 (CC2) for a 50 years reference period, a summary of the proposed partial
factors for persistent and transient design situations as well as for resistances is given. Since the report provides the
detailed background, the basis for recalibrating partial safety factors, as well as the information (databases, typical
CoV's,. etc.), the procedures followed in this work can be reused for different resistance models, for different required
targe! reliability indexes, for dimensioning of new as well as assessment of existing structures, etc. Regarding new
structures, most of the results of this work have been implemented in the second generation of the European standard
for the design of concrete structures (Eurocode 2 of 2023) and its background document. Most of the results have been
already published in international scientific journals as well. The study on statically indeterminate systems model
uncertainties in calculating action effects and load-bearing capacity of structures is unique.

Among the topics that could nol be addressed within this project, it should be mentioned that structural system changes
during construction and significant differences between modelling of complex structures and actual behaviour are not
accounted for in the partial safety factors given (more relevant for brittle failure modes). Also, for steel-concrete bridges,
further differentiation with respect to the section classification was not addressed.

Déductions et recommandations :

Since most of the results have been implemented in Eurccode 2 of 2023 (2nd generation), this work will serve as a reference for the
next revision of structural code for concrete, and as well for the one dealing with steel-concrete structures.

The partial safety factors for strength cumently in the codes can be used, though specific design adjustments can oplimize safety.
The model uncertainties in statically indeterminate structures are implicitly accounted for in the permanent and variables aclion
effects partial factors, while the influence of the fallure mode type for specific cases is covered by the relevant resistance partial
factors. For both reinforced concrete and steel-concrete structures, when using models based on limit analysis, it is recommended
to either set limits on the deformation capacity, or verify that ductility requirements are fuifilled. For permanent loads, uniike current
practice, one should differentiate the partial safety factor for structural self-weight from those for non-structural seff-weights; while
the first can be lowered to 1.2, the others should be increased up to 1.5 to ensure sufficient safety for both new designs and existing
structures.

For reinforced concrete bridges, additional uncertainties, which depend on the complexity of the , the construction method,
the tools used and the experience of the designer deserve to be investigated more in detail. All the same for steel-concrete bridges,
further differentiation with respect to the section classification would need to be analyzed by performing a large parametric study.

If relevant for the structural system, depending on its complexity and particularly in case of governing brittle faillure mades, i the
behaviour cannot be improved with sound detailing during the design process, the structure should be modelled in a reasonably
conservative manner and the resulis interpreted accordingly.
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Evaluation :

The accompanying committee assesses the research project, the data and conclusions it
contains as very positive. The report makes a significant contribution to understanding the
sources of uncertainties, the statistical distribution of random variables, the coefficient of
variation and the bias factor, which are used to determine partial safety factors in current
codes and in typical verifications of structural safety made in engineering offices. For the first
time, the value of model uncertainties in the calculation of internal forces and load-bearing
capacity in statically indeterminate concrete and steel-concrete composite structures is also
analysed in detail.

Mise en oeuvre :

The report provides a detailed background for the partial safety factors used in the structural
codes and thus contributes to a better understanding of the uncertainties in modelling, the
calculation of internal forces and the ultimate limit state design. This is particularly relevant for
all those involved in the assessment of existing structures.

Besoin supplémentaire en matiére de recherche:

The influence of system changes during the construction of a structure or the structural
modelling of complex structures on the model uncertainties was not investigated in this work
and should be further clarified.

Influence sur les normes :

The partial salety factors currently used in the codes are generally confimmed. However, the report makes several dations for a ibde ad of the
pastial safety faclors if a design walue of the static haight of concrele componants is taken into account ;& quality control is improved and i measured values of
i o lens and < gth In existing components are avallable. The report also provides the basis for recalibraing parfial safety factors 2s a funclion of the
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