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Zusammenfassung 

Nach der Methode der Teilsicherheitsbeiwerte, die Mitte des letzten Jahrhunderts in die 
Bemessungsregeln für Betonbauwerke eingeführt wurde, wird die Tragsicherheit durch die 
Durchführung von Grenzzustandsnachweisen unter Verwendung von Bemessungswerten 
gewährleistet, die mit Teilsicherheitsbeiwerten berechnet werden. In den letzten Jahren 
wurden Anstrengungen unternommen, um einen Standardrahmen für die 
Wahrscheinlichkeitsmodellierung zu schaffen. Die Quellen der Unsicherheiten, die von den 
einzelnen Teilsicherheitsbeiwerten abgedeckt werden, sind jedoch immer noch 
Gegenstand von Diskussionen in der wissenschaftlichen Gemeinschaft, da sie in den 
Regelwerken und den zugehörigen Hintergrunddokumenten nicht klar definiert sind. 
Darüber hinaus werden die statistischen Verteilungen der grundlegenden Zufallsvariablen 
nach dem besten Kenntnisstand zu einem bestimmten Zeitpunkt angenommen. Wenn sich 
das Wissen weiterentwickelt, der technologische Fortschritt voranschreitet und mehr Daten 
zur Verfügung stehen, sollten diese statistischen Daten aktualisiert werden und entweder 
zu einer Bestätigung oder zu einer Aktualisierung der Teilsicherheitsbeiwerte führen. Die 
Tatsache, dass einige der Teilsicherheitsbeiwerte keine solide wissenschaftliche 
Grundlage haben, könnte zu unzureichenden Sicherheitsniveaus in verschiedenen 
Szenarien (Art der Tragwerke, Versagensarten, Materialien usw.) oder in einigen Fällen 
auch zu übermässig teuren Tragwerken führen. Darüber hinaus ist eine angemessene 
Kenntnis der grundlegenden Zufallsvariablen, die von jedem Teilsicherheitsbeiwert 
abgedeckt werden, von grundlegender Bedeutung für eine bessere Entscheidungsfindung 
im Umgang mit bestehenden Tragwerken. Um sichere und wirtschaftlichere Bauwerke zu 
bemessen, besteht das Ziel dieses Berichts darin, die wichtigsten Ungewissheiten zu 
klären, die von jedem Teilsicherheitsbeiwert abgedeckt werden, und die 
Teilsicherheitsbeiwerte bei Bedarf auf der Grundlage aktualisierter statistischer 
Verteilungen zu aktualisieren. Zu diesem Zweck ist anzumerken, dass es im Rahmen des 
Partial Safety Factor (PSF) Formats nicht korrekt ist, sich auf einen einzelnen PSF zu 
beziehen; stattdessen muss man konsequent einen Satz von PSF betrachten. Tatsächlich 
muss zusätzlich zur Variabilität jeder Zufallsvariablen das Ausmass, in dem diese Grössen 
zur Grenzzustandsfunktion beitragen, die den sicheren Tragwerksbereich vom unsicheren 
trennt, berücksichtigt werden. Bei der Methode der Zuverlässigkeitsanalyse erster Ordnung 
(FORM), wird dieser Beitrag beispielsweise durch die Sensitivitätsfaktoren dargestellt, die 
die partielle Ableitung der Grenzzustandsfunktion nach der untersuchten Variablen 
darstellen. In diesem Rahmen und da sich dieser Bericht hauptsächlich auf 
Strassenbrücken konzentriert, werden Anstrengungen unternommen, um die 
Unsicherheiten sowohl auf der Widerstands- als auch auf der Einwirkungsseite zu 
quantifizieren. Neben dem Eigengewicht der Tragkonstruktion werden auch die 
Variabilitäten der Verkehrslast und des Belagsgewichts untersucht. 

Teilsicherheitsbeiwerte für Betontragwerke 

Es werden verschiedene Unsicherheitsquellen untersucht, die den Widerstand von 
Stahlbetonbauteilen und die entsprechenden Teilsicherheitsbeiwerte beeinflussen. Zu 
diesem Zweck werden neue statistische Daten gesammelt und ausgewertet. Für die 
Bewertung der Teilsicherheitsbeiwerte wird der einfache, aber rigorose Ansatz der 
Empfindlichkeitsexponentenanalyse verwendet. Dieser Ansatz entspricht insbesondere 
der Durchführung einer Taylor-Erweiterung erster Ordnung der Widerstandsfunktion im 
logarithmischen Raum der grundlegenden Zufallsvariablen, die den Widerstand 
beeinflussen. Der Empfindlichkeitsexponent stellt die lokale partielle Ableitung des 
logarithmischen Widerstands in Bezug auf jede Variable dar (unter der Annahme 
einer -Lognormalverteilung). Einer der Vorteile dieser Berechnungsmethode besteht darin, 
dass die Empfindlichkeitsexponenten einheitenlos sind und direkt mit der Unsicherheit 
durch den Einfluss einer bestimmten Basisvariablen auf das Widerstandsmodell verknüpft 
werden können. Darüber hinaus kann die Gründlichkeit der 
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Empfindlichkeitsexponentenanalyse unter Berücksichtigung der Einheiten der einzelnen 
Widerstandsvariablen leicht überprüft werden. 

Um die Teilsicherheitsbeiwerte auf der Widerstandsseite zu kalibrieren, ohne die 
Variabilität auf der Einwirkungsseite zu berücksichtigen, besteht eine übliche Annahme 
darin, jede Komponente separat zu betrachten, indem ein fester Empfindlichkeitsfaktor der 
Zuverlässigkeitsmethode erster Ordnung (FORM) für die Widerstands- (R) und die 
Einwirkungsseite (E) angenommen wird. In diesem Fall werden die 
Empfindlichkeitsfaktoren mit αE = -0,7 und αR = 0,8 angenommen. Diese Werte sind in 
EN 1990:2023 und dem fib Model Code 2010 angegeben und sind im Allgemeinen 
konservativ und berücksichtigen eine grosse Anzahl von Szenarien. 

Auf der Grundlage der obigen Annahme wird der Ansatz der 
Empfindlichkeitsexponentenanalyse für fünf gängige Widerstandsmodelle für 
Betontragwerke verwendet (Zugnormalkraft, Drucknormalkraft, Biegung, Querkraft mit 
Querkraftbewehrung, Durchstanzen). Die Ergebnisse zeigen, dass die Exponenten, die 
den verschiedenen geometrischen und Material Parametern zugeordnet sind, von einem 
Fall zum anderen variieren, was darauf hinweist, dass die massgeblichen Unsicherheiten 
entsprechend variieren. Die Ergebnisse dieser Analysen zeigen, dass der Ansatz der 
Materialbeiwerte (γS und γC) auf eine breite Palette typischer Widerstandsmodelle 
angewandt werden kann (Zug- und Drucknormalkraft, Biegung, Querkraft bei 
Vorhandensein einer ausreichenden Querkraftbewehrung; bei denen das Material und die 
geometrischen Unsicherheiten massgebend sind), während der Ansatz des 
Widerstandsbeiwerts (γV ) für andere spezifische Widerstandsmodelle (Querkraft ohne 
Querkraftbewehrung und Durchstanzen; bei denen die geometrischen und die 
Modellunsicherheiten massgebend sind) besser geeignet ist. 

Das Modell für den Biegewiderstand von Stahlbetonträgern wird als Referenz für die 
Kalibrierung des Teilfaktors für die Streckgrenze der Stahlbewehrung verwendet. Für die 
Kalibrierung des Teilfaktors für die Betondruckfestigkeit wird das Modell für den Widerstand 
von Stützen mit reiner Drucknormalkraft verwendet. Beide Widerstandsmodelle werden in 
der Praxis häufig verwendet und stellen Fälle dar, bei denen die 
Materialfestigkeitsvariablen einen dominierenden Einfluss haben und relativ hohe 
Modellunsicherheiten aufweisen. 

Für die Stahlstreckgrenze wird der Teilsicherheitsbeiwert γS = 1,15 bestätigt, der die 
Material-, Modell- und Geometrieunsicherheiten abdeckt. Dieser Ansatz kann jedoch zu 
unsicheren Nachweisen für Platten mit einer statischen Höhe von weniger als 200 mm 
führen und für höhere Bauteile zu konservativ sein. Es wird gezeigt, dass ein konstantes 
Sicherheitsniveau und eine wirtschaftlichere Bemessung erreicht werden können, wenn 
Bemessungswerte für die statische Höhe (zur expliziten Abdeckung der geometrischen 
Unsicherheit) zusammen mit einem reduzierten Teilfaktor γS angenommen werden. 

Auch für die Betondruckfestigkeit wird der aktuelle Teilsicherheitsbeiwert γC = 1,50 
bestätigt. Dieser Wert beinhaltet nicht nur die Material-, Geometrie- und 
Modellunsicherheiten, sondern auch solche, die sich auf die Herstellung, den Transport, 
das Giessen und die Nachbehandlung von Beton beziehen. 

Trotz der Tatsache, dass die aktuellen Werte von γS und γC bestätigt werden, bietet die 
durchgeführte Forschung neben der Möglichkeit, die Teilfaktoren zu reduzieren, wenn der 
Bemessungswert der statischen Höhe verwendet wird, auch nützliche Informationen für 
mehrere praktische Fälle: 

 Für die Anpassung von Teilsicherheitsbeiwerten für (i) eine verbesserte 
Qualitätskontrolle und (ii) falls Messwerte von Abmessungen und die 
Betondruckfestigkeit fck nach EN 13791 zur Beurteilung von bestehenden Bauwerken 
zur Verfügung stehen. 

 Klärung des Unterschieds zwischen der Betonfestigkeit von Prüfkörpern und der 
Betonfestigkeit in situ. 
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 Berechnung von γC und γS für verschiedene Werte des Ziel-Zuverlässigkeitsindex 
(anders als 3,8). 

 Für die Kalibrierung des Sicherheitsformats verfeinerter nichtlinearer Finite-Elemente-
Analysen ist es wichtig, dass bei diesen Ansätzen sämtliche Material- und 
Geometrieunsicherheiten ebenso konsistent behandelt werden wie bei der 
Verwendung konventioneller Modelle. Zu diesem Zweck werden die statistischen 
Daten (Variationskoeffizient und Bias-Faktor) für Material- und Geometriewerte 
dargelegt, die zur Begründung der Beiwerten γC = 1,50 und γS = 1,15 angenommen 
wurden. 

Für den Teilwiderstandsbeiwert γV für den Durchstanzwiderstand und den 
Querkraftwiderstand von Elementen ohne Querkraftbewehrung wird, wenn die 
geometrischen Unsicherheiten durch den Teilsicherheitsbeiwert abgedeckt werden, 
γV = 1,40 vorgeschlagen. Es wird jedoch festgestellt, dass ein konstanter Wert von 
γV = 1,40 zu einer unsicheren Bemessung von Platten mit einer statischen Höhe von 
weniger als 200 mm führen kann und für dickere Platten zu konservativ sein kann. 
Schliesslich wird gezeigt, dass ein konstanteres Sicherheitsniveau erreicht wird, wenn der 
Bemessungswert der statischen Höhe mit einem niedrigeren Wert des Teilfaktors γV 
kombiniert wird.  

Die meisten Ergebnisse dieser Arbeit wurden in der zweiten Generation der europäischen 
Norm für die Bemessung von Betonbauwerken (Eurocode 2 von 2023) und dem 
zugehörigen Hintergrunddokument umgesetzt, so dass sie implizit in die zukünftigen 
Versionen der Schweizer Norm für Betonbauwerke übernommen werden. 

Modellunsicherheiten bei der Schnittkraft- und 
Tragfähigkeitsberechnung in statisch unbestimmten 
Tragwerken 

Diese Arbeit konzentriert sich auf die Unsicherheiten bei der Berechnung der Schnittkräfte 
und der Tragfähigkeit von Stahlbeton- und Verbundkonstruktionen (Stahl-Beton). Für die 
Bemessung und Beurteilung von Tragwerken ist es üblich, die Schnittkräfte mit den 
Querschnittswiderständen zu vergleichen. Während die Modellunsicherheiten auf der 
Widerstandsseite wie oben beschrieben umfassend untersucht wurden, ist die 
Modellunsicherheit bei der Berechnung von Schnittkräften in statisch unbestimmten 
Tragwerken noch nicht ausreichend untersucht worden. Insbesondere wird die 
Modellunsicherheit bei Schnittkräfte- und Tragfähigkeitsberechnungen unter 
Berücksichtigung verschiedener mechanischer Modelle und Versagensarten untersucht. 
Um eine ausreichende Menge an Daten zu sammeln und statistische Analysen 
durchzuführen, wird das experimentelle Verhalten statisch unbestimmter Systeme mit einer 
einfachen und effektiven Technik ermittelt, die es ermöglicht, in der Literatur verfügbare 
experimentelle Ergebnisse zu verwenden. 

Im Vergleich zu verfeinerten Modellen führt ein linear-elastisches Modell mit ungerissener 
Querschnittssteifigkeit zu einem grösseren Variationskoeffizient (CoV) der 
Modellunsicherheit bei der Tragfähigkeitsberechnung; einem grösseren CoV entsprechen 
jedoch grössere Mittelwerte, was zu einer ähnlichen Schwanzverteilung und damit zu einer 
ähnlichen Sicherheitsmarge wie bei verfeinerten Ansätzen (d. h. nichtlinearen Modellen) 
führt. Bei linearen, elastischen, ungerissenen Modellen kann auch beobachtet werden, 
dass eine Überdimensionierung einer oder mehrerer Komponenten eines statisch 
unbestimmten Systems den CoV der Modellunsicherheit bei der Berechnung der 
Schnittkräfte beeinflusst. Bei verfeinerten Berechnungsmodellen ist bei der 
Tragfähigkeitsberechnung ein geringerer CoV der Modellunsicherheit zu beobachten, 
während dies bei der Berechnung der Schnittkräfte in Abhängigkeit vom 
Überbemessungsgrad der Teilelemente nicht immer der Fall ist. 
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Bei Stahlbetonelementen ohne Duktilitätsanforderungen, führt die Anwendung der 
Plastizitätstheorie (starr-plastische Betrachtung) zu einem sehr grossen CoV und potenziell 
unsicheren Ergebnissen. Die Begrenzung der Verformungskapazität oder der Nachweis, 
dass die Anforderungen an die Duktilität erfüllt sind, verringert den CoV erheblich. Die 
Versagensart beeinflusst die Modellunsicherheit bei der Tragfähigkeitsberechnung, nicht 
aber die Modellunsicherheit bei der Berechnung der Schnittkräfte. Ein grösserer CoV für 
die Tragfähigkeitsberechnung wird für spröde Systeme unabhängig vom 
Berechnungsmodell beobachtet. 

Bei Stahl-Beton-Verbundkonstruktionen ist die Modellunsicherheit bei der 
Tragfähigkeitsberechnung bei Verwendung eines linear elastischen Modells ähnlich wie 
bei Stahlbetonkonstruktionen. Auch die Querschnittsklasse, die mit dem Versagensmodus 
zusammenhängt, beeinflusst die Modellunsicherheit bei der Tragfähigkeitsberechnung 
unabhängig von der durchgeführten Analyse, wie bei Stahlbetonstrukturen beobachtet. 
Schliesslich wird eine Verringerung des CoV durch die Begrenzung der 
Verformungskapazität bei der Verwendung von plastischen Modellen beobachtet. 
Zusätzlich zum zusammengesetzten System aus zwei Trägern, werden diese Ergebnisse 
für Verbundkonstruktionen durch die Untersuchung eines kontinuierlichen Systems 
bestätigt, das aus den experimentellen Last-Verformungsbeziehungen der einfachen 
Balken zusammengesetzt wird. Insgesamt kann auf der Grundlage der Ergebnisse für 
zusammengesetzte Zweibalkensysteme davon ausgegangen werden, dass die 
Unsicherheiten bei der Berechnung der Tragfähigkeit und folglich der Schnittkräfte ähnlich 
sind wie bei Stahlbetonkonstruktionen. 

Anhand von parametrischen Analysen und untersuchten Fallstudien liegt der 
Teilsicherheitsbeiwert γSd, der die Unsicherheiten im Zusammenhang mit den 
Berechnungen der Schnittkräfte abdeckt und implizit in den Teilsicherheitsbeiwerten γG und 
γQ auf der Einwirkungsseite implementiert ist, zwischen 1,05 und 1,15. Es ist wichtig darauf 
hinzuweisen, dass der Beiwert γSd die Unsicherheiten im Zusammenhang mit 
Systemänderungen während des Baus oder der strukturellen Modellierung komplexer 
Tragwerke nicht berücksichtigt. Diese zusätzlichen Unsicherheiten sollten genauer 
untersucht werden und hängen wesentlich von der Komplexität der Tragkonstruktion, der 
Konstruktionsmethode, den verwendeten Werkzeugen und der Erfahrung des Ingenieurs 
ab. 

Rekalibrierung der Teilsicherheitsbeiwerte für ständige 
Lasten 

Die Kalibrierung des Teilsicherheitsbeiwerts wird im Allgemeinen durchgeführt, um ein 
annehmbares Sicherheitsniveau für ein breites Spektrum von Szenarien zu gewährleisten, 
und jeder Teilsicherheitsbeiwert deckt genau definierte Unsicherheiten ab, die mit der 
Variabilität einer oder mehrerer grundlegender Zufallsvariablen, wie Geometrie, 
Materialfestigkeiten und Nachweismodelle, zusammenhängen. Obwohl die statistischen 
Verteilungen der grundlegenden Zufallsvariablen nach bestem Wissen und Gewissen zu 
einem bestimmten Zeitpunkt angenommen werden, sollten diese Verteilungen mit 
zunehmendem Wissensstand, technologischem Fortschritt und mehr verfügbaren Daten 
aktualisiert werden, was zu einer Bestätigung oder Aktualisierung der 
Teilsicherheitsbeiwerte führt. Auf dieser Grundlage werden zur Aktualisierung der 
Teilsicherheitsbeiwerte für das strukturelle und nichtstrukturelle Eigengewicht die 
statistischen Verteilungen anhand von Daten aktualisiert, die auf dem Schweizer 
Strassennetz gesammelt und von Institutionen und privaten Unternehmen zur Verfügung 
gestellt wurden. Auch die Variabilität der Verkehrslasten wird auf der Grundlage von 
Messungen des Gewichts in Bewegung (WIM) quantifiziert, die während mehr als 20 
Jahren an mehreren Standorten (~15 Stationen) in der Schweiz durchgeführt wurden. Auf 
der Grundlage der aktualisierten statistischen Verteilungen werden parametrische 
Analysen durchgeführt, um die Empfindlichkeit der Teilsicherheitsbeiwerte zu untersuchen 
und ihren Wert zu schätzen. 
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Die Variabilität des Eigengewichts von Stahlbetonbauteilen wird im Allgemeinen durch 
geometrische und Raumgewichtsschwankungen verursacht. Durch die Verwendung von 
Toleranzen als Standardabweichung der geometrischen Parameter und der in der Literatur 
verfügbaren statistischen Verteilungen scheinen die geometrischen Schwankungen bei 
grossen Bauteilen weniger bedeutend zu sein. Der CoV für das strukturelle Eigengewicht 
von Stahlbetonbauteilen liegt im Allgemeinen zwischen 3 und 6%.  

Messungen an mehreren bestehenden Brücken im Schweizer Strassennetz zeigen, dass 
die Variabilität der Belagsdicke einer Strassenbrücke im Allgemeinen durch bereits 
vorhandene Verformungen und die Brückengeometrie beeinflusst wird. In den 
untersuchten Fällen ist die mittlere Belagsdicke zwischen 1,2 und 1,5 mal grösser als der 
Nominalwert. In einigen Fällen ist die gemessene Belagsdicke mehr als das Doppelte des 
Nennwerts was darauf hindeutet, dass der Nennwert der Belagsdicke während einer 
Erneuerung erhöht wurde. Der Variationskoeffizient der gesamten Belagsdicke liegt 
zwischen 10 und 20% und damit deutlich über dem Wert für das strukturelle Eigengewicht, 
was die in anderen Ländern veröffentlichten Werte bestätigt. 

Aus diesen Gründen werden zwei Teilsicherheitsbeiwerte vorgeschlagen, nämlich γG1 für 
strukturelles und γG2 für nichtstrukturelles Eigengewicht. Während die 
Teilsicherheitsbeiwerte für die Materialfestigkeiten unabhängig von den anderen 
Unsicherheiten kalibriert wurden (um bei Bedarf eine einfache Anpassung zu ermöglichen), 
wurden die beiden Teilsicherheitsbeiwerte für ständige Einwirkungen unter 
Berücksichtigung aller Unsicherheiten kalibriert, um eine zuverlässigere Bewertung für alle 
potenziell massgebenden Kombinationen zu ermöglichen. 

In diesem Zusammenhang werden die Variabilitäten der Materialfestigkeit anhand von in 
der Schweiz erhobenen Daten aktualisiert. Die Verteilungen stimmen im Allgemeinen mit 
den in Abschnitt 1 angegebenen Werten überein. Allerdings sind der CoV und der Bias-
Faktor der Betonfestigkeit für die analysierten Daten grösser als die in der internationalen 
Literatur gefundenen Daten. Diese überhöhte Festigkeit ist wahrscheinlich darauf 
zurückzuführen, dass die Hersteller den Zementgehalt erhöht haben, um die Kriterien der 
Dauerhaftigkeit und Verarbeitbarkeit zu erfüllen. 

Die Variabilität der Verkehrslast für die wöchentlichen Maximalereignisse liegt zwischen 10 
und 18%. Die Extrapolation von 50-Jahres-Maxima-Verteilungen hängt wesentlich von der 
Genauigkeit der Schwanzanpassung der wöchentlichen Ausgangsverteilung ab. Die 
Berücksichtigung von Lognormal- und Gumbel-Extrem-Maxima-Verteilungen für die 
Schwanzanpassung der Ausgangsverteilung führt zu einem CoV der 
Verkehrslastvariabilität zwischen 6 und 10%. 

Nach den parametrischen Zuverlässigkeitsanalysen liegt der erforderliche Wert von γG1 für 
das Eigengewicht, um den Zielwert des Zuverlässigkeitsindex βtgt,50y = 3,8 zu erreichen, 
zwischen 1,1 und 1,2, während γG2 für andere ständige Einwirkungen zwischen 1,3 und 
1,8 liegt, wenn der Nennwert der Belagsdicke als Referenzwert betrachtet wird. 
Zuverlässigkeitsanalysen, die an ausgewählten Fallstudien mit verschiedenen 
Versagensarten durchgeführt wurden, bestätigen, dass γG1 = 1,2 und γG2 = 1,5 im 
Allgemeinen zu ausreichend sicheren Ergebnissen für den Entwurf neuer und die 
Bewertung bestehender Bauwerke führen. In Bezug auf den Referenzwert der Belagsdicke 
ist, wie in Eurocode 1 empfohlen, eine Erhöhung um 20% des Nennwerts gerechtfertigt. 
Zuverlässigkeitsanalysen, die an ausgewählten Fallstudien mit verschiedenen 
Versagensarten durchgeführt wurden, bestätigen, dass γG1 = 1,2 und γG2 = 1,5 für das 
strukturelle bzw. nicht-strukturelle Eigengewicht zu ausreichend sicheren Ergebnissen in 
Bezug auf die aktuellen Werte und in absoluten Zahlen führen. 

Systemänderungen während der Konstruktion und erhebliche Unterschiede zwischen der 
Modellierung komplexer Strukturen und dem tatsächlichen Verhalten werden in den oben 
beschriebenen Teilsicherheitsbeiwerten auf der Lastseite nicht berücksichtigt. Wenn es für 
das Tragwerkssystem relevant ist, sollte es je nach seiner Komplexität und insbesondere 
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im Fall von massgeblichen spröden Versagensarten, wenn das Verhalten nicht durch 
konstruktiven Massnahmen verbessert werden kann, in einer angemessen konservativen 
Weise modelliert und die Ergebnisse entsprechend interpretiert werden. 

Zusammenfassung der vorgeschlagenen 
Teilsicherheitsbeiwerten 

Auf der Grundlage der in diesem Bericht beschriebenen Untersuchungen werden für einen 
Zielwert des Zuverlässigkeitsindex βtgt,50 = 3,8 (CC2) die folgenden Teilsicherheitsbeiwerte 
für ständige und vorübergehende Bemessungssituationen vorgeschlagen. 

 Für den Bewehrungsstahl: 
 wenn die Prüfung mit Nennwerten der geometrischen Abmessungen durchgeführt 

wird, wird der Wert γS = 1,15 bestätigt  
 wenn der Nachweis auf der Grundlage der Bemessungswerte der statischen Höhe 

dd = dnom - 15 mm geführt wird, kann der Teilsicherheitsbeiwert für 
Bewehrungsstahl auf γS = 1,05 reduziert werden.  

 Für den Beton: 
 Der Wert γC = 1,50 wird bestätigt. 

 Für Querkraft in Elementen ohne Querkraftbewehrung und für Durchstanzen nach 
EN 1992-1-1:2023:  
 wenn der Nachweis mit Nennwerten der geometrischen Abmessungen 

durchgeführt wird, γV = 1,40  
 wird der Nachweis auf der Grundlage von Bemessungswerten der statischen 

Höhe dd = dnom - 15 mm geführt, darf der Teilfaktor für Querkraft und Durchstanzen 
auf γV = 1,30 reduziert werden. 

 Der Teilsicherheitsbeiwert γSd, der die Modellunsicherheiten in der 
Schnittkraftberechnung abdeckt, liegt in Abhängigkeit von den anderen Unsicherheiten 
zwischen 1,05 und 1,15. Dieser Beiwert ist implizit in den Teilsicherheitsbeiwerten γG 
und γQ berücksichtigt. Letztere können alternativ unter Annahme folgender statistischer 
Werte der Modellunsicherheit kalibriert werden: Bias-Faktor μ = 1,0 und CoV = 8%. Es 
ist zu beachten, dass diese Beiwerte und statistischen Werte potenzielle 
Unsicherheiten im Zusammenhang mit der Modellierung komplexer Tragwerken 
und/oder dem Einfluss von Systemänderungen bei Tragwerken mit begrenzter 
Verformungsfähigkeit und begrenzter Möglichkeit zur Umverteilung der internen Kräfte 
im Grenzzustand der Tragfähigkeit nicht berücksichtigen. 

 Für die ständigen Einwirkungen: 
 Da die Unsicherheiten des Eigengewichts der tragenden und der nichttragenden 

Elemente unterschiedlich sind, empfiehlt es sich, zwei getrennte 
Teilsicherheitsbeiwerte zu verwenden, nämlich γG1 für tragende und γG2 für 
nichttragende Elemente. 

 Der Standardwert für das Eigengewicht der Tragkonstruktion ist γG1 = 1,35 wie in 
der aktuellen SIA 260. γG1 kann auf 1,20 reduziert werden, wenn die Modellierung 
des Tragwerks durch den Planer hinreichend zuverlässig durchgeführt wird 
(ausreichende Erfahrung in Bezug auf die Art des Tragwerks / verwendete 
Software / Einfluss der Modellierung des Tragwerks auf die Ergebnisse auf der 
Grundlage ähnlicher Berechnungen an ähnlichen Tragwerken) und der Einfluss 
der Systemänderungen während des Baus hinreichend zuverlässig berücksichtigt 
wird (verwendete Methode / angenommene Materialparameter / Erfahrung des 
Planers in Bezug auf den Einfluss der Annahmen auf die Ergebnisse). Die gleiche 
Reduktion ist auch bei statisch bestimmten Tragwerken zulässig. 

 Es wird der Teilfaktor für das Eigengewicht der nichttragenden Elemente 
γG2 = 1,50 vorgeschlagen. Für den Fahrbahnbelag von Strassenbrücken sollte 
zusätzlich zu γG2 = 1,50 die Nenndicke um 20% erhöht werden, wie in 
EN 1991-1:2023 [138] vorgeschlagen. 

 Für die variablen Einwirkungen: 
 Die Bemessungswerte werden auf der Grundlage von Zuverlässigkeitsanalysen 

abgeleitet (dies ist nicht Gegenstand der vorliegenden Untersuchung, da die 
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Kalibrierung der Verkehrslasten, einschliesslich der Bemessungswerte, derzeit in 
anderen Forschungsarbeiten untersucht wird). Die charakteristischen Werte 
können mit einem nominalen Teilsicherheitsbeiwert γQ = 1,50 bestimmt werden. 

 Die oben genannten Teilsicherheitsbeiwerte gelten für die Bemessung neuer 
Bauwerke und für die Bewertung bestehender Bauwerke, wenn die entsprechenden 
Variablen nicht durch direkte Messungen ermittelt wurden. 

 Für die Beurteilung bestehender Bauwerke, bei denen die Abmessungen vor Ort 
gemessen und/oder die Materialfestigkeiten anhand von Prüfungen an Proben des 
bestehenden Bauwerks ermittelt wurden, können die Teilsicherheitsbeiwerte anhand 
des in diesem Bericht beschriebenen Verfahrens und der aus den Messungen 
abgeleiteten statistischen Werte angepasst werden. Vereinfachend können die 
folgenden Teilsicherheitsbeiwerte angenommen werden: 
 Für γS und γC können die in Anhang A (Modifikation von Teilsicherheitsbeiwerten 

für Baustoffe) von EN 1992-1-1:2023 angegebenen Werte verwendet werden; 
 Für das strukturelle Eigengewicht sollten die oben beschriebenen Werte von γG1 

verwendet werden; 
 Für die anderen ständigen Einwirkungen kann γG2 = 1,20 angenommen werden, 

wenn die Abmessungen an der bestehenden Struktur gemessen werden. 
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Résumé 

Selon la méthode des facteurs partiels, introduite dans les normes de dimensionnement 
des structures en béton au milieu du siècle dernier, la sécurité structurale est assurée en 
effectuant des vérifications de l'état limite ultime à l'aide de valeurs de calcul calculées avec 
des facteurs partiels. Ces dernières années, des efforts ont été faits pour établir un cadre 
standard de modélisation des probabilités. Toutefois, les sources d'incertitudes couvertes 
par chaque facteurs partiel font encore l'objet de discussions au sein de la communauté 
scientifique, car elles ne sont pas clairement définies dans les normes et les documents 
de référence relatifs. En outre, les distributions statistiques des variables aléatoires de 
base sont supposées correspondre aux meilleures connaissances à un moment donné. Au 
fur et à mesure de l'évolution des connaissances, des progrès technologiques et 
scientifiques ainsi que de la disponibilité des connaissances, ces données statistiques 
devraient être mises à jour et conduire à une confirmation ou à une mise à jour des facteurs 
partiels. Le fait que certains facteurs partiels ne reposent pas sur une base scientifique 
solide peut conduire à des niveaux de sécurité insuffisants dans différents scénarios (type 
de structures, modes de défaillance, matériaux, etc.) ou, dans certains cas, à des 
structures excessivement coûteuses (trop sûres). En outre, une connaissance adéquate 
des variables aléatoires de base couvertes par chaque facteur partiel est fondamentale 
pour améliorer la prise de décision lorsqu'il s'agit de structures existantes. Ainsi, pour 
dimensionner des structures sûres et plus économiques, l'objectif de ce rapport est de 
clarifier les principales incertitudes couvertes par chaque facteur partiel et de les mettre à 
jour sur la base de distributions statistiques actualisées si nécessaire. À cette fin, il convient 
de noter que dans le cadre du format des facteurs partiels (PSFF), il n'est pas correct de 
se référer à un PSF individuel ; au lieu de cela, il faut considérer de manière cohérente un 
ensemble de PSF. En fait, outre la variabilité de chaque variable aléatoire, il faut tenir 
compte de la mesure dans laquelle ces quantités contribuent à la fonction d'état limite, qui 
sépare le domaine structurel sûr de celui qui ne l'est pas. Par exemple, dans la méthode 
d'analyse de la fiabilité du premier ordre (FORM), cette contribution est représentée par 
les coefficients de sensibilité, qui sont la dérivée partielle de la fonction d'état limite par 
rapport à la variable étudiée. Dans ce cadre, et puisque ce rapport se concentre 
principalement sur les ponts routiers, un effort sera fait pour quantifier les incertitudes à la 
fois du côté de la résistance et du côté de l'action. Outre le poids propre de la structure, les 
variabilités de la charge de trafic et de la charge de la chaussée sont étudiées. 

Facteurs partiels dans le béton structurel 

Différentes sources d'incertitude affectant la résistance des éléments en béton armé et les 
facteurs partiels correspondants sont étudiées. À cette fin, de nouvelles données 
statistiques sont collectées et évaluées. L'approche simple mais rigoureuse de l'analyse 
de sensibilité des exposants est utilisée pour évaluer les facteurs partiels. En particulier, 
l'approche de l'analyse de sensibilité de l'exposant équivaut à effectuer une expansion de 
Taylor du premier ordre de la fonction de résistance dans l'espace logarithmique des 
variables aléatoires de base qui influencent la résistance. L'exposant de sensibilité 
représente la dérivée partielle locale de la résistance logarithmique par rapport à chaque 
variable (supposée suivre une distribution log-normale). L'un des avantages de cette 
méthode de calcul est que les facteurs de sensibilité de l'exposant sont sans dimension et 
peuvent être directement liés à l'incertitude par l'influence d'une variable de base donnée 
sur le modèle de résistance. En outre, l'exhaustivité de l'analyse de sensibilité de l'exposant 
peut être facilement vérifiée en tenant compte des unités de chaque variable de résistance. 

Pour calibrer les facteurs partiels du côté de la résistance sans tenir compte de la variabilité 
du côté de l'action, une hypothèse généralement faite est de considérer chaque composant 
séparément en supposant un facteur de sensibilité fixe de la méthode de fiabilité du premier 
ordre (FORM) pour la résistance (R) et le côté de l'action (E). Dans ce cas, les facteurs de 
sensibilité sont supposés respectivement αE = -0,7 et αR = 0,8. Ces valeurs sont indiquées 
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dans la norme EN 1990:2023 et dans le Code modèle fib 2010 et sont généralement 
conservatrices, tenant compte d'un grand nombre de scénarios. 

Sur la base de l'hypothèse ci-dessus, l'approche de l'analyse de sensibilité des exposants 
est utilisée pour cinq modèles de résistance courants pour les structures en béton armé 
(effort normal de traction, effort normal de compression, flexion, effort tranchant en 
présence d’armature d’effort tranchant, poinçonnement). Les résultats montrent que les 
exposants associés aux différents paramètres géométriques et des résistances des 
matériaux varient d'un cas à l'autre, ce qui indique que les incertitudes déterminantes 
varient en conséquence. Les résultats de ces analyses montrent que si une approche par 
facteur partiel de matériau (γS et γC) peut être appliquée à une large gamme de modèles 
de résistance typiques (effort normal de traction et compression, flexion, effort tranchant 
en présence d'une armature d’effort tranchant suffisante ; lorsque les incertitudes 
concernant les résistances des matériaux et géométriques sont déterminantes), une 
approche par facteur de résistance (γV ) est plus appropriée pour d'autres modèles de 
résistance (effort tranchant sans armature d’effort tranchant et poinçonnement ; lorsque 
les incertitudes géométriques et celles du modèle sont déterminantes). 

Le modèle pour la résistance à la flexion des sections en béton armé est utilisé comme 
référence pour la calibration du facteur partiel pour la limite d'élasticité de l'armature en 
acier. Pour la calibration du facteur partiel de la résistance à la compression du béton, le 
modèle de résistance des colonnes soumises à une effort normal de compression centrée 
est utilisé. Les deux modèles de résistance sont couramment utilisés dans la pratique et 
représentent des cas où les variables de résistance des matériaux ont une influence 
dominante et présentent des incertitudes de modèle relativement élevées. 

Pour la limite d'élasticité de l'acier d’armature, le facteur partiel γS = 1,15 couvrant les 
incertitudes liées au matériau, au modèle et à la géométrie est confirmé. Cependant, cette 
approche peut conduire à des dimensionnements avec un niveau de sécurité insuffisant 
pour les dalles dont la hauteur utile est inférieure à 200 mm et peut être trop conservatrice 
pour les éléments plus épais. Il est démontré qu'un niveau de sécurité constant et un 
dimensionnement plus économique pourraient être obtenus si les valeurs de 
dimensionnement de la hauteur utile (pour couvrir l'incertitude géométrique explicitement) 
sont adoptées avec un facteur partiel réduit γS. 

Pour la résistance à la compression du béton, le facteur partiel actuel γC = 1,50 est 
également confirmé. Cette valeur couvre non seulement les incertitudes liées aux 
matériaux, à la géométrie et au modèle, mais aussi celles liées à la production, au 
transport, au bétonnage et à la cure du béton. 

Bien que les valeurs actuelles de γS et γC soient confirmées, la recherche menée, outre la 
possibilité de réduire les facteurs partiels en cas d'utilisation de la valeur de 
dimensionnement de la hauteur utile, fournit également des informations utiles pour 
plusieurs cas pratiques : 

 Pour la modification des facteurs partiels pour (i) un niveau plus élevé de contrôle de 
qualité et (ii) les valeurs mesurées des données géométriques et la résistance à la 
compression du béton fck selon EN 13791 à utiliser pour l'évaluation des structures 
existantes. 

 Clarification de la différence entre la résistance du béton mesurée sur des éprouvettes 
de contrôle et la résistance in situ. 

 Calcul de γC et γS pour différentes valeurs cible de l'indice de fiabilité (autre que 3,8). 

 Pour la calibration du format de sécurité des analyses par éléments finis non linéaires: 
il est important qu'en utilisant ces approches, toutes les incertitudes des matériaux et 
géométriques soient traitées de la même manière qu'en utilisant des modèles 
conventionnels. À cette fin, les données statistiques (coefficient de variation et 
facteurs de biais) pour les valeurs des résistances des matériaux et géométriques qui 
justifient les facteurs γC = 1,50 et γS = 1,15 sont présentées. 
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En ce qui concerne le facteur partiel de résistance γV pour le poinçonnement et la 
résistance à l’effort tranchant des éléments sans armature d’effort tranchant, si les 
incertitudes géométriques sont couvertes par le facteur partiel de résistance, γV = 1,40 est 
proposé. Cependant, il est observé qu'une valeur constante de γV = 1,40 peut conduire à 
un dimensionnement avec un niveau de sécurité insuffisant pour des dalles avec une 
hauteur utile inférieure à 200 mm et peut être trop conservatrice pour des éléments plus 
épais. Finalement, il est démontré qu'un niveau de sécurité plus constant est atteint si la 
valeur de dimensionnement de la hauteur utile est combinée avec une valeur plus faible 
du facteur partiel γV.  

La plupart des résultats de ce travail ont été mis en œuvre dans la deuxième génération 
de la norme européenne pour le calcul des structures en béton (EN 1992-1-1:2023) et son 
document de référence, de sorte qu'ils seront adoptés implicitement dans les futures 
versions de la norme suisse pour les structures en béton. 

Incertitudes du modèle dans les effets d'action et le calcul 
de la charge ultime dans les structures statiquement 
indéterminées 

Ce travail se concentre sur les incertitudes dans le calcul des effets d'action et de la charge 
ultime des structures en béton armé et des structures mixtes acier-béton. Pour le 
dimensionnement et l'évaluation des structures, il est courant de comparer les effets 
d'action avec les résistances sectionnelles. Alors que les incertitudes du modèle du côté 
de la résistance ont été largement étudiées comme décrit ci-dessus, l'incertitude du modèle 
dans le calcul des effets d'action dans les systèmes statiquement indéterminés n'a pas 
encore été correctement étudiée. En particulier, l'incertitude du modèle dans les calculs 
des effets d'action et de la charge ultime est étudiée en tenant compte de divers modèles 
mécaniques et modes de défaillance. Pour collecter une quantité suffisante de données et 
effectuer des analyses statistiques, la réponse expérimentale des systèmes statiquement 
indéterminés est obtenue en adoptant une technique simple et efficace qui permet d'utiliser 
les résultats expérimentaux disponibles dans la littérature. 

Comparé à des modèles plus raffinés, un modèle élastique linéaire avec une rigidité 
sectionnelle non fissurée conduit à un plus grand coefficient de variation (CoV) de 
l'incertitude de modèle dans le calcul de la charge ultime ; cependant, à un plus grand CoV 
correspondent de plus grandes valeurs de la moyenne, conduisant à une distribution de la 
queue statistique similaire, donc à une marge de sécurité similaire à celle des approches 
plus raffinées (comme par exemple les modèles non linéaires). Pour les modèles linéaires 
élastiques non fissurés, on peut également observer qu'un surdimensionnement d'un ou 
plusieurs composants d'un système statiquement indéterminé influence le CoV de 
l'incertitude de modèle dans le calcul des effets de l'action. En ce qui concerne les modèles 
de calcul plus raffinés, on peut observer un plus faible CoV de l'incertitude de modèle pour 
le calcul de la charge ultime, alors que ce n'est pas toujours le cas pour le calcul des effets 
d'action, en fonction du taux de surdimensionnement des éléments. 

Pour les structures en béton armé, les modèles basés sur la théorie de la plasticité 
supposant une capacité de déformation illimitée, s'ils sont exécutés sans exigences de 
ductilité, conduisent à des CoV très élevés et à des résultats potentiellement dangereux. 
Limiter la capacité de déformation ou vérifier que les exigences de ductilité sont remplies 
réduit considérablement le CoV. Le mode de défaillance influence l'incertitude de modèle 
dans le calcul de la charge ultime, mais pas l'incertitude de modèle dans le calcul des effets 
de l'action. Un plus grand CoV pour le calcul de la charge ultime est observé pour les 
systèmes fragiles, indépendamment du modèle de calcul. 

Pour les structures mixtes acier-béton, lors de l'utilisation d'un modèle élastique linéaire, 
l'incertitude de modèle dans le calcul de la charge ultime est similaire à celle obtenue pour 
les structures en béton armé. De même, la classe de section, qui est liée au mode de 
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défaillance, influence l'incertitude de modèle dans le calcul de la charge ultime, quelle que 
soit l'analyse effectuée, comme cela a été observé pour les structures en béton armé. 
Enfin, une diminution du CoV est observée en limitant la capacité de déformation lors de 
l'utilisation de modèles plastiques. Outre le système à deux poutres assemblées, ces 
résultats sont confirmés pour les structures mixtes par l'étude d'un système de poutre 
continue assemblé à l'aide des réponses expérimentales des poutres simplement 
appuyées. Globalement, sur la base des résultats obtenus pour les systèmes à deux 
poutres assemblées, on peut supposer que les incertitudes dans le calcul de la charge 
ultime et, par conséquent, des effets de l'action sont similaires à celles obtenues pour les 
structures en béton armé. 

Au moyen d'analyses paramétriques et d'études de cas, le facteur partiel γSd qui couvre les 
incertitudes liées aux calculs des effets d'action, et qui est implicitement considéré dans 
les facteurs partiels γG et γQ du côté de l'action, se situe entre 1,05 et 1,15. Il est important 
de noter que ce facteur γSd ne tient pas compte des incertitudes liées aux variations du 
système structurel pendant la construction ou à la modélisation structurelle des structures 
complexes. Ces incertitudes supplémentaires méritent d'être étudiées plus en détail et 
dépendent fortement de la complexité de la structure, de la méthode de construction, des 
outils utilisés et de l'expérience de l’ingénieur. 

Recalibration des facteurs partiels pour les charges 
permanentes 

La calibration du facteur partiel est généralement effectuée pour fournir un niveau de 
sécurité acceptable pour un large éventail de scénarios de dimensionnement et chaque 
facteur partiel couvre des incertitudes bien définies liées à la variabilité d'une ou plusieurs 
variables aléatoires de base, telles que la géométrie, la résistance des matériaux et les 
modèles de calcul. Bien que les distributions statistiques des variables aléatoires de base 
soient supposées correspondre aux meilleures connaissances à un moment donné, au fur 
et à mesure que les connaissances augmentent, que le progrès technologique progresse 
et que davantage de données sont disponibles, ces distributions doivent être mises à jour 
et conduire à la confirmation ou à l'actualisation des facteurs partiels. Sur cette base, pour 
mettre à jour les facteurs partiels concernant le poids structurel et non-structurel, les 
distributions statistiques sont mises à jour en utilisant les données collectées sur le réseau 
routier suisse et fournies par des institutions et des entreprises privées. De plus, la 
variabilité des charges de trafic est quantifiée sur la base des mesures de poids en 
mouvement (WIM) effectuées pendant plus de 20 ans en plusieurs endroits (~15 stations) 
situés en Suisse. Sur la base des distributions statistiques mises à jour, des analyses 
paramétriques sont effectuées pour étudier la sensibilité des facteurs partiels et pour 
estimer leur valeur. 

La variabilité du poids propre des éléments en béton armé est généralement due à la 
variabilité géométrique et à la variabilité du poids spécifique du béton. En utilisant les 
tolérances comme écart-type des paramètres géométriques et les distributions statistiques 
disponibles dans la littérature, les variabilités géométriques semblent être moins 
importantes pour les grands éléments. Le CoV pour le poids propre structurel des éléments 
en béton armé est généralement compris entre 3 et 6%.  

Les mesures effectuées sur plusieurs ponts existants du réseau routier suisse montrent 
que la variabilité de l'épaisseur de l’enrobé dans un pont routier est généralement 
influencée par les déformations préexistantes et la géométrie du tablier. Pour les cas 
analysés, l'épaisseur moyenne de l’enrobé est supérieure à la valeur nominale, la valeur 
moyenne mesurée étant généralement entre 1,2 et 1,5 fois la valeur nominale. Dans 
certains cas, la valeur mesurée dépasse même deux fois la valeur nominale, ce qui 
suggère que la valeur nominale de l'épaisseur de l’enrobé a été augmentée lors du 
resurfaçage. Le coefficient de variation de l'épaisseur totale de l’enrobé se situe entre 10 
et 20 %, ce qui est nettement plus élevé que pour le poids propre structurel et confirme les 
valeurs publiées dans d'autres pays. 
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Pour ces raisons, deux facteurs partiels, respectivement γG1 pour le poids structurel et γG2 
pour le poids propre non-structurel, sont proposés. Alors que les facteurs partiels pour les 
matériaux ont été calibrés indépendamment des autres variabilités (pour permettre une 
simple modification si nécessaire), les deux facteurs partiels pour les actions permanentes 
ont été calibrés en tenant compte de toutes les variabilités afin de fournir une évaluation 
plus fiable pour toutes les combinaisons potentiellement déterminantes. 

À cet égard, les variabilités de résistance des matériaux sont mises à jour à l'aide des 
données recueillies en Suisse. Les distributions sont généralement conformes aux valeurs 
spécifiées dans le premier chapitre. Cependant, le CoV et le facteur de biais de la 
résistance du béton pour les données analysées sont plus importants que les données 
trouvées dans la littérature internationale. Cette sur-résistance est probablement 
attribuable à une augmentation de la teneur en ciment pour répondre aux critères de 
durabilité et d'ouvrabilité du béton. 

La variabilité de la charge de trafic pour les événements hebdomadaires maximaux se situe 
entre 10 et 18%. L'extrapolation des distributions des maxima sur 50 ans dépend de 
manière significative de la précision de l'ajustement de la queue de la distribution 
hebdomadaire de départ. La prise en compte des distributions log-normales et de Gumbel 
pour l'ajustement de la queue de la distribution de départ conduit à une valeur de référence 
de la variabilité de la charge de trafic comprise entre 6 et 10%. 

Selon les analyses de fiabilité paramétriques, la valeur requise de γG1 pour le poids propre 
afin d'atteindre la valeur cible de l'indice de fiabilité βtgt,50y = 3,8 se situe entre 1,1 et 1,2 
tandis que γG2 pour les autres actions permanentes se situe entre 1,3 et 1,8 dans le cas 
où l'épaisseur nominale de l’enrobé est considérée comme valeur de référence. Les 
analyses de fiabilité effectuées sur des études de cas sélectionnés comprenant divers 
modes de défaillance confirment que γG1 = 1,2 et γG2 = 1,5 conduisent en général à des 
résultats suffisamment sûrs pour le dimensionnement de nouvelles structures et 
l'évaluation de structures existantes. En ce qui concerne la valeur de référence de 
l'épaisseur de l’enrobage, une augmentation de 20 % de la valeur nominale recommandée 
dans l'EN 1991-1:2023 est justifiée. Les analyses de fiabilité effectuées sur des études de 
cas sélectionnés comprenant divers modes de défaillance confirment que γG1 = 1,2 et 
γG2 = 1,5, respectivement pour le poids propre structurel et non-structurel, conduisent à 
des résultats suffisamment sûrs par rapport aux valeurs actuelles et en termes absolus. 

Les modifications du système structural au cours de la construction et les différences 
significatives entre la modélisation de structures complexes et le comportement réel ne 
sont pas prises en compte dans les facteurs partiels du côté de la charge décrits ci-dessus. 
Si le système structurel le permet, en fonction de sa complexité et en particulier dans le 
cas de modes de défaillance fragiles, si le comportement ne peut pas être amélioré par 
des détails judicieux au cours du processus de dimensionnement, la structure doit être 
modélisée de manière raisonnablement conservatrice et les résultats doivent être 
interprétés en conséquence. 

Résumé des facteurs partiels proposés 

Sur la base des études décrites dans le présent rapport, les facteurs partiels suivants pour 
les situations de projet durables et transitoires sont proposés pour une valeur cible de 
l'indice de fiabilité βtgt,50 = 3,8 (CC2). 

 Pour l'acier d'armature : 
 si la vérification est effectuée avec les valeurs nominales des dimensions 

géométriques, la valeur γS = 1,15 est confirmée  
 si la vérification est effectuée sur la base des valeurs de dimensionnement de la 

hauteur utile dd = dnom - 15 mm, le facteur partiel pour l'armature peut être réduit à 
γS = 1,05.  

 Pour le béton : 
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 La valeur γC = 1,50 est confirmée. 
 Pour l’acier de construction métallique (structural steel) : 

 La valeur γM1 = 1,05 est confirmée. 
 Pour l’effort tranchant dans les dalles sans armature d’effort tranchant et pour le 

poinçonnement selon EN 1992-1-1:2023 : 
 si la vérification est effectuée avec les valeurs nominales des dimensions 

géométriques, γV = 1,40 ; 
 si la vérification est effectuée sur la base des valeurs de dimensionnement de la 

hauteur utile dd = dnom - 15 mm, le facteur partiel pour l’effort tranchant et le 
poinçonnement peut être réduit à γV = 1,30. 

 Le facteur partiel γSd couvrant les incertitudes de modèle dans le calcul de l'effet 
d'action se situe entre 1,05 et 1,15 en fonction des autres incertitudes. Ce facteur est 
implicitement pris en compte dans les facteurs partiels γG et γQ . Ces derniers peuvent 
également être calibrés en supposant les valeurs statistiques suivantes de l'incertitude 
de modèle : facteur de biais μ = 1,0 et CoV = 8%. Il convient de noter que ces 
coefficients et valeurs statistiques ne tiennent pas compte des incertitudes potentielles 
liées à la modélisation de structures complexes et/ou de l'influence des changements 
de système dans le cas de structures ayant une capacité de déformation limitée et une 
possibilité limitée de redistribuer les efforts à l'état limite ultime. 

 Pour les actions permanentes : 
 Étant donné que les incertitudes relatives au poids propre des éléments 

structuraux et non structuraux sont différentes, il est recommandé d'utiliser deux 
facteurs partiels distincts, à savoir γG1 pour les éléments structuraux et γG2 pour 
les éléments non-structuraux. 

 La valeur par défaut du facteur pour le poids propre de la structure est γG1 = 1,35 
comme dans la norme SIA 260 actuelle. γG1 peut être réduit à 1,20 si la 
modélisation de la structure est effectuée par le concepteur de manière 
suffisamment fiable (expérience suffisante par rapport au type de structure / 
logiciel utilisé / influence de la modélisation de la structure sur les résultats basés 
sur des calculs similaires sur des structures similaires) et si l'influence des 
changements du système pendant la construction est prise en compte de manière 
suffisamment fiable (méthode utilisée / paramètres des matériaux supposés / 
expérience du concepteur par rapport à l'influence des suppositions sur les 
résultats). La même réduction est autorisée dans le cas de structures 
statiquement déterminées. 

 Le facteur partiel pour le poids propre des éléments non-structuraux γG2 = 1,50 
est proposé. Pour les enrobés des ponts routiers, en plus de γG2 = 1,50, 
l'épaisseur nominale doit être augmentée de 20% conformément à la norme 
EN 1991-1:2023 [138]. 

 Pour les actions variables : 
 Les valeurs de dimensionnement sont dérivées sur la base d'analyses de fiabilité 

(hors du champ de la présente recherche puisque la calibration des charges de 
trafic, y compris les valeurs de dimensionnement, sont actuellement étudiées dans 
le cadre d'autres projets de recherche). Les valeurs caractéristiques peuvent être 
déterminées en divisant la valeur de dimensionnement par un facteur partiel 
nominal γQ = 1,50. 

 Les facteurs partiels ci-dessus sont valables pour le dimensionnement de nouvelles 
structures et pour l'évaluation des structures existantes lorsque les variables 
correspondantes n'ont pas été actualisées par des mesures directes. 

 Pour l'évaluation des structures existantes, lorsque les dimensions ont été mesurées 
sur place et/ou que la résistance des matériaux a été actualisée à partir d'essais sur 
des échantillons prélevés sur la structure existante, les facteurs partiels peuvent être 
ajustés en utilisant la procédure décrite dans le présent rapport et les valeurs 
statistiques dérivées des mesures. De manière simplifiée, les facteur partiels suivants 
peuvent être admis : 
 Pour γS et γC , les valeurs indiquées à l'annexe A (Modification des facteurs partiels 

relatifs aux matériaux) de la norme EN 1992-1-1:2023 peuvent être utilisées ; 
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 Pour le poids propre de la structure, il convient d'utiliser les valeurs de γG1 décrites 
ci-dessus ; 

 Pour les autres actions permanentes, on peut admettre γG2 = 1,20 si les 
dimensions sont mesurées sur la structure existante. 
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Summary 

According to the partial safety factors method, introduced in structural concrete design 
codes in the middle of the last century, structural safety is ensured by performing limit state 
verifications using design values calculated with partial safety factors. In recent years, 
some efforts were made to establish a standard probability modelling framework. However, 
the sources of uncertainties covered by each partial factor are still a matter of discussion 
in the scientific community since they are not clearly defined in codes of practice and the 
related background documents. Moreover, the statistical distributions of the basic random 
variables are assumed according to the best knowledge at a specific time. As knowledge 
evolves, technological advancement progresses and more data is available, these 
statistical data should be updated and lead to either a confirmation or an update of the 
partial safety factors. The fact that some of the partial safety factors do not have a solid 
scientific base might lead to insufficient levels of safety in different scenarios (type of 
structures, failure modes, materials etc.), or, in some cases, lead also to excessively 
expensive structures (too safe). In addition, an adequate knowledge of the basic random 
variables covered by each partial factor is fundamental to improve decision-making when 
dealing with existing structures. Thus, to design safe and more economical structures, the 
aim of this report is to clarify the main uncertainties covered by each partial safety factor 
and to update the partial safety factors on the basis of updated statistical distributions if 
needed. To this purpose, it should be noted that within the frame of the Partial Safety Factor 
Format (PSFF), it is not correct to refer to an individual PSF; instead, one must consistently 
consider a set of PSF. In fact, in addition to the variability of each random variable, the 
extent to which these quantities contribute to the limit state function, which separates the 
safe structural domain from the unsafe one, must be considered. For instance, in the First 
Order Reliability Analysis Method (FORM), this contribution is represented by the sensitivity 
factors, which is the partial derivative of the limit state function with respect to the 
investigated variable. In this framework and since this report will mainly focus on road 
bridges, an effort will be put in quantifying uncertainties both on the resistance side and on 
the action side. Besides the structural self-weight, the traffic load and the pavement load 
variabilities are investigated. 

Partial safety factors in structural concrete 

Various sources of uncertainty affecting the resistance of reinforced concrete members and 
the corresponding partial safety factors are investigated. To this purpose, new statistical 
data are collected and evaluated. The simple, yet rigorous exponent sensitivity analysis 
approach is used for assessing the partial safety factors. In particular, the exponent 
sensitivity analysis approach is equivalent to perform a first order Taylor expansion of the 
resistance function in the logarithmic space of the basic random variables influencing the 
resistance. The exponent sensitivity represents local partial derivative of the logarithmic 
resistance with respect to each variable (assumed following a log-normal distribution). One 
of the advantages of this calculation methodology is that the exponent sensitivity factors 
are unitless and can be directly linked to the uncertainty through the influence of a given 
basic variable on the resistance model. In addition, the thoroughness of the exponent 
sensitivity analysis can be easily verified considering the units of each resistance variable. 

To calibrate the partial safety factors on the resistance side without accounting for the 
variability on the action side, a common assumption generally made is to consider each 
component separately by assuming a fixed First Order Reliability Method (FORM) 
sensitivity factor for the resistance (R) and the action side (E). In this case, the sensitivity 
factors are assumed respectively αE = -0.7 and αR = 0.8. These values are given in 
EN 1990:2023 and the fib Model Code 2010 and are generally conservative accounting for 
a large number of scenarios. 
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Based on the above assumption, the exponent sensitivity analysis approach is used for five 
common resistance models for RC structures (axial tension, axial compression, bending, 
shear with shear reinforcement, punching shear). The results show that the exponents 
associated to the different geometrical and material parameters vary from one case to the 
other, indicating that the governing uncertainties vary correspondingly. The results of such 
analyses show that while a material factor approach (γS and γC ) can be applied to a wide 
range of typical resistance models (axial tension and compression, bending, shear in the 
presence of sufficient shear reinforcement; where the material and the geometrical 
uncertainties are governing), a resistance factor approach (γV) is more appropriate for other 
specific resistance models (shear without shear reinforcement and punching shear; where 
the geometrical and the model uncertainties govern). 

The model for the bending resistance of reinforced concrete sections is used as reference 
for the calibration of the partial factor for the yield strength of steel reinforcement. For the 
calibration of the partial factor for the concrete compressive strength, the model for the 
resistance of columns against axial compression is used. Both resistance models are 
commonly used in practice and represent cases where the material strengths variables 
have a dominating influence and present relatively high model uncertainties. 

For the steel yield strength, the partial safety factor γS = 1.15 covering the material, model 
and geometrical uncertainties is confirmed. However, this approach can lead to unsafe 
designs for slabs with an effective depth smaller than 200 mm and can be overly 
conservative for deeper members. It is shown that a constant safety level and a more 
economic design could be obtained if design values of the effective depth (to cover the 
geometrical uncertainty explicitly and individually) are adopted together with a reduced 
partial factor S . 

For the concrete compressive strength, current partial factor γC = 1.50 is also confirmed. 
This value includes not only the material, geometrical and model uncertainties, but also 
those which relate to the production, transportation and casting of concrete. 

Despite the fact that current values of γS and γC are confirmed, the conducted research, in 
addition to the possibility to reduce the partial factors in case the design value of the 
effective depth is used, also provides useful information for several practical cases: 

 For the modification of partial factors for (i) enhanced quality control and (ii) measured 
values of geometrical data and the compressive concrete strength fck according to 
EN 13791 to be used for the assessment of existing structures. 

 Clarification of the difference between cylinder concrete strength (measured on control 
specimens) and in-situ strength. 

 Calculation of γC and γS for different values of the target reliability index (other than 
3.8). 

 For the safety format calibration of refined non-linear finite element analyses: it is 
important that by using these approaches, all material and geometrical uncertainties 
are treated consistently as by using conventional models. For this purpose, the 
statistical data (coefficient of variation and bias factors) for material and for 
geometrical values which have been assumed to justify the factors γC = 1.50 and 
γS = 1.15 are presented. 

With respect to the resistance partial factor γV for punching shear and shear resistance of 
members without shear reinforcement, if geometrical uncertainties are covered by the 
resistance partial factor, γV = 1.40 is proposed. However, it is observed that a constant 
value of γV = 1.40 can lead to unsafe design of slabs with a shear resisting effective depth 
smaller than 200 mm and can be overly conservative for thicker slabs. Eventually, it is 
shown that a more constant safety level is achieved if the design value of the shear resisting 
effective depth is combined with a lower value of the partial factor γV.  

Most of the results of this work have been implemented in the second generation of the 
European standard for the design of concrete structures (Eurocode 2 of 2023) and its 
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background document, so that they will be adopted implicitly in the future versions of the 
Swiss code for concrete structures. 

Model uncertainties in action effects and load bearing 
capacity calculation in statically indeterminate structures 

This work focusses on the uncertainties in calculating action effects and the global load 
bearing capacity of reinforced concrete and composite structures (steel-concrete). For the 
dimensioning and assessment of structures, it is common practice to compare action 
effects with sectional resistances. While model uncertainties on the resistance side have 
been extensively investigated as described above, the model uncertainty in the calculation 
of action effects in statically indeterminate systems has not been properly investigated yet. 
In particular, the model uncertainty in action effects and load bearing capacity calculations 
is investigated considering various mechanical models and failure modes. To collect a 
sufficient amount of data and perform statistical analyses, the experimental response of 
statically indeterminate systems is obtained adopting a simple and effective technique 
which allows using experimental results available in literature. 

Compared to more refined models, a linear elastic model with uncracked sectional stiffness 
leads to larger CoV of the model uncertainty in load bearing capacity calculation; however, 
to a larger CoV correspond larger values of the mean, leading to similar tail’s distribution, 
thus, similar safety margin as for more refined approaches (i.e. non-linear models). For 
linear elastic uncracked models, it can also be observed that an over-design of one or more 
components of a statically indeterminate system influences the CoV of the model 
uncertainty in action effects calculation. Regarding more refined calculation models, a 
lower CoV of the model uncertainty can be observed for the bearing capacity calculation 
while this is not always the case for action effects calculation, depending on the over-design 
ratio of the members; 

For reinforced concrete structures, models based on limit analysis assuming unlimited 
deformation capacity, if performed without ductility requirements lead to very large CoV 
and potentially unsafe results. Limiting the deformation capacity, or verifying that ductility 
requirements are fulfilled reduces considerably the CoV. The failure mode influences the 
model uncertainty in load bearing capacity calculation but does not influence the model 
uncertainty in action effects calculation. Larger CoV for the load-bearing capacity 
calculation is observed for brittle systems independently of the calculation model. 

For composite steel-concrete structures, when using a linear elastic model, the model 
uncertainty in load bearing capacity calculation is similar to the one obtained for reinforced 
concrete structures. Also, the section class, which is related to the failure mode, influences 
the model uncertainty in load-bearing capacity calculation regardless of the analysis 
performed, as observed for reinforced concrete structures. Finally, a decrease of the CoV 
is observed by limiting the deformation capacity when using plastic models. In addition to 
the assembled two-beams system, for composite structures these results are confirmed by 
investigating a continuous system assembled using the experimental responses of the 
simply-supported beams. Overall, based on the results for assembled two-beams systems, 
it can be assumed that the uncertainties in calculation of the load bearing capacity and, 
consequently, of the internal action effects are similar to those obtained for reinforced 
concrete structures. 

By means of parametric analyses and investigated case studies, the partial safety factor 

γSd that covers the uncertainties related to the action effects calculations, and is implicitly 
implemented in the partial factors γG and γQ on the action side, ranges between 1.05 and 
1.15. It is important to note that γSd factor does not account for uncertainties related to 
structural system variations during construction or structural modelling of complex 
structures. These additional uncertainties deserve to be investigated more in detail and 
significantly depend on the complexity of the structure, the construction method, the used 
tools and the experience of the designer. 
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Recalibration of partial safety factors for permanent loads 

The calibration of the partial safety factor is generally performed to provide an acceptable 
level of safety for a wide range of design scenarios and each partial safety factor covers 
well-defined uncertainties related to the variability of one or more basic random variables, 
such as geometry, materials and models. Although the statistical distributions of the basic 
random variables are assumed according to the best knowledge at a specific time, as 
knowledge increases, technological advancement progresses and more data is available, 
these distributions should be updated and lead to either confirming or updating of the partial 
safety factors. On this basis, to update the partial factors on structural and non-structural 
self-weight, statistical distributions are updated using data collected on the Swiss road 
network and provided by institutions and private companies. Also, the variability of traffic 
loads is quantified based on weight in motion measurements performed during more than 
20 years in multiple locations (~15 stations) located in Switzerland. Based on the updated 
statistical distributions, parametric analyses are performed to investigate the sensitivity of 
the partial factors and to estimate their value. 

Structural self-weight variability of the reinforced concrete members is generally caused by 
geometric and concrete specific weight variability. By using tolerances as standard 
deviation of the geometrical parameters and statistical distributions available in literature, 
geometric variabilities appear to be less significant for large members. The CoV for 
structural self-weight of reinforced concrete members is generally between 3 and 6%.  

Measurements in several existing road bridges in the Swiss road network show that the 
variability of the pavement thickness is generally influenced by pre-existing deformations 
and the bridge geometry. For the analysed cases, the mean thickness of the pavement is 
larger than the design value with the bias factor generally between 1.2 and 1.5. In some 
cases, the bias is larger than 2 suggesting that during resurfacing the nominal value of the 
pavement thickness was increased. The CoV of the overall pavement thickness is found 
between 10 and 20%, significant larger that for the structural self-weight, confirming values 
published in other countries. 

For these reasons, two partial safety factors, respectively γG1 for structural and γG2 for 
non-structural self-weight are proposed. While the material partial factors have been 
calibrated independently of the other variabilities (to allow for a simple modification if 
needed), the two partial factors for permanent actions have been calibrated accounting for 
all variabilities to provide a more reliable assessment for all potentially governing 
combinations. 

With this respect, materials strength variabilities are updated using data collected in 
Switzerland. Distributions are generally in line with values specified in Section 1. However, 
the CoV and bias factor of concrete strength for the analysed data are larger than data 
found in international literature. This over-strength is probably to be attributed to an 
increase in cement content to meet durability and workability criteria by producers. 

The variability of the traffic load for the weekly maxima events is found between 10 and 
18%. Extrapolation of 50-year maxima distributions depends significantly on the tail fitting 
accuracy of the starting weekly distribution. Considering both log-normal and Gumbel 
extreme-maxima distributions for the tail fitting of the starting distribution leads to CoV of 
the traffic load variability between 6 and 10%. 

According to the parametric reliability analyses, the required value of γG1 for self-weight to 
reach the target value of the reliability index βtgt,50y = 3.8 lies between 1.1 and 1.2 while γG2 
for other permanent actions is between 1.3 and 1.8 in case the nominal pavement thickness 
is considered as reference value. Reliability analyses performed on selected case studies 
including various failure modes confirm that γG1 = 1.2 and γG2 = 1.5 lead in general to 
sufficiently safe results for the design of new and the assessment of existing structures. 
With respect to the reference value of the pavement thickness, an increase of 20% of the 
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nominal value as recommended in Eurocode 1 is justified. Reliability analyses performed 
on selected case studies including various failure modes confirm that γG1 = 1.2 and 
γG2 = 1.5, respectively for structural and non-structural self-weight lead to sufficiently safe 
results with respect to current values and in absolute terms. 

Structural system changes during construction and significant differences between 
modelling of complex structures and actual behaviour are not accounted for in the partial 
safety factors on the load side described above. If relevant for the structural system, 
depending on its complexity and particularly in case of governing brittle failure modes, if 
the behaviour cannot be improved with sound detailing during the design process, the 
structure should be modelled in a reasonably conservative manner and the results 
interpreted accordingly. 

Summary of proposed partial factors 

Based on the investigations described in this report, the partial factors for persistent and 
transient design situations can be proposed for a target value of the reliability index 
βtgt,50 = 3.8 (CC2). 

 For reinforcing steel : 
 If the verification is performed with the nominal values of the geometric 

dimensions, the value γS = 1.15 is confirmed; 
 If the verification is carried out on the basis of the design values of the effective 

depth dd = dnom - 15 mm, the partial factor for the reinforcement may be reduced 
to γS = 1.05. 

 For concrete : 
 The value γC = 1.50 is confirmed. 

 For structural steel : 
 The value γM1 = 1.05 is confirmed. 

 For shear stress in slabs without shear reinforcement and for punching according to 
EN 1992-1-1:2023 : 
 If the verification is carried out using the nominal values of the geometric 

dimensions, γV = 1.40; 
 If the verification is carried out on the basis of the design values of the effective 

depth dd = dnom - 15 mm, the partial factor for shear and punching can be reduced 
to γV = 1.30.  

 The partial factor γSd covering the model uncertainties in the action effect calculation 
lies between 1.05 and 1.15 depending on the other uncertainties. This factor is implicitly 
accounted for in the partial factors γG and γQ. Alternatively, γG and γQ can be calibrated 
assuming following statistical values of the model uncertainty: bias factor μ = 1.0 and 
CoV = 6.5-8%. It has to be noted that these factors and statistical values do not account 
for potential uncertainties related to the modelling of complex structures and/or the 
influence of system changes in the case of structures with limited deformation capacity 
and limited possibility to redistribute internal forces at ultimate limit state.  

 For permanent actions : 
 Since the uncertainties of the self-weight of structural and non-structural elements 

are different, it is recommended to use two separate partial factors, namely γG1 for 
structural and γG2 for non-structural elements 

 The default value of the factor for the structural self-weight is γG1 = 1.35 as in the 
current SIA 260. γG1 may be reduced to 1.20 in case the modelling of the structure 
is conducted by the designer in a sufficiently reliable manner (sufficient experience 
with respect to the type of structure / software used / influence of the modelling of 
the structure on the results based on similar calculations on similar structures) and 
if the influence of changes in the system during construction is taken into account 
in a sufficiently reliable manner (method used / material parameters assumed / 
experience of the designer with respect to the influence of assumptions on the 
results). The same reduction is allowed also in the case of statically determined 
structures.  
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 The partial factor for the self-weight of non-structural elements γG2 = 1.50 is 
proposed. For the pavement of road bridges, in addition to γG2 = 1.50, the nominal 
thickness should be increased by 20% in accordance with EN 1991-1:2023 [128]. 

 For variable actions : 
 The design values are derived on the basis of reliability analyses (out of the scope 

of the present research since the calibration of traffic loads, including their design 
values, are currently investigated in other research projects). The characteristic 
values can be determined by dividing the design value by a nominal partial factor 
γQ = 1.50. 

 The above partial factors are valid for the design of new structures and for the 
assessment of existing structures where the related variables have not been assessed 
by direct measurements. 

 For the assessment of existing structures, where the dimensions have been measured 
on site and/or the material strengths have been assessed from tests on samples taken 
from the existing structure, the partial factors may be adjusted using the procedure 
described in this report and the statistical values derived from the measurements. As 
a first step, the following partial factors may be assumed: 

 As a firsts step, the following partial factors can be assumed: 
 For γS and γC , the values provided in Annex A (Adjustment of partial factors for 

materials) of EN 1992-1-1:2023 may be used; 
 For the structural self weight, the values of γG1 described above should be used; 
 For the other permanent actions, γG2 = 1,20 may be used if the dimensions are 

measured on the existing structure. 
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1 The partial safety factors in structural concrete 

 Introduction 

Partial safety factors for concrete and reinforcing steel covering the material, the 
geometrical and the model uncertainties are used since several decades in codes of 
practice for concrete structures to calculate the design values of the resistances Rd to be 
compared to the design values of the internal forces Ed in the verification of the Ultimate 
Limit State to ensure that Rd ≥ Ed. The approach with an explicit verification of the Ultimate 
Limit State (ULS) has replaced the permissible stresses approach since the 1970s (in 
Switzerland, the verification for prestressed structures was conducted at ULS already 
according to SIA 162:1968 and for the general case, since its guideline SIA 34:1976). The 
partial safety factors for concrete and steel reinforcement are relatively stable since more 
than five decades although they have been calibrated at the beginning to ensure the same 
level of safety as previous standards based on the permissible stresses approach. Current 
values according to SIA 262:2013 [1] (namely γC = 1.50 and γS = 1.15) have been adopted 
from EN 1992-1-1:2004 [3]) whose calibration according to reliability analysis is described 
in its background document [23].  

The theoretical bases of the calibration of the partial factors are still valid and the statistical 
values of the uncertainties covered by the partial factors for concrete and steel have 
evolved little in recent decades. Nevertheless, a recalibration of γC and γS is justified for 
several reasons: 

 The statistical values of the model uncertainties should be consistent with the actual 
values which refer to the models used for the verification. 

 With respect to the uncertainties related to the actual concrete compressive strength in 
the structure, there is a need for a clear definition of the effects covered and the 
assumed statistical values. 

 For design formulae where the concrete strength is not accounted for in a linear manner 
(as for instance punching and shear in slabs without shear reinforcement, where the 
resistance is proportional to the concrete strength with an exponent of 1/3), there is a 
need of a recalibration and to avoid some shortcomings, and the definition of a new 
partial factor is suitable. 

 For the sake of simplicity, the dominating geometrical uncertainties, as for instance the 
effective depth, are typically covered by the material partial factors γC and γS. 
Nevertheless, this simplification shows some shortcomings (is overly conservative for 
deep members, slightly unconservative for thin members). For this reason, the 
possibility to use an alternative format, where the verification is conducted on the basis 
of design values of the dominant geometrical dimension, can be useful to save material 
in dimensioning new structures or in assessing existing structures in a more reliable 
manner. 

 The partial safety factors for materials have been calibrated on the basis of the most 
common cases (design formulae for bending and compression; typical material 
uncertainties; most common tolerance class in execution; new cast-in-place concrete 
members; verification based on nominal geometrical values; usual target value of the 
reliability index; etc.). Nowadays, exceptions are more and more common. For this 
reason, there is a need for a consistent procedure to adjust the partial factors for 
materials for other situations as for instance: (a) geometrical deviations fulfilling more 
stringent tolerance classes during execution (as for instance in precast elements); (b) 
calculation of the design resistance on the basis of geometrical values measured on the 
finished structure (for new and existing structures); (c) verification on the basis of the 
compressive concrete strength and/or the reinforcement yield strength assessed in the 
existing structure; (d) the use of other verification methods with different model 
uncertainties (as for instance Non-Linear Finite Element Analysis Methods, see next 
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point); and (e) the choice of another target value of the reliability index (current partial 
factors are based on tgt,50 = 3.8), for instance accounting for another reference period. 

 The use of Non-Linear Finite Element Analysis Methods, where the same assumptions 
with respect to the material and geometrical uncertainties as for common analyses 
should be made in the calibration of their safety format. The same holds true for other 
design methods that could be developed in the future, where the design values should 
be calibrated using the same assumptions for the relevant uncertainties as described in 
this section. 

For all these cases, not only a procedure, but also a clear definition of the material, 
geometrical and model uncertainties and other effects (e.g., difference between in-situ 
concrete strength and concrete strength measured on specimens) which are covered by 
the partial factors is needed. 

The results of the research described in this section have already been implemented in the 
2nd generation of Eurocode 2 for concrete structures (EN 1992-1-1:2023 [14]) and its 
background document [57], so that they will be adopted implicitly in the future versions of 
the Swiss code for concrete structures. The procedure for adjusting the partial factors for 
materials, as well as the statistical values presented in this section are also defined in a 
code-like formulation in the Annex A of EN 1992-1-1:2023 [14]. 

In the following of this section, the common assumptions in the partial factor format 
calibration and the typical partial factor formats for structural concrete are briefly reminded 
in Subsection 1.2. The exponent sensitivity analysis, whose application was instrumental 
on the calibration of the partial factor, are also introduced in the same subsection. In 
Subsection 1.3, the reference limit states, as well as the corresponding resistance models, 
investigated for the calibration of the basic partial factors γC and γS and the additional partial 
factor γV (for shear of members without shear reinforcement and for punching shear in the 
2nd generation of Eurocode 2) are presented. Eventually, in Subsections 1.4, 1.5 and 1.6, 
the probabilistic modelling of the basic uncertainties and the detailed procedure adopted in 
the calibration of γS, γC, and γV are explained and discussed. 

 Typical partial factor formats and exponent sensitivity 
analysis approach 

 Typical partial factor formats in structural design codes 

The safety verification in current design codes is mainly performed by verifying limit state 
functions adopting design values for the resistance and for the action effects, whose values 
are calculated with partial factors calibrated to ensure a target reliability level. In this 
subsection, the common assumptions in the partial factor format calibration and the 
corresponding typical partial factor formats for reinforced concrete structures in current 
design codes will be briefly reminded. 

It should be noted that the definitions of the basic concepts of probability of failure Pf , 
reliability index β, target reliability index βtgt , the First Order Reliability Method (FORM) 
sensitivity factors E  and R  in the probability-based structural safety theory will not be 
repeated in this subsection and can be consulted in other literatures (e.g.[2, 5, 6]). 

In the partial factor calibration in current structural design codes, the first common 
assumption is to adopt standardized FORM sensitivity factors for the action effect and the 
resistance side. In the EN 1990:2023 [7] and the fib Model Code 2010 [8], the standardized 
values 0.7E    and 0.8R   are proposed for the FORM sensitivity factors provided that 
the ratio between the standard deviations of the action effect and the resistance is within 
the limit between 0.16 and 7.6. Using standardized values for the FORM sensitivity factors 
allows calibrating: 

 the partial safety factors on the action and on the resistance sides separately; 
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 the partial safety factors for actions regardless of the type of construction material, which 
significantly simplifies the safety format used in practice. 

On the basis of the standardised FORM sensitivity factors, the target reliability for the 
design resistance and the design action effect are simplified as: 

E{ ( ) } = ( )d tgtP E E   X  (1) 

R{ ( ) } = (- )d tgtP R R   X  (2) 

where X  refers to the vector of the random variables representing the basic uncertainties 
involved, ( ) P   refers to the probability function and ( )   refers to the cumulative probability 
function for standard normal distribution. 

Another important simplification normally considered consists on lumping partial factors 
covering different basic variables. Such procedure allows reducing the total number of 
partial factors in the design format. In EN 1990:2023(E) [7], a number of simplifications are 
proposed in the safety format for the design resistance, resulting eventually in three 
different safety formats. A comparison of the different formats is summarized in Tab. 1. 

Tab. 1 Different formats of the design resistance according to EN 1990:2023 (E) [7], (refer 
to notation section for the definitions of symbols) 

 Formula 
Model 
uncertainties 

Material 
uncertainties 

Geometrical 
uncertainties 

General format 
1

, ,k
d d Ed

Rd m

X
R R a F


 

 
  

 
  Rd  m  

covered by Rd  

with d noma a  

or separately by 

d noma a a    

Material factor 
approach 
 

, ,k
d d Ed

M

X
R R a F




 
  

 
  covered by M  

covered by M  

with d noma a  

or separately by 

d noma a a    

Resistance 
factor approach 

 , ,k d Ed

d
R

R X a F
R




 

 covered by R  

covered by R  

with d noma a  

or separately by 

d noma a a    

 

In the general format (first row in Tab. 1), the partial factors can be individually calibrated 
for the model, geometrical and material uncertainties. The design value of resistance (Rd) 
is defined as: 

1
, ,k

d d Ed
Rd m

X
R R a F


 

 
  

 
  (3) 

where γRd is the partial factor associated with the uncertainty of the resistance model, and 
for geometrical deviations, if these are not modelled explicitly;   is a conversion factor 
accounting for scale effects, effects from moisture and temperature, effect of aging of 
materials, or any other relevant parameters; kX  is the characteristic value of materials or 
product properties; γm is a partial factor for a material property accounting for unfavourable 
deviation of the material or product properties from their characteristic values as well as 
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the random part of the conversion factor  ; da  represents the design values of geometrical 
properties; and EdF  represents the design values of actions used in the assessment of .EdE   

Alternatively, to enhance the ease-of-use, the partial factors for different types of 
uncertainties may be combined into a partial factor γm for material properties (referred to 
as the “material factor approach”, second row in Tab. 1): 

, ,k
d d Ed

M

X
R R a F




 
  

 
  (4) 

or into a single partial factor γR for the resistance (referred to as the “resistance factor 
approach”, third row in Tab. 1): 

 , ,k d Ed

d
R

R X a F
R




 

 (5) 

It should be emphasized that the partial factors for material strength variables (γM) in the 
“material factor approach” need to be calibrated to cover material, model and potentially 
also geometrical uncertainties (depending if design values ad are also adopted for the 
governing geometrical variables) involved in the resistance model. Similarly, the partial 
factor for the design resistance (γR) in the “resistance factor approach” also need to be 
calibrated to cover all basic uncertainties (again, potentially with the exception of the 
geometrical uncertainties, if design values are considered for the geometrical variables). 
With respect to Eq. 5, it is also worth to mention that in some codes, the resistance design 
values are obtained by dividing the characteristic values with a factor γR > 1 (e.g. EN 
1992-1-1:2004 [3]) whereas in other codes, the same result is obtained by multiplying the 
characteristic values with a strength reduction factor  < 1 (ACI 318-19 [9]). 

In what regards specifically RC structures, it should be noted that the approach 
mathematically expressed in Eq. 4 is for instance considered in EN 1992-1-1:2004 [3], fib 
MC 2010 [8], the Chinese [10] and Canadian [11] codes to calculate the resistance 
associated to bending, axial force, shear and torsion of members with sufficient shear 
reinforcement, whereas Eq. 5 is applied in other cases, such as the verification of the shear 
resistance of members without or with insufficient shear reinforcement in EN 1992-1-
1:2004 [3] and fib MC 2010 [8], or for all design formulae according to ACI 318-19 [9], 
AASHTO [12] and Australian [13] codes for concrete structures. 

The suitable simplified safety format to be applied to a given type of structural resistance 
should be chosen on the basis of the variability of the shape of the corresponding limit state 
functions and on the dominating involved uncertainties. In the 2nd generation of Eurocode 
2 [14] for the design of concrete structures, two basic partial factors according to the 
“material factor approach” are calibrated: γC for the concrete compressive strength and γS 
for the steel yielding strength. The two partial factors are calibrated so that the verification 
of a wide range of limit states commonly used in daily practice can be performed ensuring 
the required safety level (e.g. the resistance to axial load, bending, and combined axial 
load and bending). There are other more specific limit states where the combination of the 
partial factors γC and γS calibrated on the basis of a “material factor approach” cannot 
provide a sufficiently consistent reliability level and, for those cases, additional partial 
factors can be calibrated (this is the case of the partial factor γV calibrated following a 
“resistance factor approach” for both the shear resistance of members without sufficient 
shear reinforcement and the punching shear resistance). This matter is discussed in detail 
in Subsection 1.3. 
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 Exponent sensitivity analysis 

As it will be shown in the following, the so-called exponent sensitivity analysis is an efficient 
tool to facilitate the calibration of partial factors for the resistance of concrete structures. 
The shape of the limit state function in the standard normal space of the basic variables 
plays an instrumental role in the reliability analysis and, consequently, in the calibration of 
the partial factors. For the calibration of the partial factor on the resistance side, the limit 
state function is defined by ( ) 0dR R X  and its shape in the standard normal space 
depends not only on the sensitivity of the structural resistance model ( )R X  to the involved 
basic variables X , but also on the probability distributions of the basic variables.  

In this work, in order to have a clear and explicit representation of the sensitivity of the 
resistance models to the basic variables, exponent sensitivity analyses are carried out 
[15,16]. The exponent sensitivity factors are calculated based on a power-multiplicative 
form approximation of the resistance functions: 

0 1 2
1

( )  where ( , ,... ) i

p
n
i p

i

R C f f f f


  X X  (6) 

where if  is the ith basic variable in the resistance function, in  is the corresponding exponent 
sensitivity factor and 0C  is the residual constant coefficient in the power-multiplicative form 
approximation of the resistance function. 

The power-multiplicative form approximation presented in Eq. 6 is equivalent to perform a 
first order Taylor expansion of the resistance function in the logarithmic space of the basic 
variables. The exponent sensitivity factors can be calculated as the local partial derivative 
of the logarithmic resistance to the logarithmic basic variables [15]. The advantages lying 
on the calculation of the exponent sensitivity factors are: 

 The exponent sensitivity factors are unitless and can be directly linked to the uncertainty 
through the influence of a given basic variable on the resistance model. When the basic 
uncertainties are modelled as lognormal distributions, the CoV of the resistance variable 
can be directly estimated based on the CoVs of the basic variables and the 
corresponding exponent sensitivity factors with Eq. 7: 

 
2 2

R i iV n V   (7) 

 The thoroughness of the exponent sensitivity analysis can be verified by comparing the 
units obtained on the right side of Eq.6 to the known units of the resistance variable (left 
side of Eq. 6), refer to [15] for details. 

The precision of the estimated CoV in Eq. 7 depends on the nonlinearity of the resistance 
function in the logarithmic space. When the resistance function is strongly nonlinear (e.g. 
involving different failure modes; refer to [15] for examples), the values of the CoV 
estimated based on the locally calculated exponent sensitivity factors are not necessarily 
precise. However, when the exponent sensitivity analysis is performed for a wide range of 
applicable cases for a given resistance function, the results can provide valuable 
information about the ranges and trends of the sensitivity factors and the corresponding 
variability of the resistance variable [17]. This valuable information can thereafter be used 
to facilitate the partial factor calibration. 
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 Considerations on the calibration of partial factors in 
structural concrete 

 Definition of the required partial factors  

The partial factors required to achieve a given target reliability level vary with the shape of 
the limit state functions and, thus, implicitly depend on the structural resistance models. In 
order to have a quantitative comparison between different resistance models, an exponent 
sensitivity analysis is performed for five resistance models for the most common limit states 
governing the design of RC structures, namely: 

1. The resistance of a reinforced tie subjected to axial tension; 

2. The resistance of a reinforced column subjected to axial compression (neglecting 
second order effects); 

3. The resistance of a reinforced beam segment subjected to bending, analysed with 
Bernoulli-Navier hypothesis (plane sections remain plane after deformation) and 
neglecting the concrete tensile strength; 

4. The shear resistance of a beam with shear reinforcement, analysed with the closed-
form resistance model of EN 1992-1-1:2023 (clause 8.2.3 [14]); 

5. The resistance of a slab-column connection without shear reinforcement (punching 
shear), analysed with the closed-form resistance model of EN 1992-1-1:2023 (clause 
8.4.3 [14]). 

 

The results of the exponent sensitivity analysis for these different resistance models are 
shown in Fig. 1 as a function of the main variables. 

 

Fig. 1 Results of the exponent sensitivity analyses [15] for five typical structural concrete 
resistance models: (a) RC member subjected to pure axial tension; (b) RC column 
subjected to pure axial compression; (c) RC beam subjected to pure bending; (d) RC beam 
with shear reinforcement subjected to shear and (e) slab-column connection with potential 
punching failure. 
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The following observations can be made by comparing the results of the exponent 
sensitivity analyses of the five investigated resistance models: 

 The results of this analyses confirm the significant differences among the models in 
terms of the sensitivities to the basic geometrical and material variables. The dominating 
material and geometrical variables (from a deterministic perspective) therefore differ 
from one limit state to the other. 

 For the cases of flexure and shear, various failure regimes can be easily identified. 

 Both the axial tension resistance model and the bending resistance model of suitably-
reinforced cross-sections are dominated by the steel yield strength (with the exponent 
nfy close to 1, refer to Fig. 1a and c), which indicates that they have similar level of 
material uncertainties. However, by comparing the sensitivity of geometrical variables 
in the two resistance models, it can be observed that the bending resistance model 
involves a higher level of geometrical uncertainties, since, in the former case, both the 
reinforcement area (As) and the effective depth (d) have an exponent close to 1. In 
addition, it is well-known that the bending load-bearing mechanism is more complex 
than the one associated with axial tension, which suggests that also a higher model 
uncertainty is potentially associated to the bending resistance model (the statistics of 
the uncertainty of the different resistance models are presented later in Subsection 1.4). 

 Both the axial compression (Fig. 1b) and bending resistances (Fig. 1c) of over-
reinforced cross-sections are dominated by the concrete compressive strength (with nfc 
close to 1).  

 For the punching shear resistance model (Fig. 1d), it can be observed that only one 
material strength variable is involved ( cf , as the closed-form equation represents a 
simplification of a more advanced mechanically-based model, refer to [18, 19] for 
details) and that its exponent is much lower than 1 (nfc = 1/3). Regarding geometrical 
variables, it is important to note that the effective depth d has the highest exponent ( nd 
>1). The results also show that in the case of punching shear, the sum of the exponents 
of material variables is significantly lower than the sum of the exponents of geometrical 
variables and of the exponent of the model uncertainty (when the model uncertainty is 
assumed to be represented by a random variable   multiplied to the resistance model, 
it has an exponent equal to 1). 

The safety format suitable for each limit state should depend on the dominating 
uncertainties. If these are material variables, a material factor approach can be adopted; 
otherwise, if the model uncertainty is the dominating one, a resistance factor approach 
should be adopted. In more complex situations, a general format approach can be adopted.  

The results of Fig. 1 show from a deterministic perspective that the resistance models can 
be distinguished into two types based on their sensitivity to the material strength variables 

cf  and yf  : 

 Resistance models with nfc + nfy 1 : this type of models include resistance against an 
axial tension, compressive axial load, bending and shear of members with shear 
reinforcement. It should be noted that for bending with over-reinforced cross-section, 
the sum nfc + nfy is smaller than 1, but the difference is relatively small and can still be 
considered to belong to this type.  

 Resistance models with nfc + nfy 1 : the punching shear resistance belongs to this type. 
In addition, performing an exponent analysis as the one shown in Fig.1 to the shear 
resistance model of members without shear reinforcement allows showing that, also in 
that case, the model presents a low sensitivity to the material strength variables and 
belongs to this category. 

The first type of resistance models (with nfc + nfy 1 ) has high sensitivity to the material 
strength variables (comparable to the exponent of model uncertainty, 1n  ). By combining 
the information of the exponents and the probability distributions of the basic uncertainties 
using Eq. 7 (the statistics of basic uncertainties will be presented in Subsection 1.4-1.6), it 
can be demonstrated that the material uncertainties are dominating for most models of this 
type. Due to this reason, a material factor approach can therefore be accepted for these 
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resistance models, with a partial factor applied to the concrete compressive strength (γC) 
and another to the steel reinforcement yield strength (γS).  

On the contrary, for the second type (with nfc + nfy significantly smaller than one), due to 
their low sensitivity to the material strength variables, the material uncertainties cannot be 
dominating anymore. A safety format based on a material approach is for this reason not 
suitable, as the partial factor of the material strength variable would have a low exponent 
in the design resistance equation, being therefore not effective. A safety format based on 
the resistance factor approach (refer to Tab. 1) results as a justified safety format 
alternative for these resistance models. Due to this reason, a partial factor γV, applied to 
the resistance model and calibrated on that basis, is thus justified for the punching shear 
resistance (this applies also for the case shear resistance of members without sufficient 
shear reinforcement). 

 Definition of reference models used for the calibration of the partial 
factors 

For design purposes, it is suitable to have the same partial factors applied to a number of 
resistance models (associated to different limit states). This means that a choice has to be 
made with respect to reference resistance model to be used to calibrate each partial factor. 
The following criteria are established for that purpose: 

 The reference model used in the calibration of the partial factor for a material strength 
should be a case in which this material strength variable is dominating (i.e. with an 
exponent sensitivity factor close to or equal to 1); 

 The chosen reference model should be relevant for practice and have significant 
geometrical and model uncertainties in order to widen the applicability range of the 
calibrated partial factors. 

Based on these criteria, γC is calibrated using the resistance model for the axial 
compression resistance of columns (as it is more likely to find situations in practice where 
the axial compressive resistance of columns is governing than the bending resistance of 
over-reinforced cross-sections) and γS is calibrated accounting for the bending resistance 
of suitably-reinforced concrete cross sections. The case of a reinforced concrete tie (see 
Fig. 1a) is not suitable since: (i) it is not a common case in practice; (ii) the model 
uncertainty is very small; and (iii) the geometrical uncertainty is also negligible (the 
uncertainty of the reinforcement area is indirectly accounted for in the uncertainty of the 
yield strength, since according to EN 10080:2005 [25], the latter is determined by dividing 
the measured yield force by the nominal reinforcement area). With respect to the partial 
factor γV, it can be calibrated on the basis of the resistance model for shear of members 
without shear reinforcement or punching shear. In fact, both models share the same 
principles [22] and the derived closed-form design expressions included in the 
EN 1992-1-1:2023 for the two cases present strong similarities (thus yielding equivalent 
trends in terms of material, geometrical and model uncertainties). Differences in the model 
uncertainties can be covered by adjusting the related calibration coefficients.  

 Assumptions and simplifications adopted in the calibration of partial 
factors 

Accounting for the reference resistance models, the following simplifications and 
approximations are further assumed in order to achieve an analytical solution for the 
calculation of the partial factors γC, γS and γV: 

 The probabilistic modelling of the basic uncertainties and of the resistance variable can 
be approximated by lognormal distributions. 

 The standard deviation of the logarithm of the resistance variable (denoted as ln( )R ) 
can be approximated by its CoV (denoted RV ). For a lognormal distribution variable, the 
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exact relationship between its standard deviation and CoV is: 2 0.5
ln( ) (ln( 1))R RV   . The 

approximation of ln( )R RV   is considered acceptable when ln( )R  is lower than 0.2. 

 The material strength variable has an exponent close to 1 in the resistance solution 
when the “material factor approach” is adopted. When this assumption is valid 
(considered also as a criterion in the choice of the reference resistance model), the 
application of the partial factor to the material strength variable is equivalent to applying 
it to the resistance directly. 

Based on the aforementioned assumptions, the value of the partial factors can be 
calculated with the following equations: 

 exp R tgt RM

M
RM

V 




 
  (8) 

2 2
RM i iV n V   (9) 

inm
RM i

nom

R

R
    (10) 

where the subscript M is replaced by S for reinforcement, by C for concrete in compression 
and V for shear; VRM is the Coefficient of Variation (CoV) of the resistance (accounting for 
the influence of (i) the material strength variability; (ii) the geometrical uncertainties and (iii) 
the model uncertainties on the resistance side; ni is the exponent sensitivity factor for the 
ith basic variable; Vi is the CoV for the ith basic variable; RM  is the bias factor of the 
resistance represented by the ratio between the mean value of the resistance Rm and the 
nominal value of the resistance Rnom; Rnom is the nominal value of the resistance calculated 
with the design formula without partial factors, and i  is the bias factor for the ith basic 
variable, representing the ratio between its mean value and its nominal value accounted 
for in the design formula (e.g. the characteristic value for material strength variables).  

In the following subsections, the probabilistic modelling of the basic uncertainties involved 
as well as the exponent sensitivity factors of the corresponding basic variables in different 
failure modes of RC structures are discussed and the corresponding partial factor 
calibration is presented. 

 Calibration of partial factor for steel reinforcement 

Following the discussions presented in Subsection 1.3.1, the bending resistance model of 
a suitably-reinforced rectangular cross section is used as reference for the calibration of 
the partial factor for the yield strength of steel reinforcement. 

The bending resistance can be calculated adopting Bernoulli-Navier hypothesis (plane 
sections remain plane), neglecting the concrete tensile strength and considering a 
parabola-rectangle response of concrete (with strain limitation) in compression and an 
elastic-perfectly plastic response of steel reinforcement. These are the hypotheses adopted 
for the exponent analysis presented in Fig. 1b. In such case, the bending resistance model 
can be approximated by the following power-multiplicative equation (including the random 
variable S  for its model uncertainty): 

0 0     with    1fy As d
n n n
y s S y s S fy As dR C f A d C f A d n n n               (11) 

Following the simplified form of the resistance function, the adopted distribution parameters 
of the yield strength fy, the effective depth d, and the model uncertainty variable S  in the 
calibration of partial factor γS are listed in Tab. 2. The distribution parameters adopted to 
justify the same partial factor in SIA 262:2013 [1] derived from EN 1992-1-1:2004 (refer to 
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[23]) are also listed in Tab. 2 for the sake of comparison. It should be noted that, as already 
discussed, since the yield strength of steel reinforcement is typically calculated based on 
the measured axial tensile load resistance and the nominal reinforced area (without 
measuring the actual area) of reinforcement bars [24, 25], the statistics of fy represent both 
the uncertainties of fy and As. Due to this reason, the reinforcement area As is considered 
to be deterministic in the partial factor calibration. In the following, the considerations for 
the distribution parameters adopted for each basic variable are explained in detail. 

 

Tab. 2 Statistical values assumed to calibrate the partial factors for reinforcement (values 
in brackets refer to the assumptions to justify in EN 1992-1-1:2004, see [23]) 

 Coefficient of variation Vi Bias factor I 

Yield strength fy Vfy = 0.045 (0.040) fym/fyk = exp(1.645Vfy) 

Effective depth d Vd = 0.050 (0.050) μd = 0.95 (1.00) 

Model uncertainty S  Vθs = 0.045 (0.025) μs = 1.09 (1.00) 

Coefficient of variation and bias 
factor of resistance for 
reinforcement 

2 2 2
RS 0.081fy d sV V V V   

(0.069) 

RS 1.115ym
d s

yk

f

f       

(1.068) 

 Statistics of yielding strength 

Regarding the distribution of the material strength variable fy, Tab. 3 shows the statistics of 
B500 reinforcement of different ductility classes in UK and in Switzerland collected in the 
two last decades. It can be observed that the CoVs are slightly higher than the value of 
0.04 assumed in EN 1992-1-1:2004 (see Tab. 2). For this reason, a value of 0.045 is 
adopted. It has to be noted that with this assumption, the ratio fym / fyk,spec becomes 1.077, 
which is slightly lower than the measured values (second value is the bracket of Tab. 3). 
With respect to prestressing reinforcement, Kreis et al. [26] provided similar 
results (Vfp0.1 = 0.043-0.058 for the 0.1% proof strength fp0.1 and Vfp = 0.025-0.043 for the 
tensile strength fp). 

Tab. 3 Statistical values of the yield strength of B500 reinforcement (fyk,spec = 500 MPa, 
the values in the brackets refer to the number of tests and to the average value of the 
measured ratio fym / fyk,spec) 

Ductility class 
Beeby/Jackson:2016 
[Beeby, 2016] 

CARES 2005-2006 
[Cares, 2019] 

EPFL 2015-2019 
[EPFL, 2019] 

A 0.050 (1 803, 1.143) 0.051 (410, 1.140) - 

B 0.048 (10 480, 1.108) 0.040 (3 458, 1.104) 0.042 (104, 1.092) 

C 0.040 (3 794, 1.092) 0.038 (300, 1.084) - 

All ductility classes 0.048 (16 077, 1.107) 0.043 (4 168, 1.107) - 

 Statistics of effective depth 

As already mentioned, the geometrical uncertainties related to the reinforcement area As 
are implicitly accounted for in the variability of the yield strength (since the latter is 
characterized on the basis of the nominal cross-sectional area [25]). For this reason, this 
geometrical uncertainty is not accounted for repeatedly in the partial factor calibration. In 
addition, as the exponent nb takes relatively low values and the variability of b is small 
(detailed information provided in Subsection 1.5), it is assumed that its influence on the 
reliability of bending resistance is negligible (assuming 0bn  ). It thus results the variability 
of the effective depth d (assuming 1dn  ) as sole geometrical uncertainty involved in the 
calibration of γS. 
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The probabilistic modelling of the effective depth is based on the following sources: 

 In the work of Ellingwood [27], it is considered for the effective depth of one-way slabs 
that: 

 nom 10md d   mm and 12   mm for top bars 

 nom 3md d  mm and 9   mm for bottom bars 

where md  refers to the mean value of the effective depth and   refers to its standard 

deviation: 

 In the JCSS Probabilistic Model Code (section 3.10.2) [28], it is proposed to adopt

nom 10md d   mm and 10   mm. 

 A comparison between the nominal and measured values of the effective depth of the 
hogging reinforcement in 140 punching tests conducted in the Structural Concrete 
Laboratory of Ecole Polytechnique Fédérale de Lausanne (Switzerland) between 2007 
and 2015 (refer to Fig. 2) shows that the difference between the nominal and measured 
value has the same order of magnitude as the standard deviation (similarly to the 
relationship adopted by Ellingwood [27]). 

 A comparison in practice between the nominal value according to drawings (based on 
the specified member height, cover and bar diameter), the effective depth considered 
in design (similar to nominal value) and the theoretical value based on the chosen 
reinforcement supports has shown that a part of the deviation between nominal and 
actual effective depth has its origin already during the design process. 

 

Fig. 2 Statistics of effective depth measured on punching shear specimens tested at EPFL 
between 2007 and 2015 (all measured on saw-cuts). 

Based on these sources, a standard deviation of 10 mm is seen as a reasonable 
assumption. Nevertheless, since the statistical values described above refer to relatively 
thin members, they should be corrected by a law accounting for the size of the member. 
The latter can be calibrated on the basis of the tolerance of the location of ordinary 
reinforcement according to EN 13670:2009 [29]. As shown in Fig. 3a, the influence of the 
size of the member can be reproduced by the following formulae: 

2/30.05 (200 / )dV d   [d in mm]  (12) 

2/31 0.05 (200 / )d d      (13) 

The resulting CoV of the effective depth d is represented in Fig. 3b.  
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Fig. 3 Standard deviation of the effective depth as a function of the member’s size; (a) 
comparison between the assumed standard deviation and the tolerances of the location of 
ordinary reinforcement according to EN 13670:2009 and (b) resulting coefficient of variation 
(see Eq.(14)-(15), abscissae in logarithmic scale). 

 Statistics of model uncertainty for the flexural resistance model 

To quantify the model uncertainty related to bending, the flexural resistance measured in 
laboratory tests (denoted as MR,exp ) is compared to the resistance calculated (denoted as 
MR,calc ) according to the provisions of subsection 8.1 of EN 1992-1-1:2023 [14]. With this 
respect, the formulae are applied without partial factors and with the mean values reported 
in the publications. The database used by Foster et al. in [30] and Stewart et al. in [31] for 
calibrating the Australian Standard for concrete structures AS3600 is considered in the 
following.  

The compression zone is considered in the calculation of the flexural resistance with a 
parabola-rectangle distribution of the concrete stresses. Regarding the stress-strain 
relationship for reinforcing steel, clause 5.2.4(2) in EN 1992-1-1:2023 [14] allows two 
approaches: 
 (a) Linear-elastic/perfectly plastic behaviour without strain-hardening, and 

 (b) Linear-elastic/plastic behaviour with strain hardening linearized between beginning 
of yielding and ultimate strength (stress tf  and strain u , but with a strain not higher 
than /uk S  ). 

The comparison between experimental and theorical results has been conducted following 
both approaches. With respect to the stress-strain relationship including strain hardening, 
the slope of the plastic branch (strain hardening modulus hE ) depends on the ductility class 
of the reinforcement. Assuming the minimum values (10% quantiles) of the ratio ft / fy and 
of the maximum strain uk  given in table C1.2 in Annex C of EN 1992-1-1:2023, modulus 

hE  becomes 1110 MPa for ductility class A, 840 MPa for class B and 1030 MPa for class 
C (Grade B500 reinforcement). Assuming the maximum value of ratio ft / fy for class C 
reinforcement, hE  becomes 2410 MPa. Since for most of the tests included in the used 
database, the actual strain hardening behaviour is unknown, a strain limit of 7.5%u   and 
a ratio ft / fy = 1.2 has been adopted in the comparison ( 1380hE  MPa for 500yf  MPa). 

Fig. 4 shows the model uncertainty variable S  calculated as the ratio between the 
measured and the calculated flexural strength, S MR,exp / MR,calc , for both modelling 
approaches (neglecting or accounting for strain hardening of steel reinforcement) as a 
function of the calculated reinforcement strains.  
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Fig. 4 Comparison between calculated flexural resistance MR,calc (on the basis of section 
8.1 and 5.2.4 of EN 1992-1-1:2023 [14]) and experimental measured value MR,exp as a 
function of the calculated steel stain for (a) the case strain hardening is neglected and (b) 
the case with strain hardening assuming 7.5%u   and ft / fy = 1.2 (the thick curves refer to 
the moving averaged whereas the thin curves describe the upper and lower 5% fractiles, 
courtesy of data by S. J. Foster). 

The statistics of both cases are compared in Fig. 5. One can observe that: 
 For small steel strains (failure dominated by concrete crushing with elastic 

reinforcement or with limited plastic strains), the bias factor S  is close to 1.0. For this 
regime, the uncertainty of the resistance for practical cases will be governed by γC so 
that these cases should not be considered in calibrating γS.  

 For large steel strains, the bias factor S  increases significantly, not only for the case 
where strain hardening is neglected in the calculation, but also in the case strain 
hardening is accounted for. Such result is justified by the fact that: (1) the database 
contains also tests with ductile steels (with significant ft / fy ratios); (2) the model for 
bending according to EN 1992-1-1:2023 [14] underestimates the effect of strain 
hardening (since an average steel strain is considered, i.e. the strain localization in the 
crack region is neglected); (3) the concrete strain limit is probably underestimated in 
case of a strain localization which develops with steel yielding.  

 The coefficient of variation SV  increases with the steel strain. This can be explained by 
the fact that steels with different strain hardenings are considered in the database. 

 

Fig. 5 Statistics of the model uncertainty data for flexural resistance: (a) bias factor S 
MR,exp / MR,calc and (b) coefficient of variation SV  of ratio MR,exp / MR,calc. 

Based on the results shown in Fig. 5, the values of 1.09S   and 0.052SV   can be 
assumed for the region governed by an average steel strain. In addition, it has to be 
considered that these variabilities depend also on the uncertainties related to the reported 
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data in the test reports. Using the procedure proposed by Ellingwood [27], the effect of 
these uncertainties can be removed from the actual model uncertainty as follows: 

2 2 2
test iV V V V     (14) 

where V  is the actual CoV of the model uncertainty, V is the CoV of the ratio MR,exp / MR,calc 
mentioned above, testV represents the measurement uncertainties related to the failure load 
(errors in measuring the failure load, effect of supports friction, influence of different loading 
rates, effect of the test procedure, etc.) and iV  are the CoVs for the measured error of the 
geometrical and material variables. The following values are assumed for the CoVs: 
effective depth = 0.01; yield strength = 0.01 and concrete strength = 0.03. Accounting for 
all the measurement errors, the coefficient of variation of the flexural resistance SV  can be 
reduced from 0.052 to 0.045. 

 Calibration of γs using the nominal value of the effective depth 

By using Eq. 8 and assuming 0.8R  , 3.8tgt   (for the ultimate limit state of structures 
with medium consequences class with a 50 years reference period according to EN 
1990:2023 [7]) and the above-mentioned distribution parameters, the partial factor γS 
becomes: 

   2 2 2exp 0.8 3.8 0.045 0.050 0.045exp
1.15

exp(1.645 0.045) 0.95 1.09
R tgt RSyk

S
yd RS

Vf

f

 




    
   

  
 (15) 

which is unchanged with respect to current practice. 

 Alternative using the design value of the effective depth 

As already discussed above, the distribution parameters for the geometrical uncertainties 
assumed in the calibration of γS are valid only for members with an effective depth of 
approximately 200 mm (for the hogging reinforcement). For thinner members, the 
geometrical variability (in terms of coefficient of variation dV ) will be higher, so that a higher 
partial factor γS would be required to ensure that the target reliability index is reached. On 
the contrary, for larger members (and also for sagging reinforcement), a lower partial factor 
γS could be justified (refer to Fig. 3). To overcome this shortcoming, and to achieve a more 
uniform level of safety, the verification can be conducted using design values of the 
effective depth (instead of nominal values, requiring the geometrical uncertainties to be 
covered by a material partial factor). This possibility is already considered in the general 
format for the resistance design value dR  according to EN 1990:2023 [7] (refer to Eq. 3). 
The term da  in Eq. 3 refers the design value of the geometrical property and its value is 
defined based on the sensitivity of the resistance to the deviation in the relevant geometrical 
property (refer to clause 8.3.7 of EN 1990:2023 [7]): 
 When the structural design is sensitive to deviations in a geometrical property, the 

design value of the parameter da  should be calculated as: 

d noma a a     (16) 

 On the contrary, when the structural design is not significantly sensitive to the deviation 
of a given geometrical property, the design value can be simply assumed as: 

d noma a  (17) 

where noma  is the nominal value of the geometrical property and a  is the deviation in the 

geometrical property. 

In what regards the sensitivity of the bending resistance to the effective depth as 
geometrical property, and as previously shown and discussed, Eq. 17 is theoretically only 
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applicable for thick members. This fact indicates that the design value of the effective depth 
(Eq. 16) should be used instead of its nominal value (Eq. 17). 

The deviation in the effective depth a  can be obtained by minimizing the difference 
between the target reliability index tgt  and the achieved index   (see Fig. 6b) or by aiming 
at achieving an almost constant partial factor (see Fig. 6a). As shown in Fig. 6, consistent 
results can be obtained with the values of 1.04S   and 19d  mm for hogging 
reinforcement and 11d  mm for sagging reinforcement. For the sake of simplicity, a 
constant value of d  can be adopted in the calculation of the design value of the effective 
depth: 

d nomd d d   (18) 

where the value of 15d   mm is proposed for both hogging and sagging reinforcement. 
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Fig. 6 (a) Required partial factor to achieve the target reliability index tgt ; (b) achieved 
reliability indexes with the assumed partial factor S  (solid curves refer to the approach 
using nominal values of the effective depth whereas dashed curves refer to the case using 
design values of the effective depth) and (c) Reinforcement saved by applying 1.04S   
and 15d  mm instead of 1.15S   to achieve the same design bending resistance 
(assumed 50mmnom nomh d  , 0.6nom nomb d  , fyk 500MPa and 30MPackf  , the dashed 
part of the curves represent cases with over-reinforced cross-section). 

It has to be emphasized that this approach allows to obtain, not only a more constant safety 
level (avoiding an unsafe design for thin members), but also a more economical and 
environmentally-friendly design (particularly for deep members). The ratio of reinforcing 
steel that can be saved by adopting the design effective depth approach is shown in Fig. 6c. 
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 Partial factor for concrete in compression 

As discussed in Subsection 1.3.1, the most frequent case where the concrete compressive 
strength is the dominating material strength is the axial compression resistance of columns. 
Due to this reason, it is used as the reference model for the calibration of γc. 

The axial compression resistance of centric loaded reinforced concrete columns can be 
approximated as follows when the contribution of both longitudinal and confinement 
reinforcement is neglected: 

 is c c cR f A      (19) 

Following the simplified form of the resistance function, the distribution parameters of fc, Ac, 
and the model uncertainty variable C  adopted in the calibration of partial factor C  in EN 
1992-1-1:2023 [14] are listed in Tab. 4 (the detailed justification of these distributions are 
explained in the following subsections). The distribution parameters assumed in the 
justification of the same partial factor in EN 1992-1-1:2004 (refer to [23]) are also listed in 
Tab. 4 for comparison. 

In the following, the considerations for the distribution parameters adopted for each basic 
variable are explained in detail. 

Tab. 4 Statistical values assumed to calibrate the partial factor for concrete (adopted in 
Table A.3 of EN 1992-1-1:2023 [14], values in brackets refer to the assumptions to justify 

1.50C   in EN 1992-1-1:2004, see [23]) 

 Coefficient of variation Vi Bias factor I 

Compressive strength fc 
(control specimen) 

Vfc = 0.100 (0.150) fcm/fck = exp(1.645Vfc) 

In-situ factor 

, /is c ais cf f   isV = 0.120 (0.000) 0.95is   (0.85) 

Concrete area Ac ACV  = 0.040 (0.050) 1.00AC   (1.00) 

Model uncertainty CV  = 0.070 (0.050) C  = 1.02 (1.00) 

Coefficient of variation and 
bias factor of resistance for 
concrete 

2 2 2 2
RS 0.176fc is Ac CV V V V V     

(0.166) 

RC 1.142cm
is AC C

ck

f

f           

(1.088) 

 Definition with respect to the compressive concrete strength 

The partial factor for concrete C  applies to the characteristic concrete compressive 
strength which can be either specified (and controlled according to EN 12390-3:2019: 
Testing hardened concrete – Part 3: Compressive strength of test specimens [32]) or 
determined according to EN 13791 [33] on the basis of tests on core samples extracted 
from the executed structure. Furthermore, the control cylinder specimens can be casted at 
a main plant or on-site in a ready mix plant. On the other side, the partial factor C  is 
determined on the basis of reliability analysis accounting for the actual uniaxial in-situ 
concrete compressive strength in the structure. With this respect, it is important to clearly 
differentiate between the following definitions of the concrete compressive strength (refer 
to Fig. 7): 

 ,c specf : specified uniaxial concrete compressive strength 

 ,c cylf : concrete compressive strength of the control specimens casted at a main plant 

(cylinders), or on-site in a ready mix plant (no transportation) 

 ,c aisf : actual uniaxial in-situ concrete compressive strength in the structure 
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 ,c isf : compressive strength of a core taken at a test location within a structural element 

or precast concrete component expressed in terms of the strength of a 2:1 core of 
diameter > 75 mm 

 

Fig. 7 Representation of different concrete compressive strengths (figure adapted from 
[57]) 

The difference between ,c specf  and ,c cylf  depends on: 

 The strength margin decided by the concrete producer 
 The variability of concrete components and production (at location of production) 
 The seasonal variability (typically, with a lower concrete strength in summer) 
 The variability of manufacture, curing and testing of control specimens 

The difference between ,c cylf  and ,c aisf  (accounting for with coefficient is ) depends on: 

 The effects of casting, vibration, curing and temperature 
 The effect of consolidation of fresh concrete (mainly bleeding, refer to [34]) 
 The anisotropy (difference between horizontal and vertical concrete strength resulting 

from bleeding, refer to [34]) 
 The effect of transport and W/C (water to cement ratio) modification between mixing 

and casting 

The difference between ,c aisf  and ,c isf  (accounted for with coefficient core actual  ) depends 

on: 
 The damage sustained during core extraction 
 The potential uncorrected effect of length-diameter ratio (theoretically, the concrete 

strength ,c isf  should refer to cores with an aspect ratio 2:1, but the actual aspect ratio 

can be slightly different or the relationship for transforming the concrete strength from 
different aspect ratios can be inaccurate) 

 The core diameter (since the cores are typically smaller than the control specimens 
used to measure ,c cylf , there is a size effect [35, 36, 37, 38, 39]) 

 The effect of the moisture condition on the core [39, 40, 41, 42] 

The distribution parameters of the variables defining the different definitions of concrete 
compressive strength can be determined based on the following available information: 

 ,c cylf : as a part of the quality control after production 

 ,c isf : statistical evaluation of the results of core testing 

 core actual  : by comparing the results of cylinder tests and cores extracted from cylinders 

 is : by comparing the results of cylinder tests and cores extracted from a structural 

member, accounting also for core actual   
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 Statistical values of the concrete compressive strength fc,cyl 

In the past, the standard deviation of fc,cyl (or fc,cube) has often been defined based on the 
work by Rüsch and co-workers [43], who concluded that, for different types of construction 
sites and quality controls, a standard deviation of about 5 MPa can be assumed for fc,cube > 
30 MPa (see Fig. 8). Interestingly, the referred authors also observed that the standard 
deviation was smaller for mass production or for ready-mix (they found a reasonable fit with 
a constant coefficient of variation Vfc 0.136  for mass production (at main plant) and Vfc

0.115  for ready-mix concrete, see Fig. 8). 

 

Fig. 8 Standard deviation of the cube strength as a function of the mean value of the 
concrete strength according to [43] for all types of construction sites and productions (green 
markers for mass production red markers for ready-mix concrete and blue markers for other 
types, reproduced based on the data from [43]). 

Since the work by Rüsch et al. [43] (more than 50 years ago), the concrete production and 
the quality control have evolved significantly, so that more updated statistical data can 
nowadays be considered. According to Fig. 9, which shows the results by Foster et al. [30], 
Bartlett & MacGregor [44] and Torrenti [45], the CoV of concretes produced in the last 
decades is lower than the values presented by Rüsch et al. [43]. In addition, as shown by 
Torrenti & Dehn [46], who considered additional recent data (particularly from Germany), 
the CoV decreases for higher concrete strengths. To account for such effect, the mentioned 
authors proposed as a best fit the following relationship: Vfc

2/30.100 ( / 40)cf
  , see dashed 

curves in Fig. 9. Nevertheless, as it is later shown in this document, this effect has little 
influence on the calibration of the partial factor, so that Vfc 0.100  for in-situ concrete and 
Vfc 0.060  for precast concrete can considered without a significant loss of generality. 

 

Fig. 9 Coefficient of variation of concrete compressive strength as a function of the mean 
value according to (a) Foster et al. [30], Bartlett & MacGregor [44], Torrenti [45] and 
Torrenti & Dehn [46]. 
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 Statistical values of factor ηis for new in-situ structures 

It is well-known since more than a century that the concrete compressive strength in an 
actual structure differs from the concrete strength measured on control specimens (cubes 
and cylinders). It is further known that the concrete compressive strength can even vary 
within a structural member resulting from casting (for a comprehensive literature review 
since 1915, see Moccia et al. [34]). This phenomenon has been confirmed by numerous 
researchers who have compared the strength of control specimens (fc,cyl or fc,cube) to the 
strength of cores with the same aspect ratio (2:1 for cylinders and 1:1 for cubes) extracted 
from the actual structure. Since one of the most relevant effects on the actual in-situ 
concrete strength attributes to the phenomena occurring during the first minutes/hours after 
casting (mainly the bleeding process, where the water in excess in fresh concrete migrates 
upwards due to the settlement of solid particles which leads to an accumulation of water 
on the upper layer of concrete and particularly under the coarse aggregates [34]), the 
distribution of is  mainly depends on: 

 The location where the cores are extracted (typically 1.0is   in the upper layer and 

1.0is   in the bottom layer, see Fig. 10), and 

 The direction of the core extraction (typically, the horizontal concrete strength in the 
upper layers is more affected by the bleeding phenomenon than vertically extracted 
cores [47]). 

 

Fig. 10 Ratio is  between the concrete strength in the structure fc,ais and the cylinder 
strength fc,cyl, red and blue markers refer to the top and bottom part of the member, 
respectively (has been calculated as , , , , / ( / ) /c ais c cyl c is core actual c cylis f f f f    ) assuming 

0.95core actual    , figure adapted from Moccia et al. [34]. 

In addition to the comparison between extracted cores and control specimens, also 
compression tests on larger specimens extracted from an actual structural member confirm 
this effect (see Fig. 11). As shown by Moccia et al. [34], this effect can be accentuated by 
the presence of transverse reinforcement (due to the development of voids under such 
reinforcement), although it can also be mitigated in case confinement reinforcement is 
provided. 
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Fig. 11 Ratio between the average compressive strength measured on specimens cut out 
from Column CK1, CM2 and Beam BM1 ( fc,ais ) and the cylinder strength fc,cyl (adjusted with 
factor kt accounting for the effect of the speed of loading, refer to [34]): specimens extracted 
from a 3m high column (CK1), a 1.05m column (CM2) and a beam (BM1) under in-situ 
conditions (the blue curve and the blue dot refer to unreinforced members, the red and the 
green curve refer to members with transverse reinforcement not acting as confinement), 
adapted from Moccia et al. [34]. 

For determining the statistical values of coefficient is  to be used for the calibration of the 
partial factor γC, the following approaches can be adopted: 
1. By statistical evaluation of tests available in literature; 
2. By ensuring full consistency with the standard for the assessment of in-situ compressive 

strength in structures; 
3. By referring to the assumptions for calibrating other structures. 
Regarding the first approach, the statistical data of the values plotted in Fig. 10 can be 
used: 
 Top layer (upper 20% of the height, red markers in the figure): 40 values, 0.95is  ,

0.095isV   

 Bottom layer (bottom 20% of the height, blue markers in the figure): 23 values, 
1.05is  , 0.105isV   

If one assumes that the measurements from the top and the bottom layers are equally 
represented, then the statistical values become: 1.00is  , 0.11isV  . 
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It has to be noted that these values refer mostly to results of laboratory tests where 
compaction and curing have been most likely conducted in a more accurate manner than 
in practice. Therefore, for practical cases (at least for in-situ structures), one can expect 
the statistical values to be less favourable (especially the coefficient of variation). On the 
other hand, the observed variability can partially be related to the difference between the 
actual in-situ strength ,c aisf  and the core strength ,c isf  (variability of coefficient core actual  , 
see Fig. 7). With this respect, the results of a comprehensive experimental programme by 
Haavisto et al. [39] show that for cores ≥ 80 mm (height and diameter), the CoV of the 
strength of cores extracted from cylinders produced from the same batch is slightly higher 
than the CoV of the cylinder strength (5.3% instead of 3.7%) and the CoV of factor ηcore-

actual , (in this case, , ,c ais c cylf f ) is 5.4% (a similar value of Vηcore-actual is given by Bartlett et 
al. [44]: between 4% and 5.5% for cores Ø100-150 mm). By combining these data with the 
CoV of 0.11 reported above, the CoV of is  becomes (0.112-0.0542-0.0532+0.0372)1/2 = 
0.088. 

A detailed investigation based on the interpretation of 1080 cores extracted from members 
cast using 108 mixes is presented by Bartlett & MacGregor [48, 49, 50]. The statistical 
values of is  based on cores extracted from mid-height of the member (or averaged 
between top and bottom parts) are: 

 0.948is   for members with h < 450 mm, 

 1.032is   for members with h ≥ 450 mm, 

 0.139isV   for all members. 

 
In what refers to the variability within the member (mostly related to the location over its 
height), Bartlett & MacGregor [50] proposed to consider it with an additional variable with 
a CoV of: 0.063is locationV    for laboratory cast columns, 0.069 for laboratory cast shallow 
members and 0.099 for the case of an in-situ bridge. A more recent evaluation of these 
statistical data performed by Bartlett [51], and conducted for the calibration of the Canadian 
Standard A23.3-4, led to the following conclusions: a value of 0.113isV   should be 
adopted for cast-in-place members, whereas the additional coefficient of variation to 
account for the geometrical variability is locationV   given by Bartlett  [51] is confirmed.  

With respect to the second approach (consistency with the standard for the assessment of 
in-situ compressive strength in structures), EN 13791:2018 (section 9) [33] and Annex I of 
EN 1992-1-1:2023 contain the following relationship: 

,

0.85
ck is

ck

f
f   (20) 

Which can be justified as follows: 

, ,c is is core actual c cylf f      (21) 

Assuming lognormal distributions and independency between all random variables, the 
CoV, the mean and the characteristic values of ,c isf  become: 

, ,cm is is core actual cm cylf f       (22) 

2 2 2
, ,fc is is core actual fc cylV V V V      (23) 

, , ,exp( 1.645 )ck is cm is fc isf f V     (24) 
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and since : 

, ,exp( 1.645 )ck cm cyl fc cylf f V      (25) 

the relationship between ckf and ,ck isf  can be expressed as: 

2 2 2
, ,

,

exp(1.645( ))is core actual fc cyl fc cyl

ck ck is
is core actual

V V V V
f f

 

  




  
 


 (26) 

Considering the assumed distribution parameters for the basic variables listed in Tab. 5, 
Eq. 26 becomes , / 0.86ck ck isf f , which is approximately equivalent to Eq. 20. 

Tab. 5 Distribution parameters for basic variables related to fck,is 

 Coefficient of variation Vi Bias factor i  

cf  0.100 fcm/fck = exp(1.645Vfc) 

is  0.120 (assumed) 1.00 (For cores extracted from all regions) 

core actual   0.05 (assumed according to [39] and Bartlett & 
MacGregor [44]) 

0.95 (1/1.06 according to [52]) 

It should be noted that in the derivation of the relationship between ckf  and ,ck isf  in Eq. 20 
(Annex I of EN 1992-1-1:2023 [14]), the bias factor of is  is taken as 1.00 assuming that 
cores are extracted from all regions in the structure (see Tab. 5). This is a conservative 
assumption since Eq. 20 is usually used to estimate the characteristic cylinder strength ckf  
based on the value of ,ck isf  (characteristic strength of cores extracted from existing 
structures).  

With respect to the calibration of other standards, the following distribution parameters 
have been assumed: 
 Calibration of in EN 1992-1-1:2004: according to [23], the value 1.50C   accounts for 

a coefficient 0.85is   without an explicit mention about its variability. According to 
König et al. [53], this value (already considered in the justification of in ENV 1992-1-
1:1991 [54]) has been intended as a characteristic value; 

 Canadian Standard A23.3-04 [11]: according to Bartlett [51], the resistance factor for 
concrete in compression has been calibrated on the basis of following values: 1.03is 
, 0.113isV   (these values referring to the average strength in the member). To account 
for the in-situ strength variability within the member as well as the number of batches 
used to case the member, an additional factor is considered (whose mean value is 1.00 
with an CoV equal to 0.13 for cast in-place structures, see also [52]); 

 Australian Standards AS3600:2018: according to [55] and [30], the calibration of the 
resistance factor for concrete in compression in the latest Australian Standard is based 
on following assumptions: 0.88is  , 0.12isV   (these values being based on a 
previous work [56]). The work by Bartlett & MacGregor [49] is also mentioned as a 
confirmation of the assumed value of isV . 
 

Based on these considerations, the following distribution parameters for is can be 

adopted: 

 Mean value: 0.95is   

 Coefficient of Variation: 0.12isV   

With respect to the mean value, it accounts for the unfavourable case where the internal 
force has been transferred across the weakest part of the member as in columns (Fig. 12a), 
walls not sensitive to buckling (as for instance walls for the introduction of concentrated 
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loads, see Fig. 12(b)), members with sagging moments (Fig. 12(c)) or compression fields 
in large members subjected to shear forces as shown in Fig. 12(d) and (e). 

 

Fig. 12 Examples of structural members where the region with poor concrete quality can 
be governing (Figure adapted from [57]). 

It should be noted that the above-mentioned effects shall be also considered in the 
derivation of the distribution parameters of the model uncertainties. This is accounted for 
by deducing the effect of the variability of is  (reasonable values reproducing the conditions 
in test specimens) from the distribution parameters of the model uncertainties assumed 
based on the statistics of test data (as proposed by Ellingwood et al. [27]). 

 Statistical value of the geometrical uncertainties for calibrating γc 

As mentioned above, columns can be considered as typical members where the partial 
factor C  plays a major role. For the dimensions of the cross sections of these members, 
a standard deviation of 6 mm can be assumed according to Ellingwood et al. [27]. Since 
this value refers to common dimensions, it should be corrected accordingly to a similar law 
as prescribed for the construction tolerances. As shown in Fig. 13, the evolution of the 
tolerances according to EN 13670:2009 [29] can be reasonably described by a power law 
with an exponent of 1/3 in the region of interest, so that following standard deviation of the 
column width b can be adopted: 

1/36 ( / 300)b b    [b in mm] (27) 
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Fig. 13 Comparison of the evolution of the assumed standard deviation of the column width 
(Eq. 27) with the tolerance according to EN 13670:2009 (a) and (b) resulting CoV of the 
column area (Eq. 28). 

Assuming that for a square column with dimension b b , both dimensions are fully 
correlated (a conservative assumption), the CoV of the concrete area becomes: 

2/32 0.04 (300 / )Ac bV V b               [b in mm] (28) 

As shown in Fig, 13, the CoV of the column area varies between 0.01 and 0.05 for columns 
with standard dimensions. It should be noted that the factor 2 in Eq. 28 is replaced by 2  
in case the two dimensions of the cross section are statistically independent. Nonetheless, 
as the geometrical uncertainty associated to the cross-section area of the column is not 
dominant compared to material and model uncertainties, a constant value 0.04AcV   can 
be assumed (the influence of this choice will be discussed later). 

 Statistical values of the model uncertainty for calibrating γc 

The comparison between the experimental results of short column members (without 
second order effects) and calculated values according to the provisions of Section 8.1 of 
EN 1992-1-1:2023 [14] has been conducted in [58] for the cases without and with load 
eccentricity. For cylinder strengths not higher than 100 MPa, the mean values of the ratio 

,exp ,/R R calcN N  is 1.02 and its coefficient of variation is 0.087. Since the latter is affected by 
the uncertainties in the reported data (typically nominal dimensions of the test specimens, 
variability of the strength of the control specimens fc,cyl and is ), the actual coefficient of 
variation of the model uncertainty can be reduced according to Eq. 14. With 0.02testV   
(variability of load measurements in tests), 0.02AcV   (variability of cross-section area in 
tests), 0.03fcV  (variability of concrete cylinder strength in tests) and 0.03isV  , the CoV 
of the model uncertainty CV  is reduced from 0.087 to 0.070. 

 Calibration of γc 

The coefficient of variation and the bias factor of the resistance can be calculated on the 
basis of the uncertainties defined above using: 

2 2 2 2 2 2 2 20.100 0.120 0.040 0.070 0.176RC fc is Ac CV V V V V         
 (29) 

( / ) exp(1.645 0.100) 0.95 1.00 1.02 1.142RC cm ck is Ac Cf f              
 (30) 
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By using Eqs. 8- 10, adopting 0.8R  , 3.8tgt   and on the basis of the above-mentioned 
distribution parameters, the partial factor C  becomes: 

   exp exp 0.8 3.8 0.176
1.49 1.50

1.142

R tgt RC

C
RC

V 




   
     (31) 

which confirms current practice. 

It has to be noted the CoV of the concrete compressive strength measured on control 
specimens Vfc intervenes both in the numerator and in the denominator of Eq. 31, so that 
it has a limited influence on the resulting partial factor γC (see Fig. 14a). This is the reason 
why neglecting the influence of the variation of CoV as a function of the concrete 
compressive strength on the CoV of the reference resistance model RCV  is seen as an 
acceptable approximation. With respect to the CoV of the variation of the geometrical 
uncertainty AcV , also in this case, neglecting the influence of the cross-section area 
remains as a reasonable approximation (see Fig. 14b). 

 

Fig. 14 Influences on the resulting partial factor C  of (a) the CoV of the compressive 
strength (of control specimens, see also Fig. 9) and (b) of the size of the cross section (see 
also Fig. 13). 

In case the concrete strength is assessed according to Section 8 of EN 13791 [33], the 
uncertainties of fc,cyl and ηis are merged in the derived distribution parameters based on the 
statistics of the core strength (Vfc,is,corr and μfc,is). For this reason, the terms Vfc,is,corr and μfc,is 
replace the terms 2 2 0.5( )fc isV V  and ( / )cm ck isf f   in Eq. 29 and 30) based on the 
assumption of a Student t distribution.  

It should be noted that the applicability of the partial factors γC and γS to other structural 
resistance models depends on the shape of the resistance model (in terms of the sensitivity 
to material and geometrical variables) and on the corresponding model uncertainty. A 
discussion regarding the applicable condition of γC and γS to other resistance models is 
provided in Appendix I of this work. 
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 Partial factor for shear and punching shear without shear 
reinforcement 

The calibration of the partial factor for the punching shear resistance model is presented in 
the following in a similar manner as presented by [20]. A similar work by [21] for the shear 
formulae has shown similar results, so that the same partial factor γV can be used for both 
cases. This is an expected and acceptable approach considering that the formulae for 
shear and for punching shear share the same theoretical background and show evident 
similarities [22]. 

For the simple case of internal medium-size square columns supporting not too slender 
slabs, the design value of the punching shear resistance formula (refer to Formulae 8.94, 
8.92 and 8.97 of EN 1992-1-1:2023 [14]) can be reformulated as: 

1/3 1/3 1/3 1/3 1/6 1
, 0.5

25.1
Rd c V s ck dg p e

V

V b d A f s d a 


           (32) 

where b0.5 is the control perimeter, Vd  is the shear-resisting effective depth, s is the spacing 
of the hogging flexural reinforcement, ddg is a size parameter describing the failure zone 
roughness (depending on the concrete type and its aggregate properties), ap is the 
maximum distances from the centroid of the control perimeter to the point where the 
bending moment in the slab is zero and e  is a coefficient accounting for the concentrations 
of the shear forces along the control section. For medium-sized columns ( 1.5 vb d ), the 
square root of the control perimeter b0.5 can be approximated as: 

1/3 1/6
0.5 4 2.64v vb b d b d      (33) 

where b  is the column width, so that Eq. 32 becomes: 

7/6 1/3 1/3 1/3 1/3 1/3 1/6 1
,

66.3
Rd c V s ck dg p e

V

V d b A f s d a 


           (34) 

For the most sensitive variables appearing in Eq. 32, namely Vd  and ckf  (where the 
sensitivity depends on the exponent in Eq.32 and on their variabilities represented by their 
corresponding CoVs), the same coefficients of variation iV  and bias factors i  adopted for 
calibrating γS and γC can be used for calibrating γV. For the other variables, the following 
assumptions can be made: 

 Column width b : as defined in Eq. 27, namely 0.02V   for 300b   mm and 1.00   

 Reinforcement area sA : 0.02V   and 0.97  (according to [59]) 

 Bar spacing s: 0.05V   and 1.00  (it is assumed that the governing reinforcement is 
distributed over a width of 2.0 m with a standard deviation of 100 mm) 

 Size parameter ddg describing the crack roughness on the basis of maxD : 0.10V   and 
1.00   

 Distance ap: 0.15V   and 1.00  (this variability is related to the errors in calculating 
the position of point of contraflexure, namely stiffness assumptions, calculation 
methods, etc., the proposed values are based on author’s experience) 

 Coefficient e : considered in this calibration as deterministic, considering that its 
variability has already been considered in the provisions defining it. 

The variabilities of the these less sensitive variables are lumped in a random variable 
defined as “Residual uncertainties”, with the following distribution parameters: 

2 2 2 2 2
,

0.02 0.02 0.05 0.10 0.15
( ) ( ) ( ) ( ) ( ) 0.046

3 3 3 3 6res VV         (35) 
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1/3 1/3 1/3 1/3 1/ 6
, 1.00 0.97 1.00 1.00 1.00 1.00res V        (36) 

 Statistics of the model uncertainty for calibrating γv 

The comparison between test experiments on isolated slab specimens and the calculated 
resistance according to subsection 8.4 of EN 1992-1-1:2023 (using mean values provided 
in test reports) gives a bias factor between 1.07 and 1.09 and a coefficient of variation 
between 0.11 and 0.13 [60]. Also in this case, the coefficient of variation V  of the ratio 

,exp ,/R R calcV V  contains the uncertainties related to the reported data in the test reports and 
can be corrected adopting Eq. 14 (suitably adapted accounting for the different exponents 
in Eq. 34). With this respect, the following distribution parameters can be considered: 

 Measurement and definition of the failure load: 0.03V   and 1.00    

 Shear resisting effective depth dv: 0.01V   and 1.00   (in most of recent tests, the 
effective depth has been measured on saw-cuts after testing) 

 Concrete cylinder strength fc,cyl: 0.03V   and 1.00   (CoV according to EN 12390-
1: 2001, Table 1) 

 In-situ factor is : 0.05V   and 1.00   

 Column width b: 0.01V   and 1.00   

 Reinforcement area As: 0.02V   and 0.97  (almost all test reports provide nominal 
values only) 

 Bar spacing s: 0.00V   and 1.00   (the number of bars in the width of the control 
specimens can be considered as deterministic) 

 Size parameter ddg describing the crack roughness on the basis of maxD : 0.10V   and 
1.00   (almost all test reports provide specified values) 

 Distance ap: 0.05V   and 1.00   (the variability depends on the position of the load 
introduction, the distance between the slab edge and load introduction and accounts 
also the act that some of the tests are not perfectly axisymmetric) 

 Coefficient e : 0.015V   and 1.015  (this is due to the fact that punching tests are 
never perfectly centric; for the eccentricity, the vectorial average is null, but the scalar 
average is larger than 0). For the test eccentricity, it is assumed 5e  mm and 5e 
mm; e is calculated according to Table 8.3 of EN 1992-1-1:2023 for a typical test 
specimen with bb =400 mm 
 

With these distribution parameters, the CoV of the model uncertainty is reduced from 0.12 
to 0.107 and the bias factor increased from 1.07 to 1.10. 
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 Calibration of γv using the nominal value of the effective depth 

For the sake of simplicity, the exponent of the effective depth in Eq. 34 is assumed to be 
equal to 1.0. With this simplification, the CoV and the bias factor of the resistance function 
can be calculated accounting for the exponents in Eq. 34 as : 

     

2 2

2 2 2

2 2
2 2 2

3 3

0.100 0.120
0.050 0.107 0.046 0.137

3 3

fc is
RV d V resV

V V
V V V V



   
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  

           
     (37) 

  
1 3
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RV is d V resV

ck

f
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 
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 (38) 

Adopting 0.8R   and 3.8tgt  , the partial factor becomes: 

   exp 0.8 3.8 exp 0.8 3.8 0.137
1.40

1.085
RV

V
RV

V



   

     (39) 

This result is similar to the value obtained for γC, but it has to be noted that the two partial 
factors have a significant different origin. In the case of γC, the dominant uncertainties are 
related to the material strength variables (factor is and fc,cyl ), whereas in the case of γV, 
the dominating uncertainty is related to the resistance model since the concrete strength 
appears in the resistance function with an exponent of 1/3. As shown in Fig. 15, where the 
contributions to the CoV of the resistance model as a function of the effective depth are 
depicted, also the effect of the geometrical uncertainty can become significant for thin slabs 
(the value of VRV = 0.137 given above is valid for 200vd  mm). These findings are 
important, since in the adjustment of the partial factors in the case of the assessment of 
existing structures, the assessment of the concrete strength can have a significant 
influence on γC, whereas its influence on γV is significantly smaller.  

  
Fig. 15 Contribution of different basic uncertainties to the coefficient of variation of the 
resistance function according to Eq. 37 as a function of the effective depth ( ,R i  represents 
the FORM sensitivity factor for each basic uncertainty, calculated as , /R i i i RVn V V   ). 
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 Calibration of γv using the design value of the effective depth 

The fact that the variability of the effective depth can become significant for thin members 
(in a similar manner as observed in the calibration of γS) leads to a slightly insufficient value 
of the reliability index   for those cases if a constant value of the partial factor 1.40V   is 
adopted (see the blue curves in Fig. 16a-b for 200Vd  mm). On the other hand, 1.40V   
is overly conservative for thick members. To avoid these shortcomings, the verification of 
the shear and punching resistances of members without shear reinforcement may be 
conducted using design values of the shear resisting effective depth. As shown in Fig. 16b 
(refer to red curves), an almost constant safety level is obtained using 1.29V   and 

15d nomd d  mm. This possibility has been adopted in EN 1992-1-1:2023. 

 

Fig. 16 Required partial factors V  to achieved the target reliability index 3.8tgt  (a) and 
(b) obtained reliability indexes with the assumed partial factors V (blue curves refer to the 
approach using nominal values of the effective depth whereas red curves refer to the case 
using design values of the effective depth). 
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 Conclusions 

This work presents a new calibration of the partial factors for the design of reinforced 
concrete structures by applying the methodology proposed by the European standard for 
Structural Design EN 1990:2023 [7] together with the most relevant data associated to the 
different sources of uncertainties available in the literature. In addition, an explicit 
description of the methodology and the assumed statistical values of all uncertainties allow 
the adjustment of the partial safety factors in case more precise values for a given situation 
are available. This is typically the case for the assessment of existing structures, when 
geometrical and material values are assessed on site, or when more refined verification 
methods are used (as for instance Non-Linear Finite Elements Analysis Methods). This 
procedure as well the statistical values described in this section have been adopted by the 
2nd generation of Eurocode 2. Such calibration is performed in a transparent and simple, 
yet rigorous, manner on the basis of the content included in Annex A of the 2nd generation 
of Eurocode 2 (EN 1992-1-1:2023 [14]). The most relevant findings presented in this 
section are summarized in the following: 
 The application of the exponent sensitivity analysis approach to five of the most 

common resistance models for RC structures (axial tension, axial compression, 
bending, shear with shear reinforcement, punching shear of slabs without shear 
reinforcement) enables showing that the exponents associated to the different 
geometrical and material parameters vary from one case to the other, which indicates 
that the governing uncertainties can also vary correspondingly. The results of such 
analyses show that while a material factor approach ( S  and C ) can be applied to a 
wide range of typical resistance models (axial tension and compression, bending, shear 
in the presence of sufficient shear reinforcement; where the material and the 
geometrical uncertainties are governing), a resistance factor approach ( V ) is more 
appropriate for other specific resistance models (shear without shear reinforcement and 
punching shear; where the geometrical and the resistance model uncertainties govern). 

 The model for the bending resistance of suitably reinforced concrete sections is used 
as reference for the calibration of the partial factor for the yield strength of steel 
reinforcement. For the calibration of the partial factor for the concrete compressive 
strength, the model for the resistance of columns against axial compressive force is 
used. Both resistance models are commonly used in practice and represent cases 
where the material strengths variables have a significant influence (with an exponent 
close to 1) together with the model uncertainties. 

 For the steel yield strength, the calibrated value of the partial factor is equal to S =1.15 
confirming current practice if the geometrical uncertainties are to be covered by the 
material partial factors. This approach can lead to unsafe designs for slabs with an 
effective depth smaller than 200 mm. It is shown that a constant safety level and a more 
economic design could be obtained if design values of the effective depth are adopted 
together with a reduced partial factor S . Such approach has been adopted as an 
alternative in the 2nd generation of Eurocode 2. 

 For the concrete compressive strength, the calibrated value of the partial factor is equal 
to C =1.50, confirming again current practice. This section demonstrates how the 
different sources of uncertainties related to the production, transportation, casting and 
testing of concrete are considered in the calibration of its associated partial factor. 

 With respect to the resistance partial factor V  for punching shear and shear resistance 
of members without shear reinforcement, its calibration is shown for the former 
resistance model, yielding a value of V =1.40 (if geometrical uncertainties are to be 
covered by this factor also). A similar value could also be obtained by using the shear 
resistance model of members without shear reinforcement. Like the case of the material 
factor S , it is also observed that a constant value of V =1.40 can lead to unsafe design 
of slabs with a shear resisting effective depth smaller than 200 mm. Eventually, it is 
shown that more constant safety level and more economic designs can be achieved if 
design values of the shear resisting effective depth are combined with a lower value of 
the partial factor V . Such approach is also proposed as alternative in the 2nd generation 
of Eurocode 2. 
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2 Model uncertainties in action effects and load 
bearing capacity calculation in statically 
indeterminate reinforced concrete structures 

 Introduction 

The design process of reinforced concrete structures typically consists of three main steps. 
First, the structure is conceived considering the constrains and requirements. Experience 
and empirical rules (e.g., span/depth ratios) govern this phase, which results in the 
definition of the structural members geometry. Second, the relevant load cases are 
identified and the action effects are calculated by means of idealised models. Finally, with 
the geometry and the action effects for each section, the reinforcement is designed and 
dimensioned so that the sectional resistance is larger than the action effects. If the initial 
geometry of the structure is not suitable, the process can be repeated. 

Typically, to calculate actions effects in statically indeterminate structures, engineers 
assume a linear-elastic uncracked mechanical behaviour of the structure, neglecting the 
influence of the reinforcement on the stiffness. The main advantages of these assumption 
are that the stiffness of the members does not depend on the load level and consequently 
no iteration is required. Thus, the process is direct and the results are easily obtainable, 
making these assumptions suitable for practical applications. However, for statically 
indeterminate systems (Fig. 17a and 17b), a linear-elastic uncracked behaviour does not 
provide a completely realistic prediction of the action effects. In fact, because cracking is 
neglected, so is the ensuing redistribution of internal forces. 

In spite of that, the sectional resistance is generally calculated considering cracking of 
concrete and non-linear behaviour of materials, assuming that each section or member can 
reach its design resistance. This assumption is not consistent with the assumptions for the 
calculation of the stiffness, however, it is certainly true if all sections have a sufficient 
deformation capacity. However, a premature failure of the system can occur if this is not 
the case. To illustrate this scenario, Fig. 17c shows the evolution of the bending moment 
(in absolute value) in the sagging and hogging section of a continuous beam under a 
distributed load q (see Fig. 17a [61]). Several regimes can be observed: (1) uncracked 
behaviour; (2) cracking in the hogging region, with the hogging moment increasing less 
than the sagging moment; (3) cracking of the sagging region, with the hogging moment 
increasing again more rapidly and (4) plastic regime with reinforcement’s yielding in the 
hogging region. In the presented case, after some plastification of the reinforcement in the 
hogging region, due to insufficient deformation capacity (failure of the compression zone 
or of the reinforcement in tension), the sagging section is unable to reach its design 
resistance, leading to failure of the system for a load q* < qd, which is the theoretical failure 
load predicted assuming an elastic uncracked mechanical behaviour. Compared to the 
predicted linear elastic behaviour (dashed lines in Fig. 17c), not only the actual load-
bearing capacity can be underestimated (q* < qd), but also in terms of actual internal forces, 
deviations can be expected (differences between continuous lines and dashed lines). 
These deviations are one of the components contributing to the uncertainty in calculating 
action effects. 
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Fig. 17 Redistribution of forces: (a) continuous beam, (b) frame system; (c) bending 
moment redistribution between the hogging and the sagging section of a continuous beam 
with regimes (1)-(4) (see explanation in the text) and premature failure of the hogging 
section. 

To ensure structural safety, most current codes of practice adopt a semi-probabilistic 
design approach. Accordingly, limit state verifications are performed by means of design 
values and adequately calibrated Partial Safety Factors (PSFs), which cover uncertainties 
related to geometry, materials, actions effects and models, as shown in Fig. 18. Regarding 
the uncertainty in model assumptions (idealization of the actual structure), previous 
research was mainly focused in investigating the model uncertainty related to the sectional 
resistance, while little effort was put in investigating the uncertainty in action effects. 
Depending on the type of action, for the ratio of the actual internal force to the calculated 
value, the JCSS Probabilistic Model Code [28] recommends a log-normal distribution with 
mean equal to 1.0 and CoV between 0.05 and 0.2. However, the origin of this 
recommendation is not clear. As stated in the JCSS Probabilistic Model Code (part 3, 
section 3.9.3), to obtain those values “… a more or less standard structural Finite Element 
Model has been kept in mind” without specifying the adopted mechanical behaviour. The 
authors assume that the recommended values are based on a linear elastic uncracked 
mechanical behaviour. 

 

Fig. 18 Basic uncertainties and corresponding partial safety factors (PSFs), figure adapted 
from [2] and [65], notation consistent with [7]. 
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Regarding codes of practice, in EN 1990:2002 [2], the model uncertainty in action effects 
is implicitly covered by the partial factors for permanent and variable actions (γG and γQ). 
However, for particular verifications, the designer is allowed to decouple the model 
uncertainty in action effects, γSd, from the uncertainty in the representative values of 
actions, γg and γq. In those cases, the recommended value for γSd is between 1.05 and 
1.15, consistent with the prescriptions of the first codes dealing with the topic, which 
proposed a factor γSd equal to 1.15 [64]. This value was originally proposed to consider 
uncertainties related to the calculation methodology and tools (“moderately careful or 
uncertain studies and calculations”, in French “études et calculs moyennement soignés ou 
incertains”, [64]), while statically indeterminate systems and redistribution of forces were 
not explicitly mentioned. Additional literature review on this topic can be found in [65]. In 
the latest available draft of EN 1990:2023 [7], the model uncertainty in action effects is still 
covered by the partial safety factor for permanent and variable actions, presented with 
slightly different notation (γF = γf ⋅ γSd). It is also specified that γF may be used for both linear 
and non-linear calculation, although the different verification types may differ: local 
verifications for linear analyses, global verifications for non-linear analyses. In 
EN 1990:2023 [7], except for some specific design cases, no recommended values of γSd 
are specified. It is worth noting that one of the possible disadvantages of considering γSd 
on the actions side is the impossibility to consider the mode of failure of the system (brittle 
vs. ductile), as it depends on the sectional resistance model. 

Interestingly, the approach of codes of practice nowadays does not account for the type of 
system in terms of uncertainties in modelling and determination of action effects. For 
statically determinate systems, the calculation of action effects is only influenced by 
equilibrium and geometry, whereas the stiffness and the mechanical behaviour have no 
influence on the results, provided that second order effects can be neglected. For statically 
indeterminate systems, however, additional phenomena and basic uncertainties contribute 
to the uncertainty in action effects, as can be schematically observed in Fig. 18, adapted 
from [65] and [2], notation consistent with [7]. As shown in Fig. 17, one of the main 
components influencing the calculation of action effects is modelling of the mechanical 
behaviour. Indeed, any model is a simplification of the actual structure and leads to a 
different degree of accuracy and precision. Generally, more complex models lead to more 
precise but not necessarily more accurate results and they require additional parameters 
and calculation time, often involving iterative processes and more complex interpretation 
of results. Also, time-dependent deformations due to creep can influence the uncertainties 
in action effects. Another phenomenon that can increase the uncertainty in action effects, 
is the system change during construction (casting of concrete parts which constitute a 
statically indeterminate structure at different times time or/and assembly of precast 
members). Generally, in the design process, the model of the structure is generated as a 
whole and the totality of the load is applied at once, including self-weight. In actual 
structures, however, self-weight is applied according to construction stages, permanent 
load is incrementally applied after construction and live loads are applied sporadically. In 
statically indeterminate systems, this sequential application of the loading can lead to 
internal force redistributions, increasing the uncertainty in action effects. In addition, the 
internal forces are affected by the uncertainties related to the actual creep behaviour, the 
age of concrete at system change and the time at activation of self-weight (removal of 
propping or scaffolding). Finally, combinations of different actions, which is generally a task 
left to the designer, can lead to further uncertainties in calculating action effects.  

As numerical models evolve, they are becoming more and more complex, giving designers 
many options to model a structure. For instance, the modelling of boundary conditions, the 
type of elements, the interaction between different element types and the adopted solver 
can influence the calculated action effects. As there is no standard for modelling structures, 
these choices are left to the discretion and the experience of the designer, leading to further 
uncertainties in the value of action effects. 

The aim of this work is to contribute to quantifying the model uncertainty in action effects 
and load-bearing capacity calculations of reinforced concrete structures and clarify whether 
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the failure mode of the system influences this uncertainty. This investigation focuses on 
uncertainties related to the mechanical behaviour of the structure, see highlighted box in 
Fig. 18, by comparing tests results and calculated values. Uncertainties related to 
geometrical variability effects on model uncertainties and system changes are not 
considered. Based on updated distributions, the partial safety factor γSd is calculated by 
means of parametric analyses and case studies. Finally, uncertainties covered by γSd are 
clarified and practical implications are discussed. 

 Investigated structural system and practical relevance 

Since there is little experimental data available on statically indeterminate systems, it 
cannot be used to perform statistical analyses. To overcome these difficulties, the 
experimental response of statically indeterminate systems is obtained by assembling the 
response of simply supported beams tested in a 3-point bending setup. This technique has 
already been used by [65] with structural members exhibiting brittle failure modes. It is also 
applicable to reinforced concrete systems where both brittle and ductile failure modes can 
occur. The deformability of supports is also considered by supporting beams on reinforced 
concrete columns tested under concentric uniaxial load. 

 

Fig. 19 (a) Assembled system with beams on infinitely rigid supports and (b) supported by 
columns; (c) experimental response of the system (black) assembled with beams (red and 
blue) and linear-elastic uncracked model prediction (dashed); (d) Force-deflection (F-δ) 
response of a beam tested in a 3-point bending setup (red), a column tested in compression 
(blue) and a beam supported by two columns (black). 

For the case presented in Fig. 19a, the response of the assembled system in terms of 
force-displacement relationship (F-δ) is obtained by combining the response of various 
beams crossing at midspan. For compatibility reasons, the force applied to the system for 
a given displacement is the sum of the forces required to produce that same displacement 
in each of the beams composing the system, see Fig. 19c. For the statically determinate 
systems with a beam supported on columns, which constitute the indeterminate system 
shown in Fig. 19b, the displacement at midspan is obtained by adding the displacement of 
both members as shown in Fig. 19d. 

The theoretical response predicted by the model is obtained by using the same technique, 
where the F-δ response of each beam is calculated using several models. As an example, 
Fig. 19c shows the experimental F-δ response of a system composed of two beams and 
the response of a linear elastic model. It is important to note that the model uncertainty 
related to the sectional resistance calculation is not considered. For this reason, the 
predicted resistance of each beam is equalled to the experimental resistance (in Fig. 19c 
R1,mod = R1,exp and R2,mod = R2,exp). With this assumption, the load-bearing capacity 
predicted by the elastic model for the system presented in Fig. 19c is lower than the 
experimental one (Rsys,exp), which results from the superposition of the two experimental 
load-displacement curves. 
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Fig. 20 (a) F-δ response of an assembled 2-beams system; (b) double-clamped beam and 
assumed M-χ relationship; (c) experimental M-χ relationships of beams used in the 
comparison; (d) comparison of bending moment evolution as a function of the load for the 
2-beams system (continuous curves) and the double-clamped beam (dashed curves). 

To assess whether the assembled 2-beams system (Fig. 20a) is representative of 
redistributions occurring in a continuous beam (Fig. 20b), action effects in each beam of 
the system are compared with those in a double-clamped beam in the sagging and hogging 
sections. The double-clamped beam is subjected to both a distributed load q and a 
concentrated force at midspan Q = q·l. All beams used in the comparison have been tested 
by [76], have the same cross section (b × h = 200 × 400 mm) and variable longitudinal 
reinforcement ratios (0.4% < ρl < 1.8%). The moment-curvature (M-χ) relationships 
(measured over a length equal to the effective depth of the corresponding beam) are shown 
in Fig. 20c. In the double-clamped beam, the sagging and hogging bending moment are 
calculated using the measured M-χ relationship to fulfil equilibrium and compatibility. The 
shear deformations are neglected. Fig. 20d shows the bending moments at midspan of the 
2-beams system as well as the sagging and hogging bending moments in the 
double-clamped beam as a function of the normalized load. It can be observed that the 
bending moment at midspan of each beam in the 2-beams system (continuous curves) 
closely follows the bending moment in the double-clamped beam (dashed red at midspan 
and dashed blue at the clamped end). For the case shown in the bottom left of Fig. 20d 
(system T4B1 + T7B1), the resistance of the midspan section of the double-clamped beam 
is extremely under-designed and its deformation capacity is not sufficient to allow the 
clamped section to reach its designed resistance. Overall, except for cases where sections 
are extremely under-designed, the redistribution of forces in the assembled system is a 
good approximation of the redistributions occurring in a continuous beam. Even when 
sections are under-designed, Fig. 20d shows that the redistribution of internal forces 
between the 2-beam system and the continuous beam is very similar up to failure. Thus, 
the assembled 2-beams system is representative of several practical cases, including 
double-clamped beams and continuous beams. 

 Definitions 

 Random variables 

Depending on the type of analysis performed and the code of practice used, structural 
verifications can be performed by comparing action effects to sectional resistances 
(approach typically used in the design of new structures) or by comparing the load-bearing 
capacity directly to the actions (approach often used in the assessment of existing 
structures). In the present work, these two approaches are defined as local and global 
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verification methods. For statically determinate structures, both methods lead to the same 
result, whereas for statically indeterminate structures, the results are typically different. The 
local verification method is typically used in combination with linear elastic analyses (or 
analyses with partial redistribution of internal forces) whereas the global verification method 
is used with non-linear analyses or calculations based on limit analysis. 

To cover both cases, two random variables are defined in this report. The global random 
variable θQR is defined in Eq. 40, where Rsys,exp is the experimental load-bearing capacity 
of the 2-beams assembled system and Rsys,mod is the theoretical load-bearing capacity 
predicted by the model, see Fig. 21a. 
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The local random variable θE is defined in Eq. 41, where Ej,mod is the theoretical action effect 
in each member of the system (predicted by the model) and Ej,exp is the experimental action 
effect for the theoretical load-bearing capacity (Rsys,mod). The random variables are 
graphically illustrated in Fig. 21a. The action effects (Ej) are proportional to the force carried 
by each beam (Fj) at each load step where j is index of the beam in the assembled system. 
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As already mentioned, the aim of the present report is to investigate the model uncertainty 
in action effects related to the modelling of the mechanical behaviour. The model 
uncertainty related to calculation of the sectional resistance is not considered, in fact, it is 
removed by equalling the theoretical predicted resistance of each member of the system 
to the experimental value. 

 

Fig. 21 (a) Global and local random variable definition, respectively θQR and θE, for the 
shear force at the support κ1 = κ2 = 0.5 and for the bending moment at midspan κ 1 = 4/l1 
and κ 2 = 4/l2; (b) elastic over-design ratio definition, ζEL. 

 Elastic over-design ratio 

Overdesign of a section can result from several sources. Generally, structures are 
dimensioned by considering the envelope of action effects calculated using a linear elastic 
uncracked model for the relevant load combinations. As failure can occur for a specific load 
combination, this leads to some sections being over-designed with respect to others. 
Another source is often related to detailing and serviceability requirements (like minimal 
reinforcement ratio, limitation of deformations and cracking control) or fatigue and fire 
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requirements. In addition, the effective amount of reinforcement provided is often slightly 
larger than calculated, to accommodate commercially available reinforcement bars and 
convenient spacings. Sometimes, simplicity of construction leads to uniform reinforcement 
diameters, leading to possible over-design. Finally, if various failure modes are involved, 
the uncertainty of the resistance model could also lead to over-design of some sections. 
To account for these effects, the elastic over-design ratio, defined in Eq. 42 is introduced 
to investigate the model uncertainty for action effects. 
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This ratio is graphically represented in Fig. 21b and, by definition, cannot be lower than 
unity as it is calculated on members that do not cause the failure of the system. 

 Database and considered models 

A database of 93 beams and 75 columns was collected. Tab. 6 and 7 shows details of the 
beams and columns database. All beams and columns used in the simulations have well 
documented F-δ experimental responses, including the post-peak branch and well as 
documented material and geometrical properties. For beams, only 3-points bending tests 
are considered. 

Tab. 6 Database of beams tested in a 3-points bending setup 

Reference 
number of 
tests 

Span 
lb [mm] 

Effective 
depth 
d [mm] 

Longitudinal 
reinf. ratio 
ρl [%] 

Shear reinf. 
ratio 
ρw [%] 

fc [MPa] fy [MPa] 

[77] 5 1600-2700 175 0.32-2.29 0.15-0.26 44.4 460 

[76] 21 2000-6000 176-565 0.13-1.94 0.13-0.38 30.9 587-595 

[78] 2 2000 170 0.30-1.22 0 34.4-35.3 562-573 

[79] 11 645-1075 215 3.77 0.45-1.81 52.0 414 

[80] 8 5400 875-925 0.50-1.75 0-0.08 21.0-38.0 550 

[81] 1 10800 1890 0.74 0 33.6 455 

[82] 12 3600-6840 457 1.72-3.46 0-0.20 22.6-43.5 440-445 

[83] 3 3000 372 1.51 0-0.21 55.2 464 

[84] 2 1400 210 2.46 0.5 42.0 418-426 

[85] 3 4200 340-348 0.23-2.10 0.36 35.3-45.9 336-507 

[86] 6 1175-1952 235-244 3.29-3.60 0.22-0.32 37.0-42.2 402-436 

[87] 6 1400 160-210 0.84 0-0.19 40.3 510-520 

[88] 4 2800-7700 556 0.89 0 32.6-35.6 713 

[89] 6 1600 140-210 0.80-1.6 0-0.20 39.9 520 

[90] 3 3000-5000 460 1.37 0.09-0.19 23.8-27.0 495 
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Tab. 7 Database of columns tested under uniaxial compression 

Reference. 
number of 
tests 

Width 
bc [mm] 

Slenderness 
ratio λG 

ρl [%] fc [MPa] fy [MPa] 

[91] 24 305 4.0 1.72-3.66 31.3-40.0 372-438 

[92] 19 200-600 3.0-4.5 1.50-2.50 33.2 247-475 

[93] 6 267-600 3.0 0.28 42.8 458-494 

[94] 26 267-600 3.0 0.28 42.8 458-494 

Among the beams included in the database, 46 failed in flexure and 47 in shear. Because 
one of the aims of this report is to clarify whether a brittle or a ductile mode of failure 
influences the model uncertainty, the deformation capacity is determined from the reported 
load-deformation relationships. To this aim, the indicator of the deformation capacity of 
each beam, which is used to distinguish between ductile and brittle behaviour, is calculated 
as the ratio between the deformation at 90% of the experimental post-peak branch δR and 
the predicted elastic uncracked ultimate displacement δy, see Fig. 22a for a graphical 
representation. 

 

Fig. 22 (a) F-δ response of a beam tested in a 3-point bending setup with definition of δy 
and δR; (b) strain profile of a RC beam section at Ultimate Limit State (ULS); (c) beams 
grouped based on their deformation capacity ratio at failure, failure modes and the neutral 
axis depth; (d) histogram of the deformation capacity ratio by failure mode (bending in red 
and shear in blue). 

The failure is assumed to be ductile if the deformation capacity ratio is larger than 10 and 
brittle if it is smaller than 5 (intermediate behaviour for 5 ≤ δR / δy ≤ 10). Fig. 22c shows the 
deformation capacity ratio plotted against the depth of the neutral axis calculated according 
to EN 1992-1-1:2023 [95] (see definition in Fig. 22b). It can be observed that beams that 
fail in bending and respect the condition imposed by EN 1992-1-1:2023 for performing 
plastic analyses (x/d ≤ 0.25) [95], generally exhibit a ductile behaviour. As shown in 
Fig. 22c and in the histograms of Fig. 22d, shear failures lead to brittle or intermediate 
behaviour. 

All columns included in the database have a square cross section (width bc between 250 
and 600 mm) and a geometrical slenderness ratio of the specimen λG, (defined as the ratio 
of the height of the column over the width bc) between 3 and 4. None of the columns exhibit 
a buckling failure. 
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 Moment-curvature relationships and calculation models 

Besides the Linear Elastic Uncracked model (LEU), five additional models are considered 
to evaluate the model uncertainty in action effects. An overview of the models is given in 
Tab. 8 and the corresponding M-χ relationships are shown in Fig. 23a. 

For the LEU model, the flexural stiffness is calculated according to Eq. 43. In the Linear 
Elastic Fully-Cracked model (LEFC), all sections are assumed to be fully cracked before 
applying the load, and the flexural stiffness is calculated according to Eq. 44 where the 
location of the neutral axis is calculated according to Eq. 45. 
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where n = Es/Ec is the ratio between elastic moduli of steel and concrete. In the Tri-Linear 
model (3L), the section is uncracked until the cracking moment Mr according to Eq. 46 is 
reached. For cracked sections, tension stiffening is accounted for by shifting the M-χ line 
by a value equal to Δχts, calculated according to Eq. 47, as shown in Fig. 23a, see [96]. 
The Quadri-Linear model, with and without limitation of the deformation capacity, 
respectively 4L and 4L-LIM, is identical to the 3L model up to the level of the resisting 
moment MR. Thereafter, the M-χ relationship has an infinite plastic plateau in the 4L model 
while in the 4L-LIM model, the curvature is limited to match the experimental displacement 
at peak load. Finally, the behaviour of the Non-Linear model (NL), in brown in Fig. 23a, is 
obtained by discretizing the section in fibres, with each concrete fibre having a uniaxial 
stress-strain response calculated according to EN 1992-1-1:2023 [95] for the compression 
zone and an elastic-brittle behaviour in tension. The reinforcement is modelled by fibres 
with an elastic-perfectly plastic stress-strain response. 
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Fig. 23 (a) Assumed M-χ relationships for the various models; (b) computation of the 
deflection; (c) example of the experimental and predicted F-δ responses for beam 
VSB3 [82]. 

Fig. 23b shows the methodology used for calculating the force-displacement relationship 
of the simply supported beams for the 3L model. At each load step, the beam is discretized 
and the displacement is calculated by updating the flexural stiffness of each element based 
on the calculated bending moment. For beams without shear reinforcement, the 
displacement due to shear deformations is calculated using the mechanical model 
proposed by [97], which is based on [88]. For beams containing shear reinforcement, the 
model proposed by [98] is used. Fig. 23c shows the experimental F-δ response of a simply 
supported beam (in black, beam VSB3 by [82]) and the theoretical response predicted by 
the various models. 

Tab. 8 Implemented models for beams 

Name Symbol M-χ Section 
Shear 
deformatio
n 

Tension 
stiffening 

Concrete 
σ-ε 

Steel 
σ-ε 

Linear Elastic 
Uncracked 

LEU Linear Uncracked No No Elastic Elastic 

Linear Elastic 
Fully-Cracked 

LEFC Linear Fully-cracked No No 
Parabola 
rectangle 

Elastic 

Tri-Linear 3L Tri-Linear 
Uncracked/ 
Fully-cracked 

Non-linear Yes 
Parabola 
rectangle 

Elastic/ 
Plastic 

Quadri-Linear 4L 
Quadri-
Linear 

Uncracked/ 
Fully-cracked 

Non-linear Yes 
Parabola 
rectangle 

Elastic/ 
Plastic 

Quadri-Linear-
Limited 

4L-LIM 
Quadri-
Linear 

Uncracked/ 

Fully-cracked 
Non-linear Yes 

Parabola 

rectangle 
Elastic/ 
Plastic 

Non-Linear NL Non-Linear Variable Linear No 
Parabola 
rectangle 

Elastic/ 
Plastic 

The F-δ response of the columns is modelled using either a linear elastic model (LE) or a 
non-linear model (NL). In the LE model, both concrete and the reinforcement constitutive 
laws are assumed linear-elastic, Fig. 24a. In the non-linear model (NL), the constitutive law 
of concrete proposed by Guidotti et al. 2011 [99] is used, and the increase of strength and 
deformation capacity due to transverse reinforcement is considered according to [100]. The 
reinforcement is modelled by an elastic-perfectly plastic stress-strain behaviour. Fig. 24b 
shows the experimental F-δ response of a column tested under uniaxial compression 
(column CAM1 by [93]) and the theoretical response predicted by the two models. 
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Fig. 24 (a) Materials stress-strain for linear elastic and non-linear model; (b) example of 
the experimental and predicted F-δ responses for column CAM1 [93]. 

 Examples of two beams assembled systems 

Fig. 25 shows the experimental and theoretical response, as predicted by the Linear Elastic 
Uncracked model, of three characteristic systems. In Fig. 25a, the failure of the system is 
controlled by beam 1 in the experimental response and by beam 2 in the model prediction. 
Due to concrete cracking, the relative decrease of flexural stiffness for beam 2 is larger 
than for beam 1 and, since beam 1 fails in a brittle manner, so does the assembled system. 
This cannot be predicted by the LEU model, that in this case leads to an unsafe prediction 
(load-bearing capacity larger than the experimental value, θQR < 1). A slightly larger 
theoretical load-bearing capacity with respect to the experimental is also observed in 
Fig. 25b, where both beams have a relatively ductile behaviour, but their peak resistance 
occurs for significantly different displacements. A rather different result is shown, however, 
in Fig. 25c, where the experimental peak resistance is reached for a similar displacement 
in both beams, leading to a experimental load-bearing capacity of the 2-beams system 
which is larger than the value predicted by the model. It must be noted that the examples 
in Fig. 25 are for illustrative purposes and are not exhaustive. 

 

Fig. 25 Examples of theoretical (Linear Elastic Uncracked model) and experimental 
response of 2-beams assembled systems: (a) beam DB0530M [80] and S130 [86]; 
(b) beam DR572 [89] and T1A1 [76]; (c) beam DR382 [89] and VSC2 [82]. 

 Results 

The combination of the 93 beams described in Tab. 6 allows to produce up to 4278 
two-beams systems with the corresponding experimental behaviours. For all the 
assembled systems, the internal forces and the theoretical load-bearing capacity is 
determined according to the models defined above. 

  



1782  |  Recalibration of partial safety factors for actions and resistances for new and existing bridges 

72 May 2025  

 Presentation of the results and distribution fitting 

Fig. 26a shows the log-normal probability-plot of θE defined in Eq. 41 where the internal 
forces Ej,mod are calculated using the linear elastic uncracked model (LEU). The logarithm 
of the random variable (x-axis) is plotted against the normal quantile in terms of standard 
deviation σ (y-axis). The red, blue and green distributions correspond respectively to ζEL 
smaller than 1.1, 1.25 and 5 while the continuous line represents the fitting LN distribution. 
This type of graphical representation allows to graphically verify if a LN distribution is a 
good fit for a random variable. In fact, data lying on a straight line indicate an exact LN 
distribution and the slope corresponds to the coefficient of variation (CoV). Whether a LN 
distribution is suitable to represent the tail of the distribution has already been discussed in 
the past. According to [101], to compare different propositions, a simple fitting criterion with 
an arbitrary choice of the distribution is practically non-verifiable and there is a need to have 
standardized distribution types to perform adequate comparisons. The present report 
accounts for these considerations and, accordingly, a LN distribution is adopted to describe 
θE and θQR. In fact, besides being a good fit for the distribution of θE as shown in Fig. 26, 
the comparison with the recommendations of [28] is facilitated. 

 

Fig. 26 (a) Probability plot of θE using a Linear Elastic Uncracked model and (b) detail of 
the tail fitting; (c) graphical representation of the distribution parameters with varying elastic 
over-design ratio; (d) CoV (black) and number of combinations (red). 

It can be observed that the LN distribution is a good fit for the distribution, including the tail 
regions. Fig. 26b shows the histogram of θE and the detail of the upper tail fitting. Because 
θE is defined as the ratio between the experimental action effect and the calculated one, 
the values in the upper tail region are the unsafe cases where Eexp > Emod. The dashed line 
in Fig. 26a represents the fitting of the data with a LN distribution (fitting performed using a 
linear least-squares fitting algorithm, tail values larger than the 95th percentile of the data 
are weighted by a factor equal to 2). Parametric analysis combined with graphical checks 
show that this fitting parameters allow to have a good approximation of the tail of the 
distribution when the model uncertainty in action effects calculation is determining (upper 
tail values, θE >1) and a good fit of the rest of the distribution when the model uncertainty 
is not determining, see probability plots in Figure 26a. 

Fig. 26c shows the distribution parameters of θE (mean, 5th and 95th percentile) with varying 
elastic over-design ratio (ζEL). If one of the beams is largely over-designed compared to the 
other (large ζEL), redistribution of the force is more likely to occur, resulting in a larger 
uncertainty in determining action effects and leading to an increase of the coefficient of 
variation of θE, see Fig. 26d. However, as shown in Fig. 20d, if the elastic over-design ratio 
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is very large (ζEL > 2), the assembled system is not necessarily representative of a practical 
case. In Fig. 26c, it can be observed that the mean of the distribution is always close to 
unity. This is due to the fact that, if the action effect is overestimated in one member, it is 
generally underestimated in the other. The red line in Fig. 26d shows the number of 
systems that is possible to assemble for a given limit of ζEL. At least 500 systems are 
analysed for each ζEL value, which is sufficient to perform statistical analyses. 

 Discussion of the results 

Using the same format proposed in Fig. 26, Fig. 27a shows the distribution parameters of 
θE (mean, 95th percentile and CoV) for the LEU, LEFC, 3L and NL models (the results of 
the LEU model are already discussed in the previous section, they are presented again to 
allow for a comparison). For the LEFC model, very large CoVs can be observed. This is 
due to the fact that the flexural stiffness can be largely underestimated. For instance, if the 
failure of the system occurs with limited cracking in one of the beams (actual experimental 
behaviour), the action effect can be considerably underestimated considering the beam 
fully cracked. The probability for this scenario to occur is larger for large values of ζEL since 
the system has a higher probability to fail with one member still in the uncracked state. On 
the other hand, for the tri-linear (3L) and the non-linear model (NL), ζEL has a limited 
influence on the distribution of θE. In fact, for these models, the flexural stiffness depends 
on the load level, leading to a satisfactory prediction of the displacement and the internal 
forces for each load step. Since non-linear shear deformations and tension stiffening are 
considered in the tri-linear model (3L), but not in the non-linear model (NL), displacements 
are generally better predicted for the former and lead to a smaller CoV. Fig. 27b shows the 
distribution of θE using the LEU model for systems exhibiting brittle and ductile failure 
modes (for details about the failure mode classification see Fig. 22). Since the LEU model 
better describes the behaviour of brittle systems (uncracked section), for a given ζEL smaller 
CoVs are obtained for brittle systems than for ductile systems (see Fig. 27b). 

 

Fig. 27 CoV (top) and distribution parameters (bottom) of θE: (a) for various models and 
(b) for the Linear Elastic Uncracked model with various ductility degrees. 

Fig. 28 shows the CoV and the distribution parameters of θQR according to Eq. 40 (ratio 
between the experimental and calculated load-bearing capacities, mean, 5th percentile and 
CoV) for the various models. Unlike θE, for which the values in the upper tail region are the 
less safe, for θQR the unsafe values are located in the lower tail (θQR < 1), where the 
experimental load-bearing capacity (Rexp) is smaller than the one predicted by the model 
(Rmod). As for θE, ζEL does not influence the distribution of θQR for the 3L and NL models. 
On the other hand, it does for the LEU and LEFC models, but this influence is less 
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pronounced than for θE. Two major trends can be identified: (1) the mean value of θQR tends 
towards unity with increasing refinement of the model (see continuous lines in the bottom 
of Fig. 28); (2) the CoV decreases with increasing refinement of the model (top of Fig. 28). 
The combination of these two phenomena leads to a 5th percentile of the distributions which 
is almost constant (p(0.05) ~ 0.95-0.98 for all the analysed models) despite the fact that 
the complexity and the calculation time for refined models increases considerably. A good 
compromise for estimating the load-bearing capacity of the system is achieved by using 
the LEFC model which does not require an iterative process for the assessment of an 
existing structure, but for which the reinforcement needs to be known in each section to 
determine the fully cracked flexural stiffness (this means that for designing a new structure, 
an iteration is needed). 

 

Fig. 28 CoV (top) and distribution parameters (bottom) of θQR for various models. 

Fig. 29 shows the statistical values of θQR for brittle and ductile systems using the LEU and 
the 3L models. As already mentioned, ζEL only influences the results of the distribution of 
θQR for the LEU model whereas it has no influence for the 3L model. For both models, brittle 
systems exhibit a larger CoV compared to ductile systems (see Fig. 29, top). Also, due to 
the redistribution of forces, the mean value of the distribution is larger for ductile systems. 
In fact, both the 3L and the LEU model do not consider plastic deformations, thus 
underestimating on average the load-bearing capacity for ductile systems and leading to a 
larger safety margin (Rsys,exp > Rsys,mod). This does not occur for brittle systems that do not 
undergo plastic deformations, leading to mean values closer to unity. The combination of 
these two effects leads to a larger 5th percentile of θQR for ductile systems (~ 1.00) 
compared to brittle systems (~ 0.90). 
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Fig. 29 CoV (top) and distribution parameters (bottom) of θQR for ductile and brittle systems: 
(a) using the LEU (Linear Elastic Uncracked) model and (b) using the 3L (Tri-Linear) model. 

 Plastic models 

If a quadrilinear model (Quadri-Linear, 4L) with a plastic plateau without deformation limit 
is used, the results will be identical to a rigid plastic investigation according to limit analysis. 
In this case, the random variable θQR cannot be larger than one. In fact, the theoretical load-
bearing capacity (Rsys,mod), is always equal to the sum of the single resistances of the 
individual beams. For the experimental load-bearing capacity of the system (Rsys,exp), this 
scenario occurs only if the experimental peak resistance of the individual beams in the 2-
beams assembled system is reached for the same displacement, as shown in Fig. 25c. 
The CoV of the θQR values for the 4L model are shown in Fig. 30a. The 4L model allows 
for unlimited redistribution between the members of the 2-beams system. However, the 
beams included in the database exhibit both brittle and ductile failure modes, thus, 
redistribution in the assembled 2-beams system can be limited. This leads to large values 
of CoV for the 4L model (see Fig. 30a). As an example, the probability-plot of θQR for ζEL ≤ 2 
is presented in Fig. 30c. It must be noted that the mean value of the log-normal distribution 
it is not meaningful for the cases where the maximum value is limited (i.e. to 1 for the 4L 
model). In fact, in these cases, a log-normal distribution is not suitable to represent the 
whole distribution but only the lower-tail, see Fig. 30c for the 4L model. However, this 
choice allows performing comparisons between the different models. 

If the deformation capacity of the beams is limited to the experimental displacement at peak 
resistance, as in the 4L-LIM model, the CoV of θQR decreases and does not depend on ζEL, 
see Fig. 30a. Moreover, the 5th percentile of the distribution is closer to unity than for the 
4L model. Also, since the deformation capacity is the same as the experimental one, the 
predicted load-bearing capacity is not necessarily equal to the sum of the single members 
resistance and the value of θQR is not limited to 1.0 as can be observed in Fig. 30c. If the 
4L model is used for systems assembled with beams failing in bending and complying with 
the requirements according to EN 1992-1-1:2023 [95] (4L-LIM-REQ model), the CoV of θQR 
reduces considerably with respect to the 4L and 4L-LIM models and the 5th percentile is 
very close to unity, see Fig. 30a. The limitations mentioned above for the 4L-LIM-REQ 
model are shown in Fig. 30b and include the depth of the neutral axis according to [95] 
(x/d ≤ 0.25, Fig. 22b) and the relative resistance of the critical sections (0.5 ≤ R1/R2 ≤ 2). 
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Fig. 30 (a) CoV (top) and distribution parameters of θQR for a Quadri-Linear model with a 
plastic plateau (4L in red), a Quadri-Linear model with limitation of the deformation capacity 
(4L-LIM in blue) and a Quadri-Linear model with a plastic plateau used for beams 
respecting the requirements of EN 1992-1-1:2023 (4L-REQ in green); (b) requirements 
according to EN 1992-1-1:2023 [95] to perform plastic analyses without explicit checks on 
the deformation capacity (4L-REQ model); (c) probability plots for the presented models 
with ζEL = 2. 

 Deformability of supports 

Fig. 31 shows the comparison of the 2-beams system investigated above with the same 
system supported on columns (see insert in Fig. 31a). A slenderness ratio λG = 10 is 
considered for all columns without accounting for 2nd order effects and only cases where 
column resistance is not governing are considered. The load-deformation relationships are 
produced with the methodology presented in Fig. 19d. The results are presented in Fig. 31 
in terms of CoV and mean values of θE and θQR (case with ζEL = 1.1). Regardless of the 
model considered, the CoV of θE shows a decrease of 1 to 3% while the mean values of θE 
also decrease. With respect to θQR defined as in Eq. 40, a reduction of the mean values 
and the CoV can also be observed (minor reduction in the case of the CoV). These results 
can be explained by the fact that the deformability of supports leads to an increased 
redistribution of forces. 

 

Fig. 31 CoV and mean values of the of (a) θE and (b) θQR for the 2-beams system on 
infinitely rigid supports and supported by columns (slenderness ratio λG = 10). 

  



1782  |  Recalibration of partial safety factors for actions and resistances for new and existing bridges 

May 2025  77 

 Case study: reinforced concrete frame 

As already mentioned, the model uncertainties related to the calculation of action effects 
are usually covered by the partial factors for permanent and variable actions (γG and γQ). 
In EN 1990:2023 [7], γG and γQ are obtained by multiplying γSd with γg and γq, which cover 
respectively the model uncertainty in action effects and the uncertainty in the representative 
values of the actions, see Fig. 18. To estimate the value of γSd based on the distribution 
parameters of θE, reliability analyses are performed on the 1st floor beam of the RC frame, 
shown presented in Fig. 32. To account for various ratios between structural and 
non-structural self-weight, the spacing between frames, s, is varied between 4 and 12 m, 
see Fig. 32b. This variation covers also the ratio between the structural and non-structural 
self-weight in bridges, however, this ratio can be generally larger than 3 for long-span 
bridges. The building is designed for a design life of 50 years and for various intended uses. 
For each intended use, design loads are assumed according to [102]. Only gravity actions 
are considered, wind and seismic actions are assumed to be carried by a bracing system. 
In all case studies, action effects are calculated using a linear elastic model with uncracked 
sectional stiffness (LEU). 

 

Fig. 32 (a) Elevation and (b) plan view of the investigated office building; (c) simulations of 
50-year live load for s=6 m. 

The variability of the structural self-weight, denoted by G1, is modelled considering the 
geometrical and the specific weight variability according to [28]. For non-structural 
self-weight, G2, a general model is not available since it largely depends on the types of 
building and on common construction practices of different countries. In this report, the 
variability of G2 is modelled using a discrete choice model to consider a large number of 
possible combinations of screed, insulation, flooring, ceiling and partition walls. For each 
of the above components, mean values and CoV are defined based on experience on 
similar buildings in Switzerland. Fig. 33a shows the normal probability-plot of G1 and G2 
distribution resulting from 10’000 simulations. Besides showing that a normal distribution is 
a good fit for G1 and G2, it can be observed that the CoV of G2 is much larger than of CoV 
of G1, which reflect the large variability of non-structural self-weight in buildings. These 
results refer to a building with an intended use as an office and a spacing s equal to 6 m. 
The live load, Q, is modelled according to part 2 of the JCSS report [28] with the influence 
area assumed as shown in Fig. 32b (shaded red area). Each simulation lasts 50 years and 
leads to a maximum value of EUDL (Equivalent Uniform Distributed Load) as shown in 
Fig. 32c. Fig. 33b shows the log-normal probability-plot of the live load distribution, Q, 
resulting from 10’000 simulations. It confirms that a LN distribution is a good fit for the 
distribution of Q. Besides the office space, the other investigated uses are: residence, hotel, 
lobby, retail and classroom. The same methodology described above and shown in 
Fig. 32c is used to determine the distribution of Q for each intended use and spacing of the 
frame, s. 
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Fig. 33 (a) Normal probability-plot of G1 and G2; (b) log-normal probability-plot of Q; 
(c) log-normal probability plot of the sectional resistance R for flexural failure and shear 
failure; s=6m, intended use as office, design life of 50 years. 

Tab. 9 presents the characteristic load values and the distribution parameters as a function 
of the spacing s for an intended use as office space. The representative value of the 
non-structural self-weight is calculated considering the mean values of the discrete choice 
model. It has to be noted that, according to EC1 [102] linear load of partition walls cannot 
exceed 3 kN/m to assume the load uniformly distributed. This threshold is satisfied in the 
discrete choice model used for calculating the distribution of G2. 

Tab. 9 Characteristic value and distribution parameters of G1, G2 and Q for an intended 
use of the building as office space and increasing spacing (s) between frames 

s 

[m] 
G1k 

[kN/m] 

G2k 

[kN/m] 

Qk 

[kN/m] 
G1k/G2k G/Q 

Distributions 

G1 [kN/m] G2 [kN/m] Q [kN/m] 

Mean CoV [%] Mean CoV [%] Mean CoV [%] 

4 17.4 12.4 12.0 1.41 2.49 0.99 4.48 12.9 13.6 0.79 35.0 

5 24.2 15.5 15.0 1.56 2.64 0.99 4.42 16.1 13.6 0.73 32.7 

6 31.9 18.6 18.0 1.71 2.80 0.99 4.34 19.3 13.6 0.69 31.4 

7 40.4 21.7 21.0 1.86 2.96 0.99 4.29 22.5 13.6 0.66 30.2 

8 48.0 24.8 24.0 1.94 3.03 0.99 4.27 25.8 13.6 0.63 29.4 

9 58.3 27.9 27.0 2.09 3.19 0.99 4.23 29.0 13.6 0.61 28.7 

10 67.2 31.0 30.0 2.17 3.27 0.99 4.21 32.2 13.6 0.60 27.8 

11 79.2 34.1 33.0 2.32 3.43 0.99 4.18 35.4 13.6 0.59 27.9 

12 92.3 37.2 36.0 2.48 3.60 0.99 4.15 38.6 13.6 0.57 27.6 

 

The shear resistance and resisting bending moment, denoted respectively with RShear and 
RFlex, are calculated according to Section 8 of EN 1992-1-1:2023 while their variability is 
calculated using the statistical distributions of materials strength, geometric and models 
variabilities according Section 1 of this report. Fig. 33c shows that a log-normal distribution 
is a good fit for both resisting moment and shear resistance calculation variabilities. It can 
also be observed that the CoV of the shear resistance calculation is much larger than the 
resisting moment calculation. This is mainly due to the large uncertainty in the model 
uncertainty for the calculation of the shear resistance for members with shear 
reinforcement, see [104]. 
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Tab. 10 Statistical parameters of the random variables used to perform reliability analysis 
for the investigated case studies. If a range is given, the value varies for buildings with 
different spacing s and intended use 

Variable Distribution μ V [%] 

EG1 Normal 0.98 1.00 4.1 4.9 

EG2 Normal 1.00 13.6 

EQ Log normal 0.55 0.80 19.1 58.3 

RFlex. Log-normal 1.09 1.12 8.1 8.4 

RShear Log normal 1.07 1.14 20.4 22.9 

θE Log-normal 1.00 6.5 

 

Tab. 10 presents the distribution parameters of the random variables used to perform the 
reliability analyses for all the investigated case studies. The limit state function is formulated 
in the classical form as shown in Eq. 48. The uncertainty in calculating action effects is 
considered as an independent random variable that multiplies the action effects calculated 
using the adopted mechanical model. In the presented case studies, a Linear Elastic 
Uncracked (LEU) model is adopted, and each section is designed so that R / E = 1. 
Therefore, the distribution of θE is assumed for a LEU mechanical behaviour considering 
ζEL ≤ 1.1 as shown in Tab. 10, see Fig. 27. 

1 2( , ) ( )G G Q Eg R E R E R E E E         (48) 

exp( ) with 20%Sd E E tgt E EV V          
  (49) 

Sensitivity factors α, are calculated for each variable using the FORM (First Order Reliability 
Method) analysis. Based on the sensitivity factor relative to the model uncertainty in action 
effects (αθE), the partial safety factor γSd is calculated using Eq. 49 where βtgt,50y is assumed 
equal to 3.8 according to EN 1990:2023 [7]. The choice of βtgt depends on the level of risk 
acceptance at the societal level and is not treated in this report. For details regarding the 
FORM analysis and the derivation of the partial safety factors, refer to [105]. In addition to 
the case studies described above, a parametric study was performed to investigate the 
influence of VQ, VR and G/Q on γSd. In particular, VQ is varied between 15 and 70%, VR is 
varied between 5 and 25% and G/Q is assumed equal to 1.5 and 3.5, where G = G1 + G2. 

Fig. 34a and 34b present the results of the parametric analysis while Fig. 34c and 34d 
present the results of the investigated case studies. For all plots two axis labels are 
provided, on the left axis indicating the value of αθE, on the right indicating the corresponding 
value of γSd calculated using Eq. 49. 

Fig. 34a shows the variation of αθE and γSd as a function of VQ for various values of VR while 
Fig. 34b shows the variation of αθE and γSd for two selected values of VR with G/Q equal to 
1.5 and 3.5. Generally, results from the parametric analyses show that αθE, and 
consequently γSd, decrease with increasing values of VR and VQ. Also, the ratio G / Q has 
no influence if VR is large, on the other hand, if VR is small, an increase of γSd is observed 
for larger values of G/Q. Fig. 34c and 34d show that the results obtained from the 
investigated case studies are within the boundaries found with the parametric analyses. 
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Fig. 34 αθE and corresponding γSd as a function of VQ resulting from: (a) parametric analysis 
for various VR; (b) parametric analysis for two selected VR and G/Q = 1.5 and 3.5; (c) case 
studies for various VR; (d) case studies for two selected VR and G/Q = 1.5 and 3.5. 

These results can be explained considering that the sensitivity factors, α, represent the 
weight of each random variable for a defined limit state function and the sum of their square 
is equal to unity by definition. Thus, if the weight of one variable increases in the limit state 
function, the weight of the other variables must decrease. This explains the finding that for 
flexural failures (with lower CoVs of the resistance model), the required γSd factor is larger 
than for shear failures (where the CoV of the resistance model is significantly larger). 
Nevertheless, this influence can be compensated by the fact that for flexural failures, which 
are typically more ductile than shear failures (see Fig. 22), the load-bearing capacity shows 
smaller uncertainties (smaller CoV and higher mean value of ratio θQR as shown in Fig. 29. 
In other words, underestimating an action effect when the behaviour is ductile behaviour 
has typically smaller consequences then when it is brittle. 

Based on the results of the parametric analysis, the performed simulations and the obtained 
distributions of θE, it is reasonable to assume a value of γSd between 1.05 and 1.15 as 
initially specified by [64] but based on significantly different motivations. It is important to 
note that the model uncertainty related to changes of the structural system during 
construction (including the redistributions due to creep) is not covered by the estimation of 
the factor γSd presented in this report. This means that for structural systems subjected to 
significant system changes (e.g. high-rise buildings), a sensitivity analysis should be 
performed to determine the most relevant parameters influencing the calculation of action 
effects and load bearing capacity. 

It is a matter of fact that the model uncertainty related to the action effects significantly 
depends on the complexity and the level of statical indeterminacy of the structure. In fact, 
only the influence of geometrical uncertainties can have an influence in statically 
determinate structures, whereas the uncertainties can increase for highly indeterminate 
complex structures. In addition, for complex structures, additional uncertainties can be 
expected with respect to the models implemented in commercial analysis software tools 
and the choices by the designer in modelling the structures. This applies for linear elastic 
calculations, but also to a larger extent for nonlinear analyses. These considerations, which 
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were not the aim of the present work, deserve to be investigated in the future also 
accounting for the increasing complexity of the analysis tools used nowadays. 

 Conclusions 

This section investigates the model uncertainty in action effects and load-bearing capacity 
calculations for statically indeterminate concrete structures accounting for the type of 
mechanical model used and for various failure modes. Based on the presented 
investigations, the main conclusions are: 

1. Compared to more refined models, the Linear Elastic Uncracked model leads to larger 
CoV of model uncertainty in load bearing capacity calculation (θQR); however, the mean 
of the distribution is larger, leading to similar tail’s distribution, thus, similar safety 
margin; 

2. For Linear Elastic Uncracked models, an over-design of one or more components of a 
statically indeterminate system influences the CoV of the model uncertainty in action 
effects calculation (θE); 

3. Refined calculation models lead to more accurate results and generally to lower CoV 
of the internal forces ratio θE and of the load bearing capacity ratio θQR; 

4. The failure mode influences the model uncertainty in load bearing capacity calculation 
but it does not influence the model uncertainty in action effects calculation. Larger 
CoVs of θQR are observed for brittle systems, independently of the calculation model.  

5. Plastic calculation models with unlimited deformation capacity, if performed without 
ductility requirements (4L), lead to very large CoV and can lead to unsafe results. 
Limiting the deformation capacity, or verifying that ductility requirements are met 
reduces considerably the CoV. 

6. Considering supports deformability allows larger redistribution of forces and leads to 
slightly smaller CoV. 

7. Parametric analyses and investigated case studies show that the partial factor γSd to 
cover the uncertainties of the internal force calculation ranges between 1.05 and 1.15. 
It must be noted that the estimated γSd factor does not account for uncertainties related 
to structural system variations during construction or structural modelling of complex 
structures. These additional uncertainties, which deserve to be investigated more in 
detail, significantly depend on the complexity of the structure, the construction method, 
the tools used and the experience of the designer. 
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3 Model uncertainties load bearing capacity 
calculation of steel-concrete composite 
structures and partial factor for structural steel 

 Introduction 

In parallel to the more thorough study on conventional reinforced concrete (RC) structures, 
a similar investigation is presented in this report on steel-concrete composite structures. In 
fact, since in Switzerland steel bridges are rare compared to steel-concrete composite 
beam bridges, this study focuses on the latter (i.e. steel bridges are not considered). As 
already mentioned, the aim of this investigation is to quantify the model uncertainty in action 
effects related to the modelling of the mechanical behaviour. The model uncertainty related 
to calculation of the sectional resistance is not considered, It is removed by making the 
theoretically predicted resistance of each member of the statically indeterminate composite 
system equal to the experimental value. By adopting the same technique used for RC 
structures and presented in Chapter 2, one wants to determine whether the composite 
structures behaviour is similar to that of RC structures; in other words, to determine if the 
model uncertainty covered by the partial factor γSd , see Fig. 18 and [135], should be 
differentiated in function of the material/code and its respective design modelling 
assumptions. Although the analysis technique is similar to that used for RC systems, some 
differences in the mechanical modelling and verification methods do exist and are 
discussed herein. 

But before, in this introduction, a discussion on the partial factor for structural steel is 
conducted, again in analogy to that for concrete and reinforcing steel. The introduction ends 
with a section on random variables definition in model uncertainty. 

In the first part of this Chapter, the technique already proposed and validated for textile 
reinforced concrete [65] and RC beams in Chapter 2 is used to assemble statically 
indeterminate structures. Specifically, experimental force-displacement responses (F-) 
are obtained by assembling simply supported steel-concrete composite beams tested in a 
3-point bending setup, Fig. 35 illustrates such a system. In a second part, the technique is 
further developed to relate such systems to continuous steel-concrete composite beams 
and study those. 

To illustrate the concept, in Fig. 35 one can see that the experimental response of the 
system (“sys”) is obtained by superposing two simply supported beams crossing each other 
at the concentrated load application point. Note that the composite beams represented are 
in this case both subjected to positive bending. By imposing a displacement at the loading 
point and knowing the experimental F- response (load-deflection) of each beam as 
obtained from the literature, the F- response of the system can be determined by adding 
the force acting in each member of the system simulating a displacement-controlled test. 
Thus, prior to any analysis in this investigation, an experimental database with all relevant 
and sufficiently well reported tests was created and is presented in the next section. 
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Fig. 35 Example of assembled system with two composite beams; experimental response 
of the system (black) assembled with beams (red and blue) and linear-elastic uncracked 
model prediction (dashed). 

 Partial resistance factor for structural steel 

 According to SIA codes 

For the design of new structures, the SIA 260 and SIA 263 codes prescribe the use of a 
characteristic value of yield strength fyk, or of the ultimate strength, fuk (usually denoted 
simply as fy and fu), which are related to a certain value of elastic yield strength Re or 
ultimate strength Rm “guaranteed” by the manufacturers, usually defined as 5% fractiles of 
the respective distributions [66]. For structural steel, the resistance side factor of safety – 
𝛾ெ – is equal to 1.05 for cross-section, element and stability checks, which all depend on 
fy [67]. This factor covers the material uncertainties (specific to steel properties fy and E) 
and the model uncertainties (in the resistance models). 

For existing structures, to update the value of resistance used in the examination of a 
structure, it is required by Annex C of SIA 269 to define a target safety level by means of 
the reliability index 𝛽଴ (SIA 269, Annex B.1: “The structural safety requirement is specified 
using the target value of the reliability index or by the individual risk.”) [68]. As introduced 
by Table 2 of Annex B of SIA 269, the target value 𝛽଴ is a function of the consequences of 
a structural failure r and the efficiency of interventions EFM. The estimation of both r and 
EFM as a function of actual cost (cost of failure, repair, safety and risk reduction) requires 
many assumptions. Instead, one can also assume some reasonable values for these two 
quantities, which leads for example for a highway bridge to assume: important 
consequences of a failure (5 < r < 10), and efficiency of interventions EFM = 1 (according 
to SIA 269 Annex B.3, which yields a reliability index 𝛽଴ = 4.4. 

Then, following the assumption of Annexes C.1 and C.2 of SIA 269, it is presumed that the 
resistance parameter of interest, here the yield strength, follows a log-normal distribution 
and the updated examination value can be obtained as given below, equ. (50) and (51): 

2
0( )

, ,
R R R

yd act ym actf f e        (50) 

with : 

2 2
,ln( 1)R R actv     (51) 

Note that the definition of the characteristic value of, for example, yield strength fyk as a 
fractile of the distribution, is not needed here. 

According to current knowledge as well as developments within the Eurocode 2nd 
generation, the approach described in the Swiss codes (SIA 269:2011) for updating 
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material properties for existing structures is somewhat inconsistent with the safety factor 
calibration framework for the design of new structures. In the SIA for new structures, the 
safety factors are calibrated using the material and model uncertainties present in the 
various load-bearing capacity verifications. But, in the evaluation of the updated design 
value of fyd,act, see Eq. 50, the term δR (representing the variability accounted for in the 
design value calibration) only depends on the statistical distribution of the steel yield 
strength, thus the inherent uncertainty in the resistance model or empirical equation is not 
accounted for in fyd,act. Therefore, it seems that the approach following the guidelines of SIA 
269:2011 is somewhat simplistic compared to the inherent nature and origin of the current 
safety factors. Furthermore, as was the case in the first generation of Eurocodes, the 
current safety factors result in safety levels that are not necessarily uniform across all 
design equations and "not even within a single design rule" as stated by Knobloch et al 
[71].  

 Proposed partial resistance factors in line with the upcoming Eurocode 3 Part 1-1, 
EN 1993-1-1:2022 [70] 

In view of the above observations, to retain the current format of equations proposed by 
the Swiss standards with the corresponding factors of safety, a consistent method for 
obtaining characteristic (i.e. nominal) values for both new and existing structures is to base 
the calibration on the steel production requirements that are introduced in Annex E of 
EN 1993-1-1:2022 [70] as well as in accordance with EN 1990. Even if the new informative 
Annex E is about calibration of partial factors for buildings and not bridges, interest is less 
pointed towards the actual calibration values to be used in the new Eurocode 3, which stay 
similar to the former ones, but more on the information about steel properties presented in 
Table E.1 of Annex E [70].  

As a matter of fact, during the recent SAFEBRICTILE project [73], whose aim was to 
contribute to the harmonization of reliability levels across design rules for steel structures, 
material and geometrical properties of various steel products were consistently collected 
[71]. Based on the collected data, statistical distributions for the most relevant mechanical 
and geometrical properties for a wide range of products and grades commonly used in 
Europe were specified. The latter are now included in Tables E.1 and E.2 of Annex E of 
EN 1993-1-1:2022. The distributions, assumed log-normal, are specified with their mean 
value, coefficient of variation (CoV), 5% fractile and 0.12% fractile values [71]. As 
mentioned by Knobloch et al., the last two values “may mainly be used by producers of 
steel construction products to verify the compatibility of their production statistics with the 
basic assumptions underlying the recommended values of 𝛾ெ in the standard” [71]. This is 
in line with the Swiss prescription of a minimum requirement for the 5% fractile that needs 
to be guaranteed by producers and which is related to a characteristic value of material 
strength used in design. Also, SAFEBRICTILE concluded that the value of the partial safety 
factor M1 : 

1. M1 =1.0 as recommended in EN 1993-1-1 for stability verifications is only justified 
when the nominal values are directly taken as fy = ReH and fu = Rm (the lower value of 
the specified range) from the relevant product standard. 

2. when using the values in the tables of the design codes (EN 1993-1-1:2022 or SIA 
263:2014) for steel according to EN 10025 (all parts), EN 10210 (all parts) and EN 
10219 (all parts) and Table 5.2 for steel according to EN 10149 (all parts), the partial 
safety factor γM1 shall be increased. 

In the current National Annex for Switzerland, M1 =1.05 is used. This adequately covers 
the difference between option 1) and 1) based on reviews by ETH Zurich [74]. 

Thus, the safety factors M0 = M1 = 1.05 cover the choice of option b) with sufficient reliability 
and are already well established in Switzerland by SIA 263. Finally, defining the safety 
factors M0 and M1, which are both used in verifications with fy as the strength value, with 
the same numerical value is also based on practical considerations: this avoids 
inconsistencies and “jumps” in the load-bearing capacity at the transition between structural 
components with and without a stability issue. 
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Regarding existing structures, the authors believe the approach and Table E.1 of Annex E 
of EN 1993-1-1:2022 also apply for structural steels since those produced in the early 
1970s with the introduction of the Euronorm 25/72 [72] and the starting of a European steel 
properties database [73]. However, in this case, it is proposed to compare the statistical 
distribution of the measured ReH, or Rm, against the one specified by Table E.1, which can 
lead to the four situations described in Fig. 36. If it cannot satisfy a steel grade listed, cases 
c or d, then in order to obtain an equivalent production steel grade, it is proposed that the 
nominal steel grade that would correspond in Table E.1, i.e. the value fy,nom, is varied such 
that the test result distribution satisfies the production requirements with regard to this 
equivalent steel grade. For example, in the case of ReH, the ratio ReH,mean/ReH,min and CoV 
assumed for the presumed steel grade are to be considered to find the nominal steel grade 
value fy,nom and thus the fyk, to be used in the verifications [75]. Examples of following both 
the approach from Annex C of SIA 269 and the one presented above lead to either similar 
values or conservative ones with the adapted Annex E approach, which is logical since it 
includes more uncertainty sources. 

 

Fig. 36 Schematic representation of the verification procedure for production data for 
compatibility with annex E [71]. 

 Model uncertainty, random variables definition 

In design and modern codes, the quantification of the model uncertainty is based on the 
global load bearing capacity of the system (Annex C of EN 1990:2023 [7]). Also, the 
sectional resistance is often calculated considering material’s non-linearities while action 
effects are usually calculated with a simplified linear-elastic mechanical behaviour, incl. in 
the case of composite structures [108]. In some rare cases, plastic analyses or non-linear 
analyses are performed to determine action effects and load-carrying capacity. In this 
investigation, the model uncertainty related to the calculation of the sectional resistance 
(and the resistance of each beam) is not investigated. On the other hand, the load-bearing 
capacity of the system adopting various mechanical behaviour is investigated. In other 
words, the random variable is referred to as the model uncertainty related to the global 
load-bearing capacity G, as defined in the previous chapter, Equ. [40] and [65], repeated 
below for simplicity: 

𝜃ீ ≡ 𝜃ொோ =
ோೞ೤ೞ,೐ೣ೛

ோೞ೤ೞ,೘೚೏
 (52) 

Two typical cases of mechanical behaviour modelling are shown in Fig. 37, where: 

𝑅௦௬௦,௘௫௣ peak value of sum of experimental responses (black in Fig. 37) 
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𝑅௦௬௦,௠௢ௗ sum of the individual model F-δ responses (blue in Fig. 37 left and red in 
Fig. 37 right) at δsys,mod, determined as the peak value of the modelled response of the 
cross-beam system  

 

 

Fig. 37 Modelling of the mechanical behaviour: a) linear-elastic and b) elastic-plastic. 

Herein, the resulting distribution of the random variable QR is fitted with a log-normal 
distribution and to graphically check the accuracy of the tail distribution approximation, data 
are represented in a probability plot, see previous Section for details on this representation. 
As for the reinforced concrete elements, the tail fitting is performed on the 5th percentile of 
the overall data; essentially the latter will be used to discuss the results. Note that by 
computing a 5th percentile, one uses the most commonly defined percentile level for 
representative values. In this way, some considerations concerning the model partial factor 
value, namely Sd, can also be made. 

 Experimental database collection 

The first step of the work is the collection of test data to perform the analyses. To do this, 
careful gathering and screening was undertaken to collect enough simply supported beam 
tests. The experiments retained in the database must contain well-documented information 
(geometry, load-displacement response, material properties). Unfortunately, there is limited 
literature on experiments with typical bridge girders. Most of the data collected reflect 
experiments on composite beams with cross-sectional dimensions closer to those used in 
conventional building designs. Nevertheless, it was possible to collect the results of 81 
experiments. This set of experiments includes both beams tested under positive (45) and 
negative bending (36). The failure mode observed during the experiments was either in 
shear, in fracture of steel or crushing of concrete. The screened literature list is summarized 
in Tab. 11. 
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Tab. 11 References for the composite beams database 
Author Year Title Positive M Negative M 

Barbato et al. [109] 2014 
Probabilistic nonlinear response analysis of 
steel-concrete composite beams 

1 - 

Wang & Chung [110] 2006 

Integrated analysis and design of 
composite beams with flexible shear 
connectors under sagging and hogging 
moments 

4 2 

Toprac [111] 1965 
Strength of three new types of composite 
beams 

6 - 

Gattesco [112] 1999 
Analytical modelling of nonlinear behaviour 
of composite beams with deformable 
connections 

1 - 

Nie et al. [113] 2007 
Experimental study of partially shear-
connected composite beams with profiled 
sheeting 

5 3 

Nie et al. [114] 2004 
Experimental studies on shear strength of 
steel concrete composite beams 

2 - 

Fabroccino et al. [115] 1998 
Non-linear analysis of composite beams 
under positive bending 

1 - 

Fabroccino & Pecce [116] 2000 
Experimental tests on steel-concrete 
composite beams under negative bending 

- 3 

Zhao et al. [117] 2011 
Simplified nonlinear simulation of steel-
concrete composite beams 

2 2 

Yan et al. [118] 2017 
Numerical and parametric studies on steel-
elastic concrete composite beams 

1 - 

Zhang et al. [119] 2020 
Experimental and theoretical study on 
longitudinal shear behaviour of steel-
concrete composite beams 

8 - 

Zhou et al. [120] 2020 
Experimental investigation of the vertical 
shear performance of steel-concrete 
composite girders under negative moment 

- 5 

Men et al. [121] 2020 
Behaviour of steel-concrete composite 
girders under combined negative moment 
and shear 

- 7 

Men et al. [122] 2021 
Web shear buckling of steel concrete 
composite girders in negative-moment 
regions 

- 5 

Men et al. [123] 2022 
Shear capacity investigation of steel-
concrete composite girders in hogging 
moment region 

- 6 

Ban & Bradford [124] 2013 
Flexural behaviour of composite beams 
with high strength steel 

3 - 

Zhao & Yuan [125] 2010 
Experimental studies on composite beams 
with high-strength steel and concrete 

2 - 

Chapman & Balakrishnan [126] 1964 Experiments on composite beams 7 - 

Hoffmeister [127] 1997 
Plastische Bemessung von 
verbundkonstruktionen unter verwendung 
realitätsnaher Last-verformungsansätze 

- 1 

Gomez Navarro [128] 2001 
Experimental study of the behaviour of 
composite beams under negative bending 
moments 

- 2 

Baldwin [129] 1973 Composite bridge stringers 2 - 

TOTAL 45 36 

 

For each experiment, the following information is collected and kept in the database (in an 
Excel sheet, with separate files containing the numerical values of the F-δ curves): 
 Material properties: Yield strength of steel (flange and web if given), concrete 

compressive strength, reinforcement yield strength. 
 Geometrical properties: steel section dimension, (built-up or rolled section), slab height 

and width, span length. 
 Slab connection: full or partial connection, connectors rigidity and strength 
 Load configuration  

 Test results: Ultimate Load, Ultimate Moment, Shear ratio (Vult/Vw,pl), F- response. 
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 Two-beams assembled system 

 Sectional analyses 

Three different types of section analyses are performed to predict the moment-curvature 
(M-  ) relationships. The structural section analysis models are simple and are intended to 
reflect the types of analysis that are performed by the majority of engineers, see Fig. 38. In 
most cases, the Linear-elastic (LE) model is used to determine the distribution of forces 
within the structure and to determine the load-carrying capacity, while knowing that a 
certain margin can exist thanks to the redistribution of forces if plastic hinge formation can 
happen. This means that the structure is designed according to the resistance of the 
element that reaches yielding first.  

In some cases, a plastic analysis can also be performed to consider the redundancy of a 
system and the redistribution of internal forces. In this case, the simplest and most efficient 
way is to use an elastoplastic (EP) model with or without imposed deformation capacity. 
This model is equivalent to the LE model until reaching the yielding limit, then a plateau is 
defined, which can have a deformation capacity limit or not.  

A type of cross-sectional behaviour models more representative of reality consists of 
Non-Linear (NL) models. NL models can be defined in multiple ways, depending on the 
non-linearities accounted for. Non-linearities can arise from material non-linearity 
(constitutive law) or geometric non-linearity. In the current study, it has been chosen to only 
account for material non-linearity. This choice is explained by the fact that most of the 
structural analyses carried out by engineers use simple and efficient models such as the 
LE and EP models. It is rare that highly refined non-linear models are used, so it seemed 
that the consideration of the non-linearity of the material(s) is sufficient to be representative 
of engineering practice, without considering more complex models in the current study (i.e. 
with geometric non-linearities). 

To determine LE and EP models slope, the NL curve (rigidity) initial slope in the elastic 
stage is used, see next subsections. 

 

Fig. 38 Sectional analysis models. 

 Non-Linear model 

This paragraph presents the assumptions used in the non-linear model to determine the 
moment-curvature relationship of steel-concrete composite sections. The section analysis 
is performed numerically using a fibre-based model, Fig. 39 presents the algorithm 
procedure. The material properties are experimental values taken from the test database. 
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Fig. 39 Algorithm procedure for the non-linear model. 

The ultimate curvature is reached when one of the extreme fibre fractures. If the section is 
subjected to positive bending: the concrete slab crushes, or the bottom steel flange 
fractures. Under negative bending, the slab is not considered but the fracture of the 
reinforcement becomes determining (over the fracture of the steel in compression, the 
experiments being designed to avoid flange stability problems, see also the subsection on 
the influence of the section class). The fracture criteria for the fibres are thus conventionally 
fixed as the following: εcu1 = 3.5‰ for concrete (specific deformation at crushing) and 
εu = 5% for all steels (specific deformation at ultimate strength). 

The initial elastic stage slope (rigidity) of the NL curve is used to define the LE and EP 
models slope. 

 Structural analyses load-deflection response 

The different moment-curvature relationships were calculated using the models presented 
above. With this information, the load-displacement curves (F- response) can be 
determined for each beam and each model (LE, EP, and NL) as presented in Fig. 40. The 
computation is performed analytically by integrating the curvature along the beam, 
respecting the boundary conditions. For each load step, the deflection at midspan can be 
determined and the load-deflection curve can be constructed until reaching the 
experimental failure load. 
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Fig. 40 Algorithm procedure for the non-linear model: (a) bending moment ( )M x  and 
curvature ( )x along the beam and (b) the resultant F- curves for different analysis 
approaches. 

Each of the beams obtained from the literature presented in Tab. 11 was analysed to 
determine the F- responses according to the different models investigated. In addition, the 
experimental F- curves have been digitized, which allow to perform comparisons. 

 Response of the assembled two-beams systems 

As described in the introduction, structural responses of statically indeterminate structures 
are determined by combining the experimental F- responses of two simply supported 
beams as shown in Fig. 41. To evaluate the model uncertainty, the F- response of the 
system is compared with the response of the models resulting from the structural analyses 
adopting various mechanical behaviours. 

 

Fig. 41 Illustration of the statically indeterminate system assembled with two simply 
supported beams. 

In total, four different mechanical models are compared as illustrated in Fig. 42. In addition 
to the three models presented in Subsection 3.3.1, an additional model is investigated: 
Elastic-Plastic with limited deformation capacity (EPLim). This model is implemented to 
reduce uncertainties related to the deformation capacity before failure of one of the beams. 
For the model with limited deformation capacity, the deformation capacity of each beam is 
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limited by imposing it as the deflection at the peak load, as reported in the experimental 
F- responses. The use of limited deformation capacity can be explained by the section 
class requirements to perform plastic analyses. 

These four models are believed to be representative of common engineers’ practice in the 
calculation of internal forces and load-bearing capacity. 

 

Fig. 42 Four mechanical models to study the response of the assembled two-beams 
system: (a) Linear-Elastic; (b) Elastic-Plastic; (c) Elastic-Plastic (limited deformation 
capacity) and (d) Nonlinear. 

 Ductility class indicators 
Initially, differentiation according to the type of action (positive or negative bending) was 
used as a mean of differentiating ductile from brittle behaviour. Observing the results, no 
significant correlation with the failure mode was noticeable. 

Then, to better differentiate the type of failure behaviour considering instability effects, the 
ductility of each beam according to the experimental force-displacement response was 
used. Herein, the ductility indicator chosen is the ratio between the displacement at failure 
δR and the displacement at first yield δy, see Fig. 43. The first yield displacement δy is 
calculated with the elastic stiffness of the section (according to the geometric 
characteristics of the section and yield strength of materials given in the test report). As for 
the displacement at failure δR, it is characterized as the maximum displacement before 
failure or when the resistance falls to 90% of the maximum bearing capacity of the beam 
(if a downward part is observed in the experimental force-displacement response). 
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Fig. 43 Typical experimental force-displacement response and beam ductility indicator. 

Furthermore, each experimental beam was classified according to the standardized 
ductility indicator, namely its cross-section class. This is the criterion in structural steel 
codes for defining the allowed calculations methods in section and/or for calculating internal 
forces, each beam being classified according to slenderness limits for its web and flanges 
in function of the panel supporting conditions and loading mode. Tab. 12 summarizes the 
most restrictive slenderness limits given in EN 1993 [130], that is for panels in pure 
compression. These limits were chosen because in composite beams under negative 
bending, most of the web panel is under compression. 

Tab. 12 Cross section class definitions and corresponding slenderness limits 
Cross-
section 
class 

Internal forces Section resistance 𝒉𝒘
𝒕𝒘
ൗ  (web) 

𝒄
𝒕𝒇ൗ  (flange) 

1 Plastic Plastic < 33 ε < 9 ε 

2 Elastic Plastic < 38 ε < 10 ε 

3 Elastic Elastic < 42 ε < 14 ε 

4 Elastic Elastic reduced   

 

Where the expression for the steel grade coefficient is: 

𝜀 = ට
ଶଷହ

௙೤
  (53) 

The indicators ductility and cross-section class are evaluated in Fig. 44a and 44b by plotting 
the ductility of each beam against the web slenderness (as this is the main determinant 
panel in our case), in order to establish whether a significant relationship could be 
observed. 

 

Fig. 44 Web slenderness 𝒉𝒘 𝒕𝒘⁄  against beam ductility a) beams with medium web 
slenderness, up to 2.2, b) all beams, incl. those with high web slenderness. 
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Most of the sections of class 1 (blue dots) are very ductile, while the ductility tends to 
decrease for the higher classes of sections (red dots). In Fig. 44b, the black dots represent 
beams with high web slenderness that are closer to a bridge-type section, but were 
designed to study shear force behaviour and contain stiffeners to be able to use the 
contribution of the web panels with a direct tensile force. In this case, the rotation capacity 
necessary to activate this tension diagonal through the web panel must be sufficiently large, 
which in some cases results in quite high ductility values. Furthermore, as these 
experimental beams shown in Fig. 44b were tested in shear (with very short spans), it 
implies that the section could not even reach the plastic moment resistance and therefore 
the ductility indicator (as we calculate it) is all the greater because 𝛿𝑦 is reached earlier. 

 Discussion of the results 
Herein, only the analyses carried out with the cross-system combinations regrouped in 
function of their cross-section classes are presented in detail. The experiments are 
separated into 2 groups: the first group containing beams with section class 1 and the 
second group containing beams classified as class 2 and above. The cross-system 
combinations therefore do not consider the moment direction (positive or negative), but the 
cross-section class. First the section classes 1 are combined together, then the higher 
classes are combined with each other, while the last type of combination consists of a 
class 1 beam with a beam class 2 and above. A summary of the processed combinations 
is given in Tab. 13. Since beams classified as class 1 are usually those under positive 
bending, a comparison between these two classification schemes can be made and is 
presented below. All the same for beams classified as 2, 3, or 4, which are most likely to 
be under negative bending, and the combinations of the above that are typical of a 
combination M+ and M-. 

The main results are presented in terms of the global model uncertainty (𝜃𝐺) obtained by 
performing the analyses according to the different mechanical models presented above 
(LE, EP, EPLim, NL). For each model, the results are represented in the form of a 
probability plot. The data are fitted with a lognormal distribution. The lognormal probability 
plots also allow checking the accuracy of the tail distribution approximation. On the x-axis 
is reported the random variable 𝜃𝐺 (logarithmic value) while on the y-axis is reported the 
normal quantile in terms of standard deviation. For an exact log-normal distribution, the 
points should represent a straight line in the probability plot. 

Tab. 13 The different models and cross system combinations between cross-section 
classes 

 

  

 

CLASS 1 
- 

CLASS 1 

903 comb. 903 comb. 903 comb. 903 comb. 

CLASS 2/3/4 
- 

CLASS 2/3/4 

595 comb. 595 comb. 595 comb. 595 comb. 

CLASS 1 
- 

CLASS 2/3/4 

1505 comb. 1505 comb. 1505 comb. 1505 comb. 

 Linear-Elastic model results 

Fig. 45 shows the log-normal probability-plot of θQR defined in Eq. 41 obtained with the LE 
model. Note that in this figure and herein, the legend in blue correspond to whole dataset 
statistics, whereas the legend in red correspond to tail approximation statistics. For the tail 
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approximation, one can observe that the 5th percentile is always around the value 1.0. For 
the combinations between class 1 beams the tail fitting of the actual distribution is close 
along the curve. The behaviour is not linear but the gap is nevertheless small. The same is 
true for beam combinations of class 2 and higher. The behaviour is quite homogeneous 
over the whole distribution. When the two class types are combined, a linear behaviour is 
obtained on the lower half of the curve with a rather low coefficient of variation, which 
reflects quite well the determining cases when the weakest beam (class 2 and higher) 
reaches failure. 

 

Fig. 45 Probability plots of θQR for LE model and cross-sections combinations composed 
of:(a) Class 1 only (b) Class 2/3/4 combined and (c) Class 1 with Class2/3/4. 

 Elastic-Plastic model results 

For class 1 sections, better approximation of the lower tail distribution and a fractile 5% 
(𝑝(0.05) = 0.90) are obtained, see Fig.46. The coefficient of variation is relatively small 
6.1%. The main reason for this good fit is that the most extreme values have been removed 
because the elements with brittle behaviour are not part of the first group due to the 
classification according to the cross-section. 

On the other hand, for classes with a cross-section greater than 1, different behaviour can 
be observed. In this case, the EP analysis shows values that can be very low. The lower 
part of the distribution has a very different shape from the rest of the distribution with a very 
high 𝐶𝑜𝑉 = 31.3%. Nevertheless, this result is expected because the EP model is not 
suitable for this section type as it does not allow for ductile behaviour. 

When the two types of sections are combined, an intermediate behaviour can be observed 
in Fig. 46a and 46b. Having at least one of the beams with ductile behaviour allows for an 
improvement by tightening the distribution compared to the fully brittle case. 

 

Fig. 46 Probability plots of θQR for EP model and the different cross-sections combinations 
composed of:(a) Class 1 only (b) Class 2/3/4 combined and (c) Class 1 with Class2/3/4. 
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 Elastic-Plastic model with limited deformation capacity results 

When considering the deformation capacity observed during the experiment within the 
EPLim model, see Fig. 47, for experiments using beams with cross-section class 1, the 
results remain identical to the EP case (Fig. 46) because their ductile behaviour allows a 
large deformation capacity and thus the addition of this constraint in the model has no 
impact on the results. On the contrary, for experiments using beams with a more brittle 
behaviour, this additional parameter allows to improve the results by avoiding 
overestimating the deformation capacity. The 5% fractile 𝑝(0.05) = 0.92 and the coefficient 
of variation 𝐶𝑜𝑉 = 22.9% are improved. 

For the combination of 2 types of behaviour (1 ductile beam and 1 brittle beam), considering 
the deformation capacity of the brittle beam leads to a significant improvement in the 
probability distribution of the results. This implies that a plastic calculation, to a certain 
extent, could be used if the deformation capacity of each section is carefully considered 
(i.e. some redistribution can be admitted as long as the deformation capacity of the beams 
with a rather brittle behaviour is not overestimated). 

 

Fig. 47 Probability plots of θQR for EPLim model and the different cross-sections 
combinations composed of:(a) Class 1 only (b) Class 2/3/4 combined and (c) Class 1 with 
Class2/3/4. 

 Non-Linear model results 

The non-linear model results as probability plots of θQR in Fig. 48 provide a good 
approximation for ductile beams with a distribution tail that precisely follows a lognormal 
distribution. In this case, considering the non-linearity allows for a good approximating of 
the real behaviour of the statically indeterminate cross system.  

For larger cross-sectional areas, however, different behavioural modes are observed at the 
other extreme of the distribution. These different modes are due to the instabilities that 
these experimental beams may experience. If the behaviour is close to brittle, then the 
model results can become bad because the model only considers the non-linearity of the 
materials and not the instability problems, thus making the model no longer suitable. 
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Fig. 48 Probability plots of θQR for NL model and the different cross-sections combinations 
composed of:(a) Class 1 only (b) Class 2/3/4 combined and (c) Class 1 with Class2/3/4. 

 Summary tables and discussion 

In the following tables, the results for θQR for the different models and cross system 
combinations, separated according to the two differentiations: moment direction (M+ & M-) 
or cross-section classes (1 & 2 or higher), are summarized and compared. 

First, when looking at Tab. 14, an improvement in the 5th percentile and in the tail fitting/ 
lower tail approximation (represented by the Mean and CoV) for the cross-section class 1 
combinations can be observed. This can be attributed to the removal of the more brittle 
beams from this group.  

Tab. 14 Comparison of all results of θQR for the different models and cross system 
combinations for positive moments or cross-sections class 1 (in blue whole dataset 
statistics, in red tail approximation statistics) 

 M+/M+ Class1/Class1 

 Mean. CoV % p(0.05) Mean. CoV % p(0.05) 

LE 
1.17 15.0  1.10 9.4  

1.15 8.7 0.99 1.15 9.0 0.99 

EP 
0.96 4.8  0.97 3.1  

1.28 22.3 0.87 1.00 6.1 0.90 

EPLim 
0.97 3.3  0.97 3.1  

0.99 6.1 0.89 1.00 6.1 0.90 

NL 
0.97 3.4  1.00 3.8  

0.99 6.2 0.89 1.02 5.3 0.93 
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Tab. 15 Comparison of all results of θQR for the different models and cross system 
combinations for negative moments or cross-sections classes 2, 3 and 4 

 M-/M- Class2+/Class2+ 

 Mean CoV % p(0.05) Mean CoV % p(0.05) 

LE 
1.18 12.4  1.21 11.8  

1.09 4.5 1.01 1.27 11.8 1.04 

EP 
0.98 1.6  0.97 4.2  

0.97 1.8 0.95 1.51 31.3 0.87 

EPLim 
0.98 1.6  0.98 3.4  

0.97 1.8 0.95 1.37 22.9 0.92 

NL 0.99 2.1  0.99 3.7  

 0.98 1.9 0.95 1.31 19.6 0.94 

 

In Tab. 15, no improvement when using the cross-section classification can be observed. 
A reduction of fractile 5% values is noticeable because the ductile cases considered in the 
first analysis are removed and thus the tail behaviour is closer to what we expect (i.e. it 
removed what could be seen as outliers before, too ductile as designed for shear study). 
As discussed in the previous subsections, the experiments and their combinations show 
different behaviour, with the lower part of the distribution having a very different shape from 
the rest of the distribution. 

Tab. 16 Comparison of all results for the different models and cross system 
combinations for negative/positive moments or cross-sections class 1 with classes 2, 3 
and 4 

 M+/M- Class1/Class2+ 

 Mean CoV % p(0.05) Mean CoV % p(0.05) 

LE 
1.14 9.3  1.14 9.5  

1.17 7.8 1.02 1.13 6.1 1.02 

EP 
0.97 3.4  0.97 3.1  

1.40 23.7 0.93 1.19 15.8 0.91 

EPLim 
0.97 3.2  0.98 2.4  

1.22 16.0 0.93 1.06 7.9 0.93 

NL 
0.99 3.6  0.99 3.1  

1.25 16.3 0.95 1.01 3.9 0.94 

 

In Tab. 16, one can see that the 5th percentile values are not improved with the use of the 
cross-section classification, but a better approximation of the lower tail can be observed, 
with in particular a large reduction of the CoV values. 

From the above, it is concluded that:  
 The section class, which can be said to be linked to the failure mode, appears to 

influence the model uncertainty of action effects calculation regardless of the analysis 
performed. Systems combining Class1 beams only show lower CoV and smaller 5th 
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percentile than combinations of Class1/Class2+. Furthermore, Class1/Class2+ show 
lower CoV than Class2+/Class2+ combinations. 

 Since a better representation and modelling of the different beam behaviour within an 
indeterminate static system can be achieved by relying on the cross-section 
classification, one shall always refer to the cross-section classification to validate the 
use of linear or plastic internal forces redistribution. Also, this is an interesting result as 
this classification is used every day by engineers in practice and potentially provides an 
elegant solution for differentiating the value of the model uncertainty partial factor in the 
verification of the global load-bearing capacity of indeterminate static systems.  

 There is also a clear observation of 2 regimes, a relationship between the failure mode 
and the θQR distribution shape. 

 The model uncertainty reduces when more refined analyses are performed. However, 
and inversely, the work effort increases in terms of input data, time and calculation 
complexity. 

The main questions that remain are the representativity of both the beam in a cross system 
and the database used in this section to determine the resulting probability density 
functions for the random variable QR and the corresponding values of the model partial 
factor Sd. The indeterminate static systems modelled should be representative of common 
structural systems in practice. Referring to our research domain, this corresponds to 
continuous composite bridges. The crossing of a ductile and brittle beam can be considered 
as the model that is the closest to our common structural system but are two beams 
crossing each other at midspan representative of our common longitudinal structural 
system? 

This question is addressed in the following subsections by proposing an extension of the 
modelling technique using the results from experiments on simple composite beams to 
continuous composite longitudinal structural systems. 

 Longitudinal continuous systems 

To extend the results obtained on cross systems, crossing of two simply supported beams 
(SSB), another statically indeterminate system is hereby studied. It must be ensured that 
this hypothetical system can be representative of a common longitudinal system such as a 
continuous composite bridge. It is therefore necessary to analyse and relate both systems, 
to observe how to adequately represent the behaviour of a continuous beam by 
superposing or combining simply supported beams. 

In this case, it seems appropriate to combine beams that are loaded in different directions 
(i.e. positive and negative bending) which allows the representation of both the sagging 
and the hogging regions of a continuous girder. Since this is an over-constrained problem, 
different conditions analysis between both systems are carried out, namely static and 
kinematic (using curvature as well as displacements). It is shown, by further modelling of 
both systems using different beams, that they lead to similar relations. 

 Static conditions 

The first step is to investigate the static conditions that must be satisfied for each of the two 
static systems chosen. Fig. 49 shows the determination of the load-carrying capacity for 
each system. To explain the reasoning, the simplified assumption that both beams in the 
cross-system have equal span lengths is made. 

As for the longitudinal system, it is defined as a symmetrical two spans system with the 
same properties as the assembled two-beams system (identical span length and the cross-
sections are taken from the crossed system (i.e., sagging region = SSB under positive 
bending, hogging region = SSB under negative bending). This means that ultimate moment 
capacity is equal in both systems. The longitudinal system is loaded with two identical 
concentrated forces located in the centre of each span. To compare both systems, the 
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maximum load-carrying capacity is determined assuming that plastic hinges can form in 
both the hogging region and the sagging regions (plastic design). 

 

Fig. 49 The two statically indeterminate systems considered and their respective static 
conditions requirements. 

After analysing both systems as summarized in Fig. 49, the cross-system configuration 
does not reflect the behaviour of a continuous beam. This is because the section subjected 
to negative bending has an equal "weight" to that of the positive section, whereas in the 
longitudinal system the bearing capacity is influenced twice as much by the capacity of the 
sagging regions. To be statically equivalent, the crossed system must contain 3 beams. 
Two times the same beam (in case of a symmetric longitudinal system) in positive bending 
for one beam submitted to negative bending. 

 Kinematic conditions 

The second step is now to investigate the kinematic conditions of both systems, and it is 
less obvious to find a relationship between them. On the one hand, the experimental 
database contains isostatic beam deflections, which are quite different from the deflections 
of a continuous girder. On the other hand, analysing and comparing beam deflections of 
different systems is possible, even after concrete cracking and during redistribution of 
internal forces by integrating the curvature along each beam as presented in Subsection 
3.3.4 to obtain the load-deflection response of each system. 

In the static cross-span system, the imposed displacement at mid-span is identical for each 
beam, but for continuous girders this assumption must be confirmed. To represent as best 
as possible the response of a continuous system using the same experimental database, 
the method is to approximate the deflection of a continuous beam by the deflections of 
simply supported beams. Let’s define first the sagging and hogging regions. Fig. 50 
represent the elastic moment distribution along a 2 spans continuous beam loaded as 
before with two identical concentrated forces located in the centre of each span. Based on 
the elastic moment distribution and consideration about the concrete cracking zone under 
hogging, a total length of the hogging zone equal to 0.6L is assumed (to be validated later, 
see Subsection 3.4.3). 

The reasoning is now to consider each part of the continuous beam as a separate isostatic 
system (to be able to refer back to experimental data) and at the same time ensure the 
continuity of the deflection along the whole continuous beam. This means that at the zero 
moment points (points of intersection) the displacements must be equal, imp,2 = imp,1, as 
presented in Fig. 51. Note that this does not ensure continuous slope at the points of 
intersection. 
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Fig. 50 Two-spans continuous beam with elastic moment distribution and definition of 
hogging and sagging regions. 

 

Fig. 51 Kinematic conditions imposed on the two-spans continuous beam. 

For comprehension purpose, analysis is made separately for sagging and hogging region. 
Considering the sagging region, an approximation from simply supported beam to 
continuous beam mid-span displacement is done by comparing the behaviour of both 
systems. In Fig. 52, deflection of isostatic beams that are not connected at intermediate 
support is shown in blue and that of the continuous system is plotted in black. Considering 
constant rigidity along the beam, the mid-span displacements in the elastic range can be 
computed. In this case, the mid-span displacement of the continuous beam can be taken 
as approximately 70% of the displacement of the same beam if simply supported. 
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Fig. 52 Comparison between deflections at midspans from a two-span continuous beam 
and two Simply Supported Beams (SSB). 

The focus is now put on the intersection between the 2 regions, as a relationship between 
the mid-span displacement and the one at the point where bending moment is null needs 
to be found. Considering the rotation diagram along the beam, it is possible to determine 
this relationship using the assumption that the hogging region is equal to 0.6 times the span 
length (see Fig. 50). Considering the integration of the curvature along the beam, as 
presented in Fig. 53, it is possible to estimate the ratio between null moment and mid-span 
deflections as being equal to 80%. However, as the assumption of a constant rotation in 
the hogging part of the beam has been made, the value found is slightly overestimated. 
Furthermore, the analysis was done based on the deflection of an isostatic beam. In the 
case of the continuous beam, it is expected that the deflection at the point of zero moment 
is lower since the rotation at the intermediate support must be equal to zero. An 
approximation closer to reality would lead to lower ratio values, around 0.65-0.7, instead of 
considering 0.8. Finally, one shall note that this factor is also largely influenced by the 
difference in stiffness between the hogging and the sagging regions. In composite bridges, 
stiffnesses at supports are usually significantly higher since applied moments are higher 
and cracking has to be limited. Thus both the steel section as well as the rebars quantity 
(typically 1.5% vs 0.8% [131] are higher at supports, which also explain why the ratio values 
are lower. 

 

Fig. 53 Relationship between curvature and displacements at the intersections (imp,1) and 
mid-span locations (1). 

Concerning the hogging region, it is straightforward to determine the ratio between the 
deflection of the simply supported beam and the one at the intersection. With the 
assumption made on the hogging region length (0.6 times the span length), the 
displacement can be calculated from the deflection of the isostatic system and it is equal 
to 0.62 for a concentrated load at mid-span (which is represented by the intermediate 
support reaction in our case). 
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Fig. 54 Relationship between displacements at the intersections (imp,2) and support 
location (2). 

 Summary and validation of the conditions between static systems 

To confirm the assumptions made in determining the forces and deflection relationships 
given in Fig. 55, validation according to some simple cases has been performed. A random 
selection of sectional behaviour was chosen, and the two systems were modelled to check 
whether the behaviour matched the relationships derived from the static and kinematic 
conditions. Four cases were analysed with, for the span section, always the same moment-
curvature relationship. For the support section, 4 different moment-bending relationships 
are given in Fig. 56; they were chosen to observe the influence of the stiffness ratios 
between the two sections and are given in Tab. 17. In addition, case A was defined to show 
a brittle behaviour (no plastic behaviour as indicated by the dotted line in Fig. 56). 

         

 

 

Fig. 55 Summary of the forces and deflection relationships linking the longitudinal 
(continuous beam) and the simple span combination systems. 
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Fig. 56 Validation cases, span and support moment-curvature relationships. 

 

Tab. 17 The different stiffness ratios and behaviour type for the four cases analysed 

 
Stiffness ratio 
(Isup/Ispan) 

Support section behaviour 
(brittle/ductile) 

CASE A 1.5 brittle 

CASE B 1.5 ductile 

CASE C 0.75 ductile 

CASE D 3 ductile 

 CASE A 

The results for case A are shown in Fig. 57. The dashed lines show the deflections 
according to a simply supported beam for the support section (red) and for the span section 
(black). The line (blue) defines the behaviour of the continuous beam. For the span section 
the correction factor is taken as 0.7 as described in Fig. 55; according to the same figure, 
the correction for the support section should be 0.55, based on the assumptions and 
analysis carried out. It turns out that to obtain a behaviour identical to the continuous beam, 
in this case with a stiffness ratio equal to 1.5, the necessary correction should be taken as 
0.68. The dashed line with black crosses is performed by adding both force-displacement 
responses of the simply supported beams after correction factor for the imposed 
displacement (which represent the crossed system). It is observed in Fig. 57 that first yield 
at midspan is reached at the same point for both systems, and the failure (occurring at the 
support section) is attained for the same displacement. 
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Fig. 57 Forces-deflection curves for case A. 

 CASE B 

For case B, the moment-curvature relation is equivalent to the case A with the exception 
that the support section shows ductile behaviour. Again, a correction factor of 0.68 is 
applied to the simply supported beam result of the support section. The resulting curve 
(dashed line with black crosses) show that the behaviour of the continuous beam (blue) 
can still be well approximated, see Fig. 58. 

 

Fig. 58 Forces-deflection curves for case B. 

 CASE C 

For case C, the stiffness ratio between support and span section is lower than previously 
and equal to 0.75. This time, the needed correction factor is smaller, since the span section 
is stiffer. Also, the hogging moment region becomes smaller, and the span region behaviour 
is more important in this case. The correction factor applied this time is equal to 0.55 to get 
a good approximation of the simulated curve (dashed line with black crosses) with the 
continuous beam behaviour (blue), both in terms of shape and values, see Fig. 59. 
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Fig. 59 Forces-deflection curves for case C. 

 CASE D 

As the stiffness ratio is now increased to 3 between support and span section, the 
behaviour of the support is now more important in simulating the behaviour of the 
continuous system. As shown in Fig. 60 the correction factor needed is now 0.8 to get a 
good approximation of the simulated curve (dashed line with black crosses) with the 
continuous beam behaviour (blue), both in terms of shape and values. 

 

Fig. 60 Forces-deflection curves for case D. 

 Recapitulation of main results and correction factors 

For the 4 cases, the correction factors for the imposed displacement are given in Tab. 18. 

Tab. 18 Summary of correction factors for the imposed displacement 

 CASE A CASE B CASE C CASE D 1st estimate 

Span correction  0.7 0.7 0.7 0.7 0.7 

Support correction  0.68 0.68 0.55 0.8 0.7 
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Based on the results obtained for these 4 cases, one can observe that the correction factor 
for the span section is a good approximation to convert from the simply supported system 
behaviour to the continuous beam one. However, for the support section, the correction 
factor value varies and depends on the stiffness ratio between both sections. Nevertheless, 
even if the support correction factor ranges between 0.5 and 0.8, the average is nearly the 
same as the factor for the span section and in first approximation the results of cases C 
and D can be considered as rather extreme cases. Thus, to best represent the continuous 
systems by means of cross systems, the value 0.7 as a first estimate can be used for both 
correction factors. Furthermore, the cross system without correction of the imposed 
deflection can be considered representative enough and the results would not improve by 
adding a random variable on this correction factor. 

In all of the above cases, the comparisons have been performed for simply supported 
beams with equivalent span length. It goes without saying that if the two beams do not have 
the same span length, the force-displacement response of the beam tested in negative 
bending must be corrected with respect to the span length of the beam in positive bending, 
i.e. with the following factor (L1/L2)2 as presented in Fig. 55. 

 Approaching continuous system behaviour (composite 
bridges) 

Using the reasoning developed in the previous section, a new set of simulated tests is 
created to represent longitudinal systems (continuous composite bridges). The approach 
here differs from the one for concrete structures for two reasons linked to the focus on 
composite girder bridges: 
 The stiffnesses at supports are usually significantly higher, as shown by the larger steel 

sections as well as rebars quantity used in these regions. 
 Their design is predominantly influenced by the low ductility of composite beams, 

especially in the intermediate support areas. This is due in particular to the web’s 
slenderness which can get very high. 

In span regions, the ductility problem is not predominant because almost the entire web is 
subjected to tension, which eliminates the problems associated with stability. In the most 
common case, the span sections are considered to have a very ductile cross-section class 
(class 1), whereas the cross-section class at the supports is easily class 3 or 4. This means, 
among other things, that the design of such a structure should not admit plastic 
redistributions from the support to the span sections due to the low ductility of the support 
section(s), which considerably complicates the design and requires a fastidious verification 
according to elastic stress distributions within the sections. Nevertheless, thanks to the 
doctoral studies of Ducret [132] and Lääne [133], it has been shown that a certain 
redistribution can be admitted between the support and span internal forces as even in 
class 4 the resisting moment can be sustained under a certain rotation range. Considering 
the available rotational capacity at the support, it was shown that a plastic calculation in 
span is possible as long as the sagging moment does not exceed 90% of the plastic 
moment capacity (which limits the plastification and thus the rotation in span so as not to 
require too much rotation capacity at the support). This criterion should allow for the support 
section to maintain its resistance (even for section classes 4, the reduced elastic resistance 
EER) while the span section is in the plastic behaviour. 

To best reflect the behaviour of a composite bridge, it was decided to combine experimental 
beams according to the classifications that can be found in a composite bridge. The 
assembled system always consists of 3 beams (2 simply supported beams tested under 
positive loading and 1 beam submitted to negative moment classified as cross-section 
class 3 or 4).  
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Tab. 19 First assembling scheme, completely symmetrical longitudinal system 
 Assembled longitudinal system 

 1st beam (span) 2nd beam (support) 3rd beam (span) 

 (L1, F+
1, δ1) (L2, F-

2, δ2) (L3, F+
3, δ3) 

Force (F) F+
1 (L2/L1) F-

2 Identical to 1st 

Deflections (δi) δ1 (L1/L2)2 δ2
- Identical to 1st 

Cross-section class 1 3 or 4 Identical to 1st 

Nb of experimental beams available 36 28 NA 

 

In a first assembling scheme, the analysis is performed by duplicating the experimental 
beam representing the span region. This allows to represent a completely symmetrical 
longitudinal system; Tab. 19 gives the information needed to assemble the system, which 
leads to a total of 1008 possible combinations. If the beam representing the support section 
does not have the required length (i.e. the same length), it can nevertheless be adapted 
using the length ratios for both the imposed displacement and the force. These adjustments 
allow to obtain the same bending moment-deflection behaviour, the difference being only 
in the integration of the curvature diagram on a span length corrected to be equal to that of 
the reference beam (i.e. the span beam section under sagging moment). 

In a subsequent assembling scheme, an additional variable is added by using a different 
beam for each of the two spans as presented in Tab. 20, which leads to a total of 36288 
possible combinations. However, to remain consistent, it is necessary that the system 
remains symmetrical (the spans on each side of the support must be of equal length). This 
ensures an approximately equal negative section area on each side of the support. It is 
therefore necessary to also correct the 3rd experimental beam (representing the second 
span) to adjust its length in relation to the 1st experimental beam. 

Tab. 20 Second assembling scheme, non-symmetrical into symmetrical longitudinal 
system 
 Assembled longitudinal system 

 1st beam (span) 2nd beam (support) 3rd beam (span) 

 (L1, F+
1, δ1) (L2, F-

2, δ2) (L3, F+
3, δ3) 

Force (F) F+
1 (L2/L1) F-

2 (L3/L1) F+
3 

Deflections (δi) δ1 (L1/L2)2 δ2 (L1/L3)2 δ3 

Cross-section class 1 3 or 4 1 

Nb of experimental beams available 36 28 36 

 Models 

In addition to the four models used in the previous sections, two models are added to 
represent the differentiation between span and support behaviour with moment-rotation:  
 Allowing the beam in span and under sagging moment to behave elastic-plastic and 

reach its plastic capacity while limiting the support section to its elastic limit capacity 
(EPLE) (plLE), 

 Allowing the beam in span and under sagging moment to behave elastic-plastic but only 
reach 90% of its plastic capacity while limiting the support section to its elastic limit 
capacity (EP90LE) (plLE90%) 

The assembled longitudinal systems behaviour will be compared using now in total six 
(instead of four as previously) different models as presented in Fig. 61. 
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Fig. 61 The six models compared to study the assembled longitudinal systems. 

 Linear-Elastic model results 

The results obtained with the LE model are shown in Fig. 62. The results are very similar 
for both assembling schemes (completely symmetrical or not symmetrical longitudinal 
systems). 

The linear elastic model leads to an over-design ratio as it does not consider any ductility, 
as already observed with the cross system in Subsection 3.3. This elastic over-design ratio 
influences the model uncertainty, the distribution shape for load bearing capacity (θQR). The 
behaviour is quite homogeneous over the whole distribution. The 5th percentile is slightly 
above unity and the CoV are low. The assumption that there is no redistribution possible 
from the support to the span sections is in contradiction with the usual behaviour of such 
systems, even if made out of cross-section classes 2 to 4. 
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Fig. 62 Probability plots of θQR for the LE model for the (a)1st and (b)2nd assembling scheme 
of longitudinal system, see Tab. 19 and 20 respectively. 

 Elastic-Plastic model results 

For the EP model, it is again the least conservative of all (i.e. similarly to cross systems) 
with 5th percentile values around 0.92, see Fig. 63. The results are quite similar for both 
assembling schemes, with a better tail distribution fit for the scheme 2. 

 

Fig. 63 Probability plots of θQR for the EP model for the (a)1st and (b)2nd assembling 
schemes of longitudinal system. 
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 Elastic-Plastic model with limited plasticity results 

The resulting probability plots of θQR for this model are very similar to the previous results 
from the EP model, which means that the added constraint of plasticity limitation does not 
play any role. 

 

Fig. 64 Probability plots of θQR for the EPLim model for the (a)1st and (b)2nd assembling 
schemes of longitudinal system. 

 Non-linear model results 

The resulting probability plots of θQR for the NL model shown in Fig. 65 provide a very good 
approximation of the real behaviour with a distribution tail that follows precisely a lognormal 
distribution, as was already the case for the statically indeterminate cross system. Given 
that the beams behaviour is sufficiently ductile, the nonlinearity allows for a good 
approximation of the real behaviour of the longitudinal system. This reflects well the usual 
behaviour of such systems. 

 

Fig. 65 Probability plots of θQR for the NL model for the (a)1st and (b)2nd assembling 
schemes of longitudinal system. 

The second scheme, which has 36 times the combinations of the first but more uncertainty 
due to the correction on the 3rd beam, leads to very similar values, with a slight reduction 
of the CoV of the tail approximation. 

These good results can be traced back to the behaviour of the longitudinal system, with 
redistribution between the support and the span sections, with plastification in the spans 
and sufficient rotation capacity at the support section. In this model, the support section 
does not remain elastic up to failure, as shown in in Fig. 61. This condition will be enforced 
in the two last models, namely (EPLE) and (EP90LE). 
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 Elastic-Plastic model in span only, elastic on support (EPLE) 

The resulting probability plots of θQR for this model are among the least conservative, with 
the EP model. This is not surprising since it considers redistribution and plastic behaviour 
in span section. The behaviour is quite homogeneous over the whole distribution. Thus, as 
long as the support section rotates without losing its strength, i.e. without exceeding its 
elastic capacity, the model should give good predictions. This is indeed the case with 5th 
percentile values between 0.96 and 0.92. The CoV however is quite high in comparison 
with the other models, so there is room for improvement. This could be the case with the 
next and last model EP90LE. 

 

Fig. 66 Probability plots of θQR for the EPLE model for the (a)1st and (b)2nd assembling 
schemes of longitudinal system. 

 Elastic-Plastic model in span limited, elastic on support (EP90LE) 

The resulting probability plots of θQR of this model are as expected somewhat better than 
those from the EPLE model. The 5th percentile values are very close to unity and the CoV 
are smaller than with the previous model. This is in line with previous works, but does not 
constitute a confirmation of the correctness of the limitation to 90% of in-span plastic 
capacity since there is no requirement on the rotation needed to reach this load capacity. 

 

Fig. 67 Probability plots of θQR for the EP90LE model for the (a)1st and (b)2nd assembling 
schemes of longitudinal system. 

 Summary of models of longitudinal system and discussion 

A summary of all results of θQR is given in Tab. 21. When compared with the results from 
the cross system, see Tab. 14, Tab. 15 and Tab. 16, one can see that the models show 
the same trends, with a reduction of 5th percentile values when considering plastic 
behaviour and also probability plots and tail behaviour closer to the expected distribution. 
Not surprisingly, the models that consider redistribution and plastic behaviour in span 
section give good results. The best results are obtained with model EP90LE, with the beam 
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in span and under sagging moment allowed to behave elastic-plastic but only reach 90% 
of its plastic capacity while limiting the support section to its elastic limit capacity. Thus, 
under the assumption that the support section rotates without losing its strength, i.e. below 
that of its elastic capacity, it is a good choice to use this model in design. The validity of 
this requirement is not part of this research, it has been studied and validated in previous 
works [132, 133]. 

With respect to the corresponding value of the partial factor, it was not possible to carry out 
a complete study as for the reinforced concrete. However, when compared the values 
found in Tab. 21 are similar to values for the model uncertainty related to the global load-
bearing capacity found for the reinforced concrete structures as can be seen in Tab. 22 
Thus, it is reasonable to conclude, with the same limitations inherent to this report, that the 
partial factor γSd to cover the uncertainties of the internal force calculation ranges between 
1.05 and 1.15. 

Tab. 21 Comparison of all results of θQR for the different models of longitudinal system 

 1st assembling scheme (completely 
symmetrical, 1008 comb.) 

2nd assembling scheme 
(36288 comb.) 

 Avg. CoV % p(0.05) Avg. CoV % p(0.05) 

LE 
1.21 10.1  1.22 9.2  

1.21 8.6 1.04 1.18 6.7 1.05 

EP 
0.97 2.9  0.97 3.0  

1.16 13.1 0.93 1.07 9.9 0.91 

EPLim 
0.97 2.9  0.97 3.0  

1.17 13.0 0.93 1.09 10.3 0.91 

NL 
0.99 3.1  0.99 3.2  

1.04 6.2 0.93 1.03 5.6 0.94 

EPLE 
1.19 12.6  1.18 12.1  

1.29 17.1 0.96 1.14 12.3 0.92 

EP90LE 
1.20 11.3  1.19 10.7  

1.37 16.9 1.03 1.24 12.9 1.00 

 

Tab. 22 Comparison of results of θQR between Reinforced concrete and steel-concrete 
structures 
 
 RC structures Composite structures 

 Avg. CoV % p(0.05) Avg. CoV % p(0.05) 

LE 
cracked 

1.16 to 1.23 9.1 to 12.9 0.99 to 1.00 1.18 to 1.21 6.7 to 8.6 1.04 to 1.05 

3-linear 1.13 to 1.30 8.5 to 17.2 0.97 to 0.98    

EPLim    1.09 to 1.17 10.3 to 13 0.91 to 0.93 

EP90LE    1.24 to 1.37 12.9 to 16.9 1.00 to 1.03 
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 Conclusions 

To quantify the model uncertainty in calculating the load-bearing capacity for statically 
indeterminate composite structures, an experimental database with all relevant and 
sufficiently well reported tests on composite beams was created; it includes both beams 
tested under positive (45 tests) and negative bending (36 tests). This database is an 
achievement and can be used and extended in the future. The study on statically 
indeterminate structures built with this database reached the following conclusions: 
 The section class, which can be said to be linked to the failure mode, appears to 

influence the model uncertainty of the load-bearing capacity calculation regardless of 
the analysis performed; 

 Since a better representation and modelling of the different beam behaviour within an 
indeterminate static system can be achieved by relying on the cross-section 
classification, one shall always refer to the cross-section classification to validate the 
use of linear or plastic internal forces distribution; 

 This classification being used every day by engineers in practice, potentially provides 
an elegant solution for differentiating the value of the model uncertainty partial factor 
(Sd) in the verification of the global load-bearing capacity of indeterminate static 
systems; 

 The representativity of the beam in a cross system and the database used has been 
shown to have the potential to be extended to a more common structural system in 
practice, namely continuous composite bridges; 

 There is also a clear observation of 2 regimes, a relationship between the failure mode 
and the θQR distribution shape; 

 Plastic and non-linear models, used to calculate the load bearing capacity, give lower 
CoV if performed with limiting the deformation capacity. Also mean values closer to unity 
are observed for θQR; 

 The partial factor Sd to cover the uncertainties of the internal force calculation can be 
taken similarly to reinforced concrete structures, i.e. it ranges between 1.05 and 1.15. 
Further differentiation with the section classification was not addressed in this study and 
would need to perform a large parametric study. Also, as for reinforced concrete 
structures, it must be noted that additional uncertainties, which depend on the 
complexity of the structure, the construction method, the tools used and the experience 
of the designer deserve to be investigated more in detail. 
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4 Recalibration of partial safety factors for 
permanent loads in bridges 

 Introduction 

In this Section, the partial safety factors (PSFs) for permanent actions, used for designing 
new structures and for the assessment of existing ones, are updated for the case of 
reinforced concrete (RC) road bridges based on available statistical distributions of 
geometrical, material, traffic and model uncertainties. In road bridges, permanent loads 
result from the self-weight of structural and non-structural elements, which include the 
pavement, safety barriers and if present, non-structural curbs. In the latest available draft 
of EN 1990:2023 [135], the recommended partial safety factor for all permanent loads, 
denoted with γGi, is equal to 1.35 and covers the uncertainty in the representative value of 
permanent loads and the model uncertainty in action effects calculation. For the model 
uncertainty in action effects calculation, the JCSS Probabilistic Model Code [28] 
recommends a Log-Normal distribution with mean 1.0 and CoV between 0.05 and 0.20, 
but no clear background is provided. These values are confirmed in Sections 2 and 3 of 
this report (additional references on this topic can be found in [65] and in Section 2). As 
mentioned above, the recommended values of PSFs for structural and non-structural 
self-weight EN 1990:2023 [135] are the same. However, the latest available draft of 
EN 1991-1-1:2023 [138] recommends to assume a deviation of the pavement thickness of 
[-20%, +20%] or [-20%, +40%] depending on whether the pavement has already been 
replaced or not. In order to clarify whether these values are reasonable, data collected from 
measurements on various bridges in Switzerland will be analysed and it will be assessed 
whether there is a need to decouple the two partial safety factors for structural and non-
structural self-weight, respectively. Traffic variability will also be considered using Weight 
In Motion (WIM) data collected in several locations in Switzerland. To estimate the partial 
safety factors, parametric reliability analyses, covering a wide range of scenarios, are 
performed based on the updated statistical distributions using the First Order Reliability 
Method (FORM). Finally, to investigate if a sufficient level of safety is achieved with the 
proposed partial safety factors, reliability analyses are performed using more refined 
methods on selected case studies. 

 Statistical uncertainties influencing structural self-weight 

The self-weight of structural members in concrete bridges is affected by three main 
variables: (1) the specific weight of concrete, (2) the dimensions of concrete and (3) the 
reinforcement content (typically expressed in kg/m3 and calculated on the basis of nominal 
dimensions). The bar diameter, the geometry and the specific weight of the reinforcement 
show also some variability affecting the self-weight, but these are negligible since the 
production is highly optimized and standardized. The same considerations apply also to 
composite bridges, where the largest source of variability for the structural self-weight is 
generally related to the reinforced concrete deck. Fig. 68a shows the probability-plot of the 
specific weight of concrete obtained from around 3’500 samples (150×150×150 mm) 
collected in Western Switzerland between 2014 and 2021 (courtesy by TFB SA, only 
samples with an air content smaller than 2.5% are included in the analysis). These data 
are obtained from raw concrete samples produced using siliceous limestone aggregate 
found typically in the Swiss plains (specific weight equal to 26.7 kN/m3). The resulting CoV, 
neglecting the lowest part of the distribution, is 1.4%, significantly smaller than the value 
recommended by the JCSS report of 4% [28] (which is based on the publication 115 of the 
CIB report [139]). It is also much smaller than the value proposed by Ellingwood of 10% 
[27], however, this value also included the geometric and reinforcement content variability, 
therefore, not directly comparable. It must be noted that the values shown in Fig. 68a refer 
to the production of concrete in a limited area, thus, different statistical values could be 
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found in similar studies in different locations where several aggregate types and 
petrography’s can be found. 

 

Fig. 68 (a) Normal probability-plot of concrete specific weight; (b) equivalent bridge deck 
thickness as a function of the span (values from Menn, 1982 [141] in blue circles and some 
investigated bridges of Tab. 23 in red squares); (c) CoV of the sectional area (Ac) variability 
using tolerances as standard deviations [142] (dashed red) and statistical distributions 
according to the JCSS report [28] (contionuous red); ratio of permanent load over traffic 
load (G/Q) for varying span in blue. 

Fig. 68c shows the coefficient of variation of the sectional area for increasing span of the 
bridge assuming that tolerances according to [142] correspond to standard deviations 
(dashed red line) and using the statistical distributions recommended by the JCSS report 
[28] (continuous red line). It can be observed that the importance of the geometric variability 
decreases with increasing cross-sectional dimensions. In fact, tolerances do not increase 
linearly and are limited for elements larger than a fixed threshold (e.g. 30 mm for 
cross-sectional dimensions larger than 2’500 mm [142]). Thus, the geometrical variability 
has a relatively small influence on bridges with spans larger than 30 m. 

Although geometric variability has a stronger influence on the structural self-weight of short 
span bridges, in these cases permanent loads are generally less significant compared to 
traffic loads. This is illustrated in Fig. 68c (continuous blue curve), where the ratio between 
permanent load (obtained from the empirical relationship plotted in Fig. 68b) and 
characteristic traffic loads (according to SIA 261:2020 [143]) is presented as a function of 
the span length L. One can observe that the ratio G / Q varies between 0.5 for bridges with 
a short span (~10 m) and 4 for bridges with longer spans (~50-100 m). 

 

Fig. 69 (a) Longitudinal reinforcement ratio (red) and reinforcement content expressed in 
kg/m3 (black): (a) bridge Haute-Rive built in 1972 and (b) bridge Brocard built in 1964, see 
Tab. 23. 
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Figs. 69a,b show the reinforcement content in two reinforced concrete bridges calculated 
using the original drawings considering both prestressing and passive reinforcement. While 
the longitudinal reinforcement ratio (red line) is almost constant along the longitudinal axis 
of the bridge, the reinforcement content expressed in kg/m3 increases close to the supports 
due to increased shear reinforcement and the more heavily reinforced transversal 
elements. However, close to the supports, as the load is directly transmitted to the latter, 
the reinforcement weight is less significant for the action effects. It must be noted that the 
reinforcement content in a bridge depends on several factors, such as the amount of 
prestressing, the structural system and the year of construction (generally, the 
reinforcement ratio of new structures being larger compared to older structures due to 
current more stringent requirements in terms of durability and serviceability as well as a 
reduced amount of prestressing). 

 Statistical uncertainties influencing non-structural 
self-weight 

In addition to the structural self-weight, other non-structural loads contribute to the 
permanent load in road bridges. These include pavement, safety barriers and, if present, 
non-structural curbs. The same considerations made in the previous section for reinforced 
concrete elements apply also to reinforced concrete curbs while lane separation elements 
and safety barriers should be considered according to the corresponding specifications. In 
this Section, the self-weight variability of the pavement is investigated whereas the 
variability of the other permanent actions is neglected. In particular, since the variability of 
the pavement thickness has a larger impact than the specific weight variability, the focus 
will be put on the former while the pavement specific weight variability is assumed based 
on available literature [144, 145, 146]. Specifically, in this Section, a mean value of 
24.0 kN/m3 and a CoV = 4% is assumed, as found by Hugenschmidt on bridges that were 
demolished in Switzerland [147]. 

Fig. 70a shows some typical cases of pavement thickness variability in the transversal and 
longitudinal direction. In particular, in the transversal direction, thickness variations occur 
mostly due to pre-existing deformations of the deck before surfacing which are generally 
caused by self-weight, transversal prestressing or imperfections during construction. In the 
longitudinal direction, two main scenarios can occur as illustrated qualitatively in Fig. 70a: 
if the precamber and the deformations caused by prestressing exceed those caused by 
self-weight, the pavement will be typically thicker close to the supports while in case of non-
prestressed bridges or if precamber and prestressing are not sufficient to compensate 
deformations caused by self-weight, the pavement is typically thicker at midspan. In 
addition, the imperfections of the concrete surface just after casting add an aleatory 
component to the variability of the pavement thickness. An additional source of uncertainty 
is related to the resurfacing of the pavement with partial replacement and correction of the 
deflections/settlements after some decades. The effects described above can be more or 
less significant and are generally combined in actual bridges. 

Fig. 70c shows the pavement thickness for one of the analysed bridges as part of this work 
using the Ground-Penetrating-Radar (GPR) technique. GPR measurements are performed 
by emitting electromagnetic waves which are reflected differently by the materials 
composing the different layers (i.e. bituminous pavement, concrete substrate). The 
propagation time of the electromagnetic waves is then recorded and converted to a 
dimension by determining the propagation speed of the wave in each layer. In all the 
analysed bridges, including this example, the propagation speed in the pavement is 
calibrated by means of control cores extracted at various locations along the bridge (red 
dots in Fig. 70c). For details about GPR measurements and calibration see [147, 148, 149]. 
The plot in Fig. 70c shows that, in this case, in the transversal direction, the pavement is 
up to 50% thicker close to the edges. Also, the mean value of the thickness is significantly 
larger than the specified nominal value defined in the original drawings, suggesting that the 
pavement thickness was probably increased during resurfacing. Fig. 70b shows the ratio 
between the mean of the measured thickness and the specified nominal value for 7 bridges 
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build between 1963 and 1994 which were investigated as part of this research (raw data 
provided by Bridgology SA), see Tab. 23 for details. 

Tab. 23 Details of the bridges where pavement thickness measurements are performed, 
raw data provided by Bridgology SA 

Bridge Location 
Construction
year 

Typology 
Span 
[m] 

Nominal 
thickness 
[m] 

μ* CoV [%] 

Viaduc du Brocard 
A21 
Martigny-G. St. 
Bernard (km. 60.060) 

1964 Box-girder 19.6-25.0 0.050 
1.3-
1.7 

17.0-
20.02 

Pont de Rive-Haute 

A21 
Martigny-G. St. 
Bernard 
(km. 250.875) 

1972 
Hollow-Core 
Slab 

16.0-20.0 0.050 
2.3-
2.4 

16.3-19.3 

Jonction de Vennes 
N9 
Lausanne 
(km. 7.039) 

1963 
Hollow-Core 
Slab 

39.0 0.070 
2.0-
2.2 

19.0-21.6 

Passage Supérieur Le 
Daillet 

N9 
Sion-Sierre 
(km. 105.161) 

1992 Multi-beam 33.5 0.060 1.4 9.4-10.8 

Passage Supérieur 
Sierre-Ouest 

N9 
Sion-Sierre 
(km. 113.392) 

1992 Slab 36.0 0.075 
1.3-
1.4 

11.1-13.9 

Viaduc des Îles 
Falcon (Nord) 

N9 
Sion-Sierre 
(km. 116.104) 

1994 Box-girder 27.4-73.0 0.075 
1.1-
1.4 

10.8-13.8 

Viaduc des Îles 
Falcon (Sud) 

N9 
Sion-Sierre 
(km. 116.104) 

1994 Box-girder 27.4-73.1 0.075 
1.1-
1.3 

8.4-9.9 

*The bias is defined as the mean of the measured thickness in each span over the nominal thickness: 
μ = tpav,mean / tpav,nomina 

It can be observed that the bias factor μ, defined as the ratio between the measurements 
mean and the nominal thickness for each span, is generally between 1.1 and 1.7, which 
justifies the increase of the nominal value recommended by [138] of 20 or 40%. The mean 
measured thickness is never found to be smaller than the nominal value. Also, it can be 
observed that for smaller spans, the bias ratio increases. This could be related to the fact 
that for short span bridges, the pavement thickness can depend mainly from requirement 
related to the level of the approaching road. 

Considering the equivalent thickness of the concrete section, heq, as shown in Fig. 68b and 
a standard pavement thickness of 100 mm, the pavement weight is relatively more 
significant for smaller spans than for larger ones, accounting up to 25% of the total 
permanent load for spans between 8 and 12 m. Since the bias is also larger in those cases, 
potentially unsafe scenarios are more likely to occur. Considering all the measurements 
within each span, the CoV of the pavement thickness ranges between 8.4 and 21.6%, see 
Tab. 23. Despite a slightly larger upper limit, these values are in line with previous 
researches which presented a CoV between 8 and 15% [145, 146]. 
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Fig. 70 Typical pavement thickness variability in road bridges (a) qualitative transversal 
and longitudinal distributions; (b) ratio between the actual mean and the nominal pavement 
thickness as a function of the span for the investigated bridges; (c) greyscale map of the 
measured pavement thickness of the Rive-Haute bridge as an example, see Table 23 (raw 
data provided by Bridgology SA and analysed as part of this research) 
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 Updating of other statistical uncertainties 

In addition to the variability of the permanent loads in road bridges described above, an 
accurate estimation of the variability on the resistance side and of the traffic loads is 
necessary to calibrate the PSFs. In fact, all variabilities contribute to the limit function, which 
separates the safe structural domain from the unsafe one. In the First Order Reliability 
analysis Method (FORM), the relative contribution of the single variabilities is represented 
by the sensitivity factors, α, which is the partial derivative of the limit state function with 
respect to the investigated variable. Per definition, the sum of the squares of all sensitivity 
factors corresponds to 1.0. Thus, if the weight of one variable increases, the weight of all 
the others must decrease (see [105] for further details on the meaning of the sensitivity 
factors and FORM analysis). Therefore, to accurately estimate the sensitivity factor of the 
permanent loads, in the following sections, the variability of the materials parameters, traffic 
loads and resistance models will be investigated. 

 Materials strength 

Regarding the reinforcement yield strength, fy, assumptions made in Section 1 of this report 
are assumed for new structures. For existing structures, these assumptions are verified on 
the basis of an existing database referring to steel produced in Switzerland [151]. The data 
of more than 2’500 tests conducted between 1960 and 1994 for steel classes IIIa and IIIb 
according to SIA 162 [152] (specified 5% characteristic value fyk ≈ 451MPa) are considered 
in this evaluation. Figs 71a and 71b show the mean and the CoV of the reinforcement yield 
strength, fy, as a function of the year of production and of the bar diameter. The mean value 
increased with time, associated also with a decrease of the CoV. This was most likely due 
to the optimization of the industrial production processes over time. For bars with larger 
diameters, the yield strength shows a decreasing trend. In some cases, when products are 
categorized by steel type (based on the producer), the distribution deviates from the typical 
Log-Normal (LN) distribution, see difference between Roll-S and Box-Ultra in Fig. 71c. This 
was perhaps the result of two different products grouped under the same designation. In 
fact, the two distributions can clearly be identified and show similar CoV. Overall, the CoV 
resulting from the analysed data for existing structures is in line with Section 1 where a 
CoV = 4.5% has been assumed for new structures. These values are also confirmed by 
other publications [154, 24]. Previous researches [156, 27] report larger CoV, up to 10-12%, 
however, they are based on a more limited amount of data and different steel grades. With 
respect to the variability of the actual cross-section of the reinforcement bars, it is implicitly 
accounted for in the evaluation of the yield strength since the latter is calculated on the 
basis of the nominal cross-sectional area. 

 

Fig. 71 Mean and coefficient of variation of steel yield strength, respectively top and 
bottom: (a) as a function of time; (b) as a function of the bar diameter; (c) log-normal 
probability plot of two common steel products available in Switzerland. 

Fig. 72a shows the log-normal probability-plot of the yield strength (proof-stress at 0.1% 
irreversible strain) and the tensile strength of prestressing strands, respectively. The 
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probability-plot of the Young’s modulus is presented in Fig. 72b. Data refer to tests carried 
out in Switzerland in the period between 1968 and 1979 (see [26]). In particular, Fig. 72a 
shows that the CoV of the yield strength of prestressing strands is similar to that of passive 
reinforcement, confirming the assumptions made in Section 1, namely CoV = 4.5% and is 
consistent with value reported by other researches [158, 27, 159, 154, 30]. In addition, the 
mean value of the Young's modulus is equal to 195 GPa with a CoV of 2.8%. This value is 
also consistent with results published by other researchers [158]. 

Fig. 72c shows the probability-plot of the concrete compressive strength at 28 days 
(fc,cube,28) of various concrete strength classes (C20/25, C25/30, C30/37, C35/45). 
Distributions are obtained from ~3’500 compression tests performed on concrete cubes 
with an edge size of 150 mm in Western Switzerland between 2014 and 2021. Tests 
include concretes used in residential buildings and engineering works with a void content 
lower than 2.5% and various exposure classes, see Tab. 24 for details. 

Tab. 24 Distribution parameters of the concrete compressive strength variability at 28 days, 
data provided by TFB SA for samples with void content lower than 2.5%, collected in 
Western Switzerland between 2014 and 2021. The columns on the right refer to the 
concrete classification on the basis of the exposure (defined as concrete type according to 
the Swiss national annex to EN 206 [161]) 

Strength 
Class 

Number 
of tests 

Mean 
fc,cube,28 

[MPa] 

CoV 
[%] 

P(0.05) 
[MPa] 

Type 
Number 
of tests 

Exposure 
Class 

Mean 
fc,cube,28 

[MPa] 

CoV 
[%] 

P(0.05) 
[MPa] 

C20/25 86 35.5 14.1 27.9 A 86 XC1, XC2 35.5 14.1 27.9 

C25/30 737 43.8 18.9 31.6 

A 227 XC1, XC2 40.0 17.2 29.8 

B 347 XC3 41.3 14.4 32.3 

D 120 
XC4, XD1, XF2, 
XF3, XD2a 

53.2 10.4 44.6 

P2 43 ND 50.8 9.9 43 

C30/37 2470 51.7 14.2 40.6 

A 75 XC1/XC2 44.8 13.6 35.8 

B 121 XC3 56.9 9.2 48.7 

C 1583 XC4/XF1 51.1 11.8 41.8 

F 173 
XC4, XD3, XF2, 
XD2b, XAA 

52.1 15.2 40.2 

G 438 
XC4, XD3, XF4, 
XD2b 

56.1 15.9 42.7 

P2 80 ND 62.5 13.3 49.8 

C35/45 167 59.2 10.9 49.2 

C 83 XC4, XF1 56.7 8.7 48.9 

F 40 
XC4, XD3, XF2, 
XD2b, XAA 

63.5 11.3 52.4 

G 44 
XC4, XD3, XF4, 
XD2b 

62.6 8.0 54.7 

Data follows a log-normal distribution (see Fig. 72) which is in line with recommendations 
of [28] and [135]. As it can be observed, the actual characteristic value of each concrete 
class (defined as the 5th percentile of the distribution) is generally slightly higher than the 
specified value (difference from 1.6 to 4.2 MPa). Also, the difference between mean value 
and 5th percentile varies between 7.6 and 12.2 MPa, which is more or less in line with the 
typical assumption (between 8 and 10 MPa, see [95]). Besides the strength class, on the 
right-hand side of Tab. 24, concrete samples are classified based also on their exposure 
class, see [161]. Tab. 24 shows that a larger mean compressive strength is generally 
obtained for concretes with more stringent exposure requirements (e.g. for a C30/37 
strength class, fc,cube,28 of Type G concrete typically used in engineering works is 56.1 MPa 
while that of Type A typically used in buildings is 44.8 MPa). This over-strength is related 
to the minimal cement content requirements and to the fact that exposure requirements are 
often governing in the mix design. This justifies also the large mean compressive strength 
of concretes used for underwater piles and slurry walls (Type P2). Overall, the resulting 
CoV for the concrete compressive strength is located in the upper range of results 
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published in the literature, see Section 1 and Torrenti & Dehn [46]. The empirical rule: 
fcm - fck = 8 MPa, provided in EN 1992-1-1:2023 [95] is generally confirmed, although, 
slightly higher values are obtained. However, it must be noted that these values are specific 
to the current Swiss concrete production situation which will probably evolve due to 
environmental requirements. 

 

Fig. 72 Log-normal probability plot of: (a) yield strength (red) and tensile strength (blue) of 
prestressing strands; (b) elastic modulus of prestressing strands; (c) concrete compressive 
strength at 28 days (fc,cube,28) for various concrete strength classes (all exposure classes 
included in the analysis), see Tab. 24. 

 Traffic loads 

The aim of this investigation is not to reproduce a realistic scenario from the structural point 
of view but to quantify the variability of the traffic loads without considering the uncertainties 
related to the calculation of action effects and the transversal load distribution. To this 
purpose, a simply supported bridge with a width of 3 m (single lane) and span varying 
between 6 and 24 m is used, as shown in Fig. 73a. 

Traffic load is simulated using Weight In Motion (WIM) measurements which were 
performed during more than 20 years at 14 stations located in Switzerland. After being 
classified considering the vehicle type, the measurements are combined and directly 
applied on the structure (this simulation procedure is denoted as “direct WIM” in the 
following, for details regarding WIM data classification and generation of direct-WIM loads, 
see [163]). Action effects calculated from direct WIM simulations are then compared with 
those obtained using a representative load model, assumed according to the 
SIA 261:2020 [143], which is derived from EN 1991-2:2003 [164]. As already mentioned, 
the aim of this investigation is to quantify the variability of the traffic load in terms of CoV of 
the action effects. Since the investigated bridge is not representative of a real case (single 
lane), the bias of the action effects (EWIM /EREP) is not significant for this investigation. For 
this reason, the adjustment factors αact,Q,i and α act,q,i are set equal to 1.0 (not in accordance 
with SIA 261:2020 [143]). 

Direct WIM simulations are performed using both the weekly maxima traffic loads 
distribution, obtained from WIM measurements, and the 50-year maxima traffic loads 
distribution, derived from the weekly maxima as explained further on. To determine the 
50-year maxima distribution, the weekly maxima events are considered as 
Independent-Identically-Distributed (IID) variables. Based on this assumption, if FX(x) is the 
common Cumulative Distribution Function (CDF) of the weekly maxima traffic load, and 
FN(y) is the CDF of the 50-year maxima traffic loads, with Y = max{X1, X2,…, XN}, FN(y) is 
obtained from Eq. 54, with N equal to the number of weeks in 50 years (~2’607). Thus, the 
CDF of Y, the 50-year maxima distribution is obtained by taking the Nth power of the CDF 
of X, the weekly maxima distribution. 

   1 2( ) ( ) ( ) ( ) ( )
N

N N XF y P X y X y X y F y         (54) 
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If N is a large number, the 50-year maxima distribution is either a Gumbel Extreme Values 
(GEV) Type-I or a Type-II depending on the tail approximation of the IID variable. In 
particular, if the tail of the Probability Density Function (PDF) of the weekly maxima 
distribution follows a Log-Normal (LN) or a GEV Type-I distribution, the 50-year maxima 
distribution will be a GEV Type-I (for additional details about the theoretical derivation and 
sample maxima distributions, see [165]). 

 

Fig. 73 (a) Investigated structural system and representative load model according to [143] 
with the adjustment factors αact,Q,i = α act,q,i = 1.0; (b) typical histogram of the bending 
moment at midspan obtained from the weekly maxima direct WIM simulation (EWIM) and 
tail fitting using a LN (red line) and a GEV Type-I distribution (blue line) with tail fitting 
details; (c) ratio between the bending moment at midspan obtained from direct WIM 
simulation with weekly maxima distribution and the bending moment at midspan obtained 
with the representative load model (MWIM/MRep), tail fitted using a LN distribution for a span 
of 10 m and 20 m; (d) same data presented in (c) but tail fitted using a GEV Type-I 
distribution; (e) 50-year maxima distributions resulting from the weekly maxima 
distributions presented in (c) and (d). 
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Fig. 73b shows a typical histogram obtained for the bending moment at midspan using the 
weekly maxima traffic distribution and the tail fitting using both a LN and a GEV Type-I 
distribution presented respectively in red and blue. As presented in the tail fitting details of 
Fig. 73b, with example 1 and 2 corresponding respectively to a span of 10 and 20 m, the 
most suitable distribution type depends on the specific case. Since the accuracy in 
approximating the tail fitting of the weekly maxima distribution influences significantly the 
distribution of the 50-year maxima and it is not possible to know a priori the best tail fitting 
distribution, both, a LN and a GEV Type-I distributions are used in the following to fit the 
tail of the weekly maxima distribution for each span L. Fig. 73c shows the probability-plot 
of the ratio between the bending moment at midspan obtained using the traffic weekly 
maxima distribution (MWIM) and the bending moment obtained with the representative load 
model (MREP) fitted using a LN distribution for a span L = 10 m and L = 20 m. The same 
cases are presented also in Figs 73d but using a GEV Type-I distribution. In Figs 73c and 
73d, the fitting is performed considering only points on the upper part of the distribution 
(P > 0.5). Fig. 73e shows the resulting 50-year maxima distribution using the weekly 
distributions of Fig. 73c and 73d. Since the PDF tail of the GEV Type-I distribution shows 
a slower decrease than the LN distribution, it leads to larger bias and CoV. Based on the 
analysed spans, the CoV of the traffic load effects is found between 10% and 18% for the 
weekly maxima traffic load distribution and between 6% and 10% for the 50-year maxima 
traffic load distribution. 

 Variability of resistance calculation 

The variability of the sectional resistance calculation is quantified by means of Monte-Carlo 
simulations performed considering the variability of the materials strength, the calculation 
models and the geometry. More specifically, this work focuses in quantifying the variability 
of the resisting bending moment calculation and the variability of the shear resistance 
calculation for members with shear reinforcement. To this purpose, the models provided in 
Section 8 of EN 1992-1-1:2023 [95] are implemented (provisions 8.1.1 and 8.1.2(1) for 
bending and 8.2.3(1-3,5,7,8) for shear). In addition, to investigate the influence of the 
cross-sectional dimensions (see Fig. 68c), a concrete section with constant width and 
depth, h, varying between 0.35 m and 1.4 m is investigated. 

The variability of the materials strength is assumed according to Section 1 of this report 
while the geometric variability is assumed according to [28], except for the effective depth 
which is assumed according to Section 1, see Tab. 25. With regard to the model uncertainty 
for the calculation of the resisting bending moment, with failure occurring on the steel side, 
the value proposed in Section 1 is assumed while the model uncertainty for the calculation 
of the shear resistance in members with shear reinforcement is assumed according to 
[104]. Tab. 25 gives an overview of the statistical parameters used to perform the 
Monte-Carlo simulations. For details on the implemented models, 
see EN 1992-1-1:2023 [95]. 

Tab. 25 Statistical distributions assumed for performing Monte-Carlo analyses to quantify 
the variability of shear resistance for members with shear reinforcement and bending 
moment resistance for RC members 

Random variable CoV – V [%] Bias - μ Reference 

fc 10.0 1.18 Section 1 and Subsection 4.3 

ηis 12.0 0.95 Section 1 

fy 4.50 1.08 Section 1 and Subsection 4.3 

d 5·(200/d)2/3 1 – 0.05·(200/d)2/3 Section 1 

Ac 2.0 – 6.0 1.00 JCSS report, 2001 [28] 

θR,Flex,steel 4.50 1.09 Section 1 

θR,Shear 19.4 1.11 Pejatovic et al. [104] 

Fig. 74a and 74b show the resulting CoV (VR) and the bias factor (μ) for the calculated 
resistances as a function of the section depth h. For each section depth, 10’000 simulations 



1782  |  Recalibration of partial safety factors for actions and resistances for new and existing bridges 

May 2025  125 

are performed for both shear resistance and bending moment resistance to determine the 
coefficient of variation and the bias factor. Fig. 74c shows the probability plot for the case 
of h = 0.35 m. 

Fig. 74a shows that for the calculation of the bending moment, the CoV decreases with 
increasing depth, h. This is due to the fact that the relative variability of the effective depth 
(d) is less significant for larger members. In fact, according to the formula in Tab. 25, an 
effective depth d = 1.2 m leads to μ =0.985 and V = 1.51% whereas for d = 0.2 m, 
μ =0.95 and V = 5%. On the other hand, for the calculation of the shear resistance, the 
variability of the effective depth is less significant, leading to a less pronounced reduction 
of CoV for larger members. Fig. 74b shows that for the shear resistance calculation, the 
bias varies between 1.20 and 1.25 while for the calculation of the bending moment, the 
bias varies between 1.14 and 1.16. 

It can be noted that, regardless of the beam depth, the coefficient of variation VR is much 
larger for the calculation of the shear resistance than for the calculation of the resisting 
bending moment. This is mainly due to the large model uncertainty for shear resistance 
calculation, see Tab. 25. Fig. 74c shows also that a Log-Normal (LN) distribution is a good 
fit for the resistance variability both for the calculation of shear and bending moment 
resistance, in line with the recommendations of [28] and Section 1. 

 

Fig. 74 Variability of bending moment and shear resistance calculation for a beam with 
fixed width and varying depth between 0.35 m and 1.4 m: (a) VR and (b) μ; (c) LN 
probability-plot of sectional resistance calculation for a beam with depth equal to 0.35 m. 
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 Calibration of γG1 and γG2 using FORM 

As already discussed in the previous sections, the variability of the structural and 
non-structural self-weight is significantly different in road bridges. Therefore, the partial 
safety factor for permanent loads, γGi, is treated separately for structural and non-structural 
self-weight, denoted with γG1 and γG2, respectively. To estimate their values, parametric 
FORM analyses are performed covering a wide range of scenarios. The statistical 
distribution parameters of action effects (E), sectional resistance (R) and model uncertainty 
in action effects calculation (θE) are presented in Tab. 26. 

The statistical distributions of the actions effects due to the structural and non-structural 
self-weight, respectively EG1 and EG2, are obtained on the basis of the considerations made 
in the previous sections which are resumed in Tab. 27 and 28. To account for the large 
uncertainty related to the traffic loads, a wide range of CoVs is considered on the action 
effects due to the latter (VEQ). Also, since the variability of the sectional resistance 
calculation varies largely depending on the failure mode, the latter is investigated 
considering a wide range of the CoV (VR). Finally, the statistical distribution parameters of 
the uncertainty in action effects calculation are assumed according to Section 2. In 
particular, for a Linear Elastic model with uncracked sectional stiffness, a CoV of 6.5% is 
assumed as shown in Tab. 26. 

Regarding the representative values of the actions, the self-weight for reinforced concrete 
members is calculated using the nominal dimensions and the specific weight equal to 
25 kN/m3 [138], including the reinforcement. The pavement load is calculated considering 
a representative thickness of the pavement of 100 mm (i.e., not accounting for the increase 
of 20-40% recommended in [138]) and the specific weight equal to 24 kN/m3 [138]. Finally, 
the representative value of the traffic load (Q) is considered as a function of the permanent 
loads (G = G1+G2). Specifically, the ratio of the action effect due to permanent loads over 
the action effects due to traffic loads EG/EQ, is assumed equal to 4 and 0.5, which 
correspond respectively to a long and a short span bridge.  

The limit state function is formulated in the classical form as in Eq. 55 while γGi is calculated 
according to Eq. 56 with the sensitivity factors, α, obtained from the FORM analyses. 
Besides the uncertainty related to the representative value of the permanent loads, γGi 
covers also the model uncertainty in the action effects calculation, denoted with θE. Thus, 
to account for this uncertainty, αGi, VGi and μGi are calculated as in Eq. 57. 

The value of βtgt,50y is assumed according to [135], equal to 3.8. Indeed, the choice of βtgt 
depends on the risk acceptance at a societal level and is not treated in this work. 

1 2( , ) ( ) EG G Qg R E R E R E E E       
 (55) 

)(
G i G i G i G i

V
tg t

ex p        (56) 

2 2 2 2

gi Eg i E gi EGi G i G i
V VV

 
          (57) 
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Tab. 26 Distribution type and parameters of random variables used for the parametric 
analyses 

Random variable CoV – V [%] Bias - μ Reference 

EG1 Normal 1.00 3-6 

EG2 Normal 1.10-1.30 15-25 

EQ Log-normal 0.7-1.0 4-26 

R. Log-normal 1.09-1.12 4-24 

θE Log-normal 1.00 6.5 

Fig. 75 shows the sensitivity factors α, smaller than 1 by definition, and the partial safety 
factors γ, larger than 1, obtained from the parametric analysis as a function of the 
coefficients of variation VR and VQ. As already mentioned, two ratios of EG / EQ are 
investigated, namely 4 and 0.5, which correspond respectively to a long and short span 
bridge (the ratio total permanent load / total live load (G/Q) for bridges with increasing span 
is shown in Fig. 68c). For a long-span bridge, Fig. 75a and 75c show that VQ does not 
influence γG1 and γG2 while an increase of VR leads to smaller values of γG1 and γG2. In fact, 
since traffic loads are less significant compared to permanent loads, their variability does 
not lead to a remarkable change of the sensitivity factor (α), and consequently on the partial 
factors (γ). On the other hand, for short span bridges, an increase of both VQ and VR leads 
to a decrease of γG1 and γG2. Overall, for the investigated scenarios, the required value of 
γG1 varies between 1.1 and 1.2, whereas γG2 varies between 1.3 and 1.8. 

Based on the results of the parametric analysis, the proposed values for γG1 and γG2 are 
1.2 and 1.5, respectively. To cover the cases where γG2 is larger than 1.5, an increase of 
the representative value of the pavement thickness as required in [102] and in [138] is 
justified (an increase of the nominal value by 20% covers the cases where γG2 is larger 
than 1.5: 1.2×1.5 = 1.8). 
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Fig. 75 αG1 , αG2 [0,1] and γG1 , γG2 (>1) as a function of VQ and VR for a road bridge with 
EG / EQ equal to 4 and 0.5, which correspond respectively to a long and short span bridge. 

 Validation of the proposed partial factors for a particular 
case 

To investigate if a sufficient level of safety is achieved with the proposed partial safety 
factors, more refined reliability analyses are performed on two bridges with a maximum 
span of 20 and 30 m, respectively. Fig. 78a shows the longitudinal scheme and the 
transversal cross-section of the investigated bridges.  

Both bridges are designed to fulfil the requirements of traffic loads for new bridges, 
according to [143], and for existing bridges according to [168], while representative 
permanent loads are calculated according to [138] (but no increase of the nominal 
pavement thickness is considered). Dimensioning is performed according to Section 8 
of EN 1992-1-1:2023 [95] with a reinforcement ratio in the tension zones ranging between 
0.4 and 0.8% and the post-tensioning tendons designed to carry the remaining required 
tension force at ULS (the average compressive concrete stress due to prestressing P/Ac is 
1.75 and 2.05 MPa for the bridge with maximum span of 20 m and 30 m, respectively). The 
considered partial factors for the dimensioning are γS = 1.15 and γC = 1.50 whereas the 
currently recommended partial factors for the permanent actions γG1 = γG2 = 1.35 as well 
as the proposed combination γG1 = 1.20 and γG2 = 1.50 are considered. The strain 
difference in the prestressing steel and the hyperstatic moments due to prestressing are 
calculated considering: (i) an initial prestressing stress of 0.7·fpk, (ii) the tendon’s geometry 
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shown in Fig. 77c, (iii) the friction losses according to EN 1992-1-1:2023, and (iv) 15% 
losses due to relaxation, shrinkage and creep. 

For the refined reliability analyses, the variability of the geometry and the specific weight is 
modelled considering that a certain correlation exists between two points in the same 
element. This correlation is expressed by the Pearson correlation coefficient, which is 
denoted with ρcc and is calculated according to [28] as shown by Eq. 58, where δ is the 
correlation length, characteristic of the member type (e.g. equal to 6 m for slabs and walls 
and 10 m for reinforced concrete beam) and Δr is the distance between the points. The 
parameter ρcc0 represents the correlation between two far away points in the same element. 

 

Fig. 76 (a) Property of a reference point P* and property of a point at a distance Δr1 and 
Δr2 considering the Pearson correlation coefficient ρcc; (b) decrease of ρcc from a reference 
point; (c) typical simulations of pavement thickness variability in road bridges. 

Fig. 76a illustrates the correlation between the property of a reference point, P*, and the 
property of two different points, P(ΔR1) and P(ΔR2), part of the same structural element, 
respectively at a distance Δr1 and Δr2 from the reference point, see Fig. 76b. Fig. 76b 
shows the decrease of ρcc as a function of the distance Δr. For a distance between the 
points larger than the characteristic length (δ), ρcc = ρcc0, with ρcc0 = 0.85 in this particular 
case, assumed according to [28]. If multiple points are involved, instead of a single 
coefficient, the correlation is represented by a symmetric matrix [n × n] with n equal to the 
number of investigated points. The symmetry of the matrix is due to the fact that ρcc is 
calculated considering only the distance between points and not the direction. 

 2
0 0( ) (1 ) exp ( / ) 0.85cc cc cc ccr r with             (58) 

Correlation of the pavement thickness and specific weight in different points of the same 
bridge is modelled using the same procedure and the characteristic length δ = 6 m. 

Fig. 76c presents the resulting pavement thickness modelled by discretizing the surface of 
the bridge deck and implementing the longitudinal, the transversal and the aleatoric 
variability (see Subsection 4.3). The correlation is implemented using the methodology 
described above. The longitudinal and transversal thickness variabilities, which account for 
the pre-existing deformations, are modelled assuming a parabolic profile in both directions 
with the ratio tlong,support / tlong,midspan and ttransv,center / ttransv,edge defined by the distribution 
presented in Tab. 28. Tab. 27 presents the distribution parameters assumed for modelling 
the variability of the structural self-weight. The geometric variability is modelled according 
to [28] as shown in Fig. 68c. For the reinforcement content, the statistical parameters 
presented in Tab. 27 are assumed, see also Fig. 69. 

Tab. 27 Statistical parameters for modelling of the structural self weight 

Random variable CoV – V [%] Bias – μ Mean value 

Ac 2.0 – 5.0 1.00 - 

ρconcrete [kN/m3] 4.0 - 24.0 

Reinforcement content [kg/m3] 15.0 - 130.0 
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Tab. 28 Statistical parameters for modelling of the pavement load 

Random variable CoV – V [%] Bias – μ Mean value 

tlong,support / tlong,midspan 20.0 1.00 - 

ttransv,center / ttransv,edge 20.0 1.00 - 

t / tnominal 4.0 1.00 - 

Vol / Volnominal 22.0 1.25 - 

ρpav [kN/m3] 4.0 - 24.0 

 

The aleatoric variability, t / tnominal is not related to pre-existing deformations but to 
imperfections of the concrete substrate and paving placing precision. The variability of the 
total volume of the pavement is defined by a distribution with mean 1.25 and CoV of 22%, 
in line with previous research and the findings of this work. It is important to note that cases 
where the nominal thickness is increased as a maintenance strategy are not considered as 
variability. 

To obtain the variability of the action effect at a given position for both structural and 
non-structural load, a Monte-Carlo simulation is performed using the statistical distributions 
in Tab. 28 and 27. For each draw, the load pattern (load of each discretized element) is 
defined accounting also for the correlation and the action effect at a given position is 
calculated using a finite element (FE) model with 2D elements as shown in Fig. 77a. 

Due to the large number of simulations, the influence surfaces / lines are calculated for 
each investigated cross-section and internal force (i.e. shear and bending moment). 
Subsequently, the action effect (E), is calculated by performing fast matrix operations. As 
an example, Fig. 77b shows the influence surface of the bending moment at midspan for 
one beam of the half-section. 

 

Fig. 77 (a) FE model for calculation of influence lines/surfaces; (b) influence surface of the 
moment at midspan of the beam; (c) automatically determined profile of the prestressing 
tendon given the constraints on the curvature and the mandatory passing points; 
(d) longitudinal profile of the investigated bridge. 

For both investigated bridges (maximum spans of 20 and 30 m, respectively), 2×2×2 = 8 
different scenarios are investigated, as presented in Tab. 29. Specifically, they include two 
different traffic configurations (unidirectional and bidirectional), two vehicle typologies (up 
to 42 t or 96 t, i.e., without and with mobile cranes) and two distribution types for fitting the 
tail of the WIM weekly maxima traffic loads (LN and GEV Type-I). For each scenario, 
reliability analyses are performed at the support and midspan section, denoted respectively 
with S1 and S2 in Fig. 78a. The following failure modes are considered: (1) shear failure 
for sections S1, (2) flexural failure with failure occurring on the steel side for both sections 
S1 and S2 (3) flexural failure with failure occurring on the concrete side for section S1. For 
the bridge with maximum span of 20 m and 30 m the ratio between the neutral axis depth 
and the effective depth in section S1, is respectively x /d = 0.36 (x = 469 mm) and 
x /d = 0.40 (x = 625 mm), justifying such a failure mode. As a comparison with the 
parametric reliability analysis, the ratio EG / EQ for the sections of the investigated bridges 
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ranges between 0.55 and 1.25, thus, covered by the limit cases of 0.5 and 4.0 considered 
for the FORM calibration of γG1 and γG2 shown in the previous subsection. 

Tab. 29 Scenarios considered for calculation of the reliability index β50y 

Scenario Traffic configuration Vehicles class 
Weekly maxima 
tail-fitting 

1 Unidirectional Including mobile cranes GEV 

2 Unidirectional Including mobile cranes LN 

3 Unidirectional Without mobile cranes GEV 

4 Unidirectional Without mobile cranes LN 

5 Bidirectional Including mobile cranes GEV 

6 Bidirectional Including mobile cranes LN 

7 Bidirectional Without mobile cranes GEV 

8 Bidirectional Without mobile cranes LN 

The traffic load variability is considered using the WIM measurements introduced in 
Section 4.3.2 while the variability of the structural and non-structural self-weight is modelled 
using the methodology presented above. The variability of the resistance calculation is 
calculated as in Subsection 4.3.3 while the variability of the model for calculation of action 
effects is assumed according to Section 2, as for the parametric analysis. 

To reduce the time needed to perform the crude Monte-Carlo (MC) reliability analyses, the 
Importance Sampling technique (MC-IS) is adopted. Accordingly, a FORM analysis is first 
performed to determine the design point and subsequently, the Monte-Carlo simulations 
are then performed around that point. This technique requires a smaller number of 
simulations to determine the reliability index β (see [169] for details about Monte-Carlo 
analysis and the Importance Sampling technique). 

The limit state function is formulated in the classical form as for the parametric reliability 
analyses in Eq. 55. For each analysis, the limit state function is evaluated ~100’000 times 
to calculate the reliability index β. Overall, for all the investigated scenarios, sections and 
failure modes, ~5’000’000 simulations were performed.  

Fig. 78b-d and 78e-g show the β50y obtained from the MC-IS reliability analyses. The points 
corresponding to the same scenario refer to the different sections, failure modes, partial 
factors for permanent loads and different spans investigated. It can be observed that the 
β50y obtained with the proposed partial factors γG1 and γG2 is similar to the one obtained 
with the current partial safety factors. Thus, the overall structural safety remains 
unchanged. However, the partial safety factors reflect better the uncertainties they are 
supposed to cover. This observation is further supported by the fact that β50y is generally 
less dispersed with the newly proposed values. Fig. 78b-d shows that for new bridges, 
regardless of the scenario, β50y is generally larger than 4.5, indicating that a safety margin 
is present if compared to the target value βtgt,50y = 3.8. On the other hand, β50y calculated 
using reduced traffic loads for existing bridges shown in Fig. 78e-g, is much closer to βtgt,50y 

(however, it must be noted that for existing structures, the value of βtgt,50y may be reduced). 
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Fig. 78 (a) Longitudinal scheme and cross-section of the investigated bridges, resulting 
β50y calculated with the current (circles) and the proposed partial safety factors (squares): 
(b-d) considering adjustment factors αact,q,i and αact,Q,i according to [143] for new structures 
and (e-g) according to [168] for existing structures. The blue squares have been shifted to 
the right to improve readability of the plots, however, they refer to the same scenario as the 
red circles. 

 Modelling of the structure, evolutions of structural system 
and designer’s choices 

It has to be noted that the proposed values for the partial safety factors γG1 and γG2 are 
based on the model uncertainties for the action effects analysed in Sections 2 and 3. As 
already discussed in Section 2, the model uncertainty related to the action effects 
significantly depends on the complexity and the level of statical indeterminacy of the 
structure. In fact, in statically determinate structures, where the internal forces depend 
almost only on the actions and on equilibrium, the model uncertainty related to the internal 
forces is very small and only depends on the geometrical uncertainties which has an almost 
negligible effect. In these cases, the assumed values for the model uncertainties of the 
action effects calculation can be considered as overly conservative. At the other side, for 
highly indeterminate complex structures, the model uncertainties can be significant, 
particularly in the case of system changes during construction. With this respect, the exact 
construction sequence is not necessarily known during the design, the creep deformations 
which affect the redistributions of internal forces are also affected by significant 
uncertainties, and above all, these effects are usually not accounted for in a detailed 
manner. In this context, the deformation capacity of the critical cross sections associated 
to the governing failure modes plays also a significant role. In case of ductile behaviour, all 
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these types of uncertainties have little influence on the load-bearing capacity since plastic 
redistributions of the internal forces can adjust a difference between calculated and actual 
internal forces (see Section 2). On the other side, for brittle behaviour, the possibility of a 
redistribution of internal forces is limited, so that the model uncertainties in the actions affect 
calculation can play a major role. In addition, for complex structures, additional 
uncertainties can be expected with respect to the models implemented in commercial 
analysis software tools and the choices by the designer in modelling the structures. This 
applies for linear elastic calculations, but also to an even larger extent for nonlinear 
analyses. These considerations, which were not the aim of the present work, deserve to 
be investigated in the future also accounting for the increasing complexity of the analysis 
tools used nowadays which can give to the designer the impression of a precision which 
cannot be reached for the reasons explained above. 

To solve these problems, an increase of the complexity in the analysis, the consideration 
of a larger number of load combinations and scenarios, as well as a detailed analysis of 
the effects related to system changes during construction are not necessarily to be 
recommended. Also, designer’s choices regarding structural modelling a complex structure 
in an apparently more detailed manner can lead to further uncertainties in calculating action 
effects. In fact, the increasing complexity of commercially available software makes it more 
difficult to verify the assumptions. For instance, the modelling of the load, the selection of 
the finite element, the interaction between different finite elements, the definition of the 
reference axis, the modelling of prestressing, the modelling of the system changes etc. are 
more or less conscious choices whose influences should be evaluated by the designers. 
In addition, an analysis with increasing complexity can even be counterproductive since it 
would increase the probability of human errors. According to the authors, it is more 
reasonable to invest time in thinking which is the most suitable and reasonably safe 
modelling, trying to evaluate qualitatively the potential uncertainties and interpret correctly 
the results. 

These considerations are not the aim of this paper and further effort should be put in 
investigating this topic. 
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 Conclusions 

This section investigates the sources of structural and non-structural self-weight variability 
in road bridges along with other variabilities influencing structural safety in reinforced 
concrete structures. Based on the presented work, the main findings are: 

1. Structural self-weight variability in bridges is mainly caused by geometrical, 
reinforcement content and concrete specific weight variability. Geometrical variabilities 
are less significant for large members. The CoV for structural self-weight of common 
members is generally between 3 and 6%; 

2. Variability of the pavement thickness in a road bridge can be significant. For each span 
of the investigated bridges, the ratio between the measurements mean and the nominal 
thickness is generally located between 1.1 and 1.7 (larger for smaller spans). 
Considering all the measurements within each span, the CoV of the pavement 
thickness ranges between 8.4 and 21.6%. In some cases, the ratio between the 
measurements mean and the nominal thickness is larger than 2 suggesting an increase 
of the nominal value during resurfacing; 

3. Distribution parameters of materials strength based on Swiss measurement are 
generally in line with values specified in Section 1. However, the CoV and bias factor 
of concrete strength for the analysed data are larger than data found in international 
literature. This over-strength is probably to be attributed to an increase in cement 
content to meet durability and workability criteria by producers; 

4. The variability of the traffic load for the weekly-maxima events is found between 10 and 
18%. Extrapolation of 50-year maxima distributions depends significantly on the tail 
fitting accuracy of the starting distribution. Considering log-normal and Gumbel 
distributions for the tail fitting leads to CoV of the traffic load variability between 6 and 
10%; 

5. According to the parametric reliability analyses, the required value of γG1 for self-weight 
to reach the target value of the reliability index βtgt,50y = 3.8 lies between 1.1 and 1.2 
while γG2 for other permanent actions is between 1.3 and 1.8 in case the nominal 
pavement thickness is considered as reference value. Reliability analyses performed 
on selected case studies including various failure modes confirm that γG1 = 1.2 and γG2 
= 1.5 lead in general to sufficiently safe results for the design of new and the 
assessment of existing structures. With respect to the reference value of the pavement 
thickness, an increase of 20% of the nominal value as recommended in Eurocode 1 is 
justified; 

6. Structural system changes during construction and significant differences between 
modelling of complex structures and actual behaviour are not accounted for in the 
partial safety factors on the load side described above. If relevant for the structural 
system, depending on its complexity and particularly in case of governing brittle failure 
modes, if the behaviour cannot be improved with sound detailing during the design 
process, the structure should be modelled in a reasonably conservative manner and 
the results interpreted accordingly. 
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5 Proposed partial factors 

Based on the investigations described in this report, the following partial factors for 
persistent and transient design situations are proposed for a target value of the reliability 
index βtgt,50 = 3.8 (CC2). 

 For reinforcing steel: 
 If the verification is conducted with nominal values of the geometrical dimensions, 

the value γS = 1.15 is confirmed  
 If the verification is conducted on the basis of design values of the effective depth 

dd = dnom – 15 mm, the partial factor for reinforcement may be reduced to γS = 1.05.  
 For concrete: 

 The value γC = 1.50 is confirmed. 
 For structural steel: 

 The value γM1 = 1.05 is confirmed. 
 For shear in slabs without shear reinforcement and for punching according to EN 1992-

1-1:2023:  
 If the verification is conducted with nominal values of the geometrical dimensions, 

the value γV = 1.40; 
 If the verification is conducted on the basis of design values of the effective depth 

dd = dnom – 15 mm, the partial factor for shear and punching may be reduced to γV 
= 1.30.  

 The partial factor γSd covering the model uncertainties in the action effect calculation 
lies between 1.05 and 1.15 depending on the other uncertainties. This factor is implicitly 
accounted for in the partial factors γG and γQ . Alternatively, γG and γQ can be calibrated 
assuming following statistical values of the model uncertainty: bias factor μ = 1.0 and 
CoV = 6.5-8%. It has to be noted that these factors and statistical values do not account 
for potential uncertainties related to the modelling of complex structures and/or the 
influence of system changes in the case of structures with limited deformation capacity 
and limited possibility to redistribute internal forces at ultimate limit state. 

 For the permanent actions: 
 Since the uncertainties of the self-weight of the structural elements and the non-

structural elements are different, it is recommended to use two separate partial 
factors, namely γG1 for structural and γG2 for non-structural elements. 

 The default value of the factor for the structural self-weight is γG1 = 1.35 as in 
current SIA 260. γG1 may be reduced to 1.20 in case the modelling of the structure 
is conducted by the designer in a sufficiently reliable manner (sufficient experience 
with respect to the type of structure / software used / influence of the modelling of 
the structure on the results based on similar calculations on similar structures) and 
if the influence of changes in the system during construction is accounted for in a 
sufficiently reliable manner (method used / material parameters assumed / 
experience of the designer with respect to the influence of the assumptions on the 
results). The same reduction is allowed also in the case of statically determinate 
structures. 

 The partial factor for the self-weight of non-structural elements γG2 = 1.50 is 
proposed. For the pavement of road bridges, in addition to γG2 = 1.50, the nominal 
thickness should be increased by 20% in accordance with EN 1991-2:2023 [138].  

 For the variable actions: 
 The design values are derived on the basis of reliability analyses (out of the scope 

of the present research since the calibration of traffic loads, including their design 
values, are currently investigated in other research projects [170, 171]). The 
characteristic values can be determined by dividing the design value by a nominal 
partial factor γQ = 1.50. 
 

 The above partial factors are valid for the design of new structures and for the 
assessment of existing structures where the related variables have not been assessed 
by direct measurements. 
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 For the assessment of existing structures, where the dimensions have been measured 
on site and/or the material strengths have been assessed from tests on samples taken 
from the existing structure, the partial factors may be adjusted using the procedure 
described in this report and the statistical values derived from the measurements. As 
a first step, the following partial factors may be assumed: 
 For γS and γC , the values provided in Annex A (Adjustment of partial factors for 

materials) of EN 1992-1-1:2023 may be used; 
 For the structural self-weight, the values of γG1 described above should be used; 
 For the other permanent actions, γG2 = 1.20 may be used the dimensions are 

measured on the existing structure. 
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I Applicable range of the combination of partial 
factors γc and γs 

The aim of this appendix is to give a simple illustration of the applicable condition for the 
combination of the two basic partial factors, γC and γS. 

As is pointed out in Subsection 1.3, for the cases where the sum of the exponents nfc and 
nfy is significantly lower than 1, the partial factors applied to material strength variables are 
not suitable anymore. Due to this reason, in the following, only the resistance models with 
the sum of nfc and nfy is equal to or close to 1 is considered (nfc + nfy 1 ). For this type of 
cases, the applicable range depends on the variability of the basic uncertainties involved, 
as well as the shape of the resistance function. 

The typical resistance models for the design of RC structures analysed in Subsection 1.3 
will be used as references to help explain the applicability of γC and γS. 

In terms of the shape of the resistance functions, the models analysed in Subsection 1.3 
can be categorized into three types, namely: 

 Type I: the axial compression and tension force resistance model neglecting second 
order effect and confinement reinforcement (Fig. 1a-b of Subsection 1.3.1): 

2
0 , 0 ,( ) ( ) ( ) ( )nfy nfc nfy nfc

y s c ais c y s c aisR C f A f A C f A f b           

For this type of resistance models, the contribution from longitudinal reinforcement 
depends on the yield strength fy and the reinforcement area As, while the contribution 
from concrete depends on the compressive strength fc,ais and the cross-section area Ac 

( 2
cA b for square cross-section). Due to this reason, fy and As share the same 

exponent fyn . Similarly, fc,ai and Ac share the same component fcn . 

 Type II: the bending resistance for a suitably reinforced beam (Fig. 1c of Subsection 
1.3.1):  
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For the bending resistance model, in addition to fy and As, the contribution from 
longitudinal reinforcement also depends on its effective depth d (which influences the 
lever arm between the tension and compression chord); similarly, in addition to fc,ais , the 
contribution from concrete depends on the width of the cross-section b and the effective 
depth d. It should be noted that since the effective depth d has an exponent two in the 
part of the equation representing the contribution of concrete strength. 

 Type III: the shear resistance of a beam with shear reinforcement analysed with the 
closed-form model (clause 8.2.3 of EN 1992-1-1:2023) [14](Fig. 1d of Subsection 1.3.1):  

0 ,( / ) ( )nfy nfc
y sw c aisR C f A s d f b d        

For the shear resistance model, the contribution of the shear reinforcement depends on 
its cross-section area Asw and spacing s, and also on the effective depth d of the 
longitudinal reinforcement. On the other hand, the contribution of concrete depends on 
the width of the cross section b and the effective depth d. Due to this reason, the 
geometrical variables Asw and s has the same exponent as fy, and b has the same 
exponent as fc,ais. 

These three generalized types can be considered as the typical forms for the resistance 
models for reinforced concrete structures. For example, the eccentric axial load resistance 
model can be considered as a combination of the axial force resistance (Type I) and the 
bending resistance model (Type II). It is thus useful to use these three general types to 
discuss the problem of the applicable range of the combination of the two basic partial 
factors. 
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When γC and γS are applied, the achieved reliability level for a given resistance model can 
be calculated by rearranging formulae (Eqs. 8-10 of Subsection 1.3.3). The result is: 

ln( )nfc nfy
C S RM

RM RV

  



 




  (1) 

2 2 2 2 2 2 2 2 2 2 2 2
, ,RM i i j geo j geo fc fc fc is fy fyV n V n V n V n V n V n V           (2) 

,

,
j geo fc fc fyi

n n n nnm
RM i j geo fc is fy

nom

R

R                 (3) 

Where nj,geo, Vj,geo and μj,geo refers to the exponent sensitivity factor, the CoV and the bias 
factor for the jth geometrical variable; V  and   refers to the CoV and bias factor for the 
model uncertainty (all basic uncertainties are assumed to follow lognormal distribution). 

It can be observed that for the three generalized types of resistance models, the 
contribution of geometrical and material uncertainties to the variability of the resistance 
model depends on the exponent partition between nfy and nfc. Similarly, the effect of the 
partial factors C  and S also depends on the values of these two exponents. For a given 
resistance model belonging to the three generalized types, when the range of nfy (or 
equivalently of nfc) is known, the applicability of the partial factors C  and S  depends on 
its model uncertainty. 

 

Fig. 1 Envelop of the allowable CoV for model uncertainty for different types of models to 
achieve the target reliability with the combination of C  and S  for (a) Model Type I; 
(b)Model Type II and (c) Model III (solid parts of the curves and the solid markers represent 
the ranges of nfy and nfc that correspond to the cases analysed in Subsection 1.3, see Fig. 1 
of Subsection 1.3.1). 
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When the probabilistic modelling of the geometrical and material variables introduced in 
Subsection 1.4-1.7 are assumed, the allowable model uncertainty to achieve exactly the 
target reliability ( tgt ) for the three generalized types of resistance models can be 
calculated. Assuming dnom = 200 mm, the allowable CoV of the model uncertainty for 
different levels of  (bias in the model uncertainty) is plotted in Fig. 1 of this appendix. The 
CoV of model uncertainty of the axial compression resistance model ( CV ) and the bending 
resistance model ( SV ) are also plotted in Fig. 1a-b of this appendix respectively. It can be 
observed that: 

 Due to the different contributions of geometrical uncertainties, the allowable model 
uncertainties differ significantly for the three types of resistance models; 

 For the axial compression resistance model and the bending resistance model, it is 
confirmed that the combination of γC and γS will yield conservative design results for the 
analysed cases since their model uncertainties are lower than the allowable levels. 

This simple analysis shows that the combination of γC and γS can potentially be applied to 
a variety of different resistance models for RC structures when the distribution parameters 
of the model uncertainty fall within the applicable range. When the resistance model takes 
a more complex form that cannot be categorised to the three generalized model types, the 
applicability of γC and γS can be tested by calculating the achieved reliability level with 
Eqs. 1-3 of this appendix based on a proper exponent analysis covering the application 
range of the resistance model. 
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Notation 

Notation for Section 1 

ad The design value of a geometrical property 

anom The nominal value of a geometrical property 

ap The maximum distances from the centroid of the control perimeter to the point where the 
bending moment in the slab is zero 

as The ratio of cross section area over spacing of flexural reinforcement in flat slab 

b  The width of the cross section 

b0.5 The control perimeter for punching shear resistance model 

bb Geometric mean of the minimum and maximum overall widths of the control perimeter 

d The effective depth of the cross section 

dd Design value of the effective depth of the cross section 

ddg The size parameter describing the failure zone roughness 

dm Mean value of the effective depth  

dmes Measured value of the effective depth  

dnom Nominal value of the effective depth  

dV The shear-resisting effective depth 

fc Concrete compressive strength 

fc,ais Actual uniaxial in-situ concrete compressive strength in the structure 

fc,cyl Concrete compressive strength of the control specimens (cylinders) 

fc,cube Concrete compressive strength of the control specimens (cubes) 

fc,is Compressive strength of a core taken at a test location within a structural element or 
precast concrete component expressed in terms of the strength of a 2:1 core of diameter 
> 75 mm 

fck Characteristic concrete compressive strength 

fck,is Characteristic concrete in-situ strength 

fc,spec Specified product uniaxial concrete compressive strength 

fi The ith basic variable in the resistance function 

fp Tensile strength of prestressing steel 

fp0.1 The 0.1% proof-stress of prestressing steel 

fs Stress at ultimate limit state of reinforcement defined by Robert Maillart  

ft Tensile strength of reinforcement 

fy Yield strength of steel reinforcement 

fyd Design value for steel yield strength  

fyk Characteristic value for steel yield strength  

fyk,spec Specified characteristic value for steel yield strength in product grading  

fym Mean value of steel yield strength 

kt Factor accounting for the effect of the speed of loading for concrete specimen 
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h The height of the cross section 

ni The exponent sensitivity factor for the ith basic variable in the resistance function 

nfc The exponent sensitivity factor for fc 

nfy The exponent sensitivity factor for fy 

s The spacing of shear reinforcement 

As Cross section area of concrete 

As Cross section area of flexural reinforcement 

Asw Cross section area of shear reinforcement 

C0 the residual constant coefficient in the power-multiplicative form approximation of the 
resistance function 

Ed Design action effect 

Eh Strain hardening modulus 

FEd The design values of actions used in the assessment of Ed 

MRd Design flexural resistance of cross section 

MR,exp The flexural resistance measured in laboratory tests 

MR,calc The calculated flexural resistance  

NR,exp The resistance of short columns measured in laboratory tests 

NR,calc The calculated resistance of short columns 

Pf  Probability of failure  

Rd Design resistance 

Rm The mean value of the resistance variable 

Rnom The nominal value of the resistance variable 

Xk The characteristic value of a material or product property 

Vi The CoV of the ith basic variable in the resistance function 

VR The CoV of the resistance variable  

VR,exp The punching shear reistance measured in laboratory tests 

VR,calc The calculated punching shear resistance of slab-column connections 

VRM The CoV of the resistance accounting for the influence of material, geometrical and model 
uncertainties 

Vηis_location The CoV of of the variability of ηis within a structural member 

αE The First Order Reliability Method (FORM) sensitivity factor for action effect 

αR The FORM sensitivity factor for resistance 

αR,i The FORM sensitivity factor for the ith variable in the resistance model 

β Reliability index 

βe A coefficient accounting for the concentrations of the shear forces along the control 
section of punching shear  

βtgt Target reliability index 

σ Standard deviation of a random variable 

σln(R) Standard deviation of the logarithm of the resistance variable  

C Partial factor for concrete compressive strength 
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S  Partial factor for steel yield strength 

V Partial factor for the punching shear resistance model without shear reinforcement 

Rd Partial factor associated with the uncertainty of the resistance model 

m Partial factor for a material property  

M Partial factor for a material property in the “material factor approach” 

R Partial factor for the resistance variable in the “resistance approach” 

εS Strain of reinforcement steel  

εu Ultimate strain of reinforcement steel  

εuk Characteristic ultimate strain of reinforcement steel  

θC Model uncertainty variable accounted for in the calibration of C 

θS Model uncertainty variable accounted for in the calibration of S 

η The conversion factor for a material 

ηcore-actual The coefficient representing the difference between fc,ais and fc,is 

ηis The in-situ factor for concrete strength 

μi The bias factor for the ith basic variable  

μRM The bias factor of the resistance represented by the ratio between its mean value and its 
nominal value  

L Longitudinal reinforcement ratio 

 Strength reduction factor in ACI 318-19 

X  Vector of basic variables in structural resistance model 

Δa The deviation in the geometrical property a 

 

Notation for Section 2 and 3 

RC Reinforced Concrete 

PSF Partial Safety Factor 

CoV Coefficient of Variation 

LE Linear Elastic 

LEU Linear Elastic Uncracked 

LEFC Linear Elastic Fully-Cracked 

NL Non Linear 

4L Quadri Linear with plastic plateau 

4L-LIM Quadri Linear Limited deformation capacity 

4L-REQ Quadri Linear with plastic plateau and ductility requirements 

3L Tri-Linear 

F Force 

δ Displacement 

δy Displacement at maximum load predicted with a linear elastic uncracked model 

δR Displacement at 90% of the F δ post-peak branch 
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R Load-bearing capacity 

Rexp Experimental load-bearing capacity 

Rmod Theoretical predicted load-bearing capacity 

M Bending moment 

Mr Cracking bending moment 

MR Resisting bending moment 

χ Curvature 

χr Curvature at the cracking bending moment 

χR Curvature at the resisting bending moment 

θQR Global random variable 

θE Local random variable 

Eexp Experimental action effect 

Emod Theoretical predicted action effect 

lc Column height 

λG Geometrical slenderness of a column (height / width) 

lb Beam span 

b Width of the section 

bc Square column section width 

d Effective depth of a cross section 

c Concrete cover 

x Neutral axis depth 

xc Center of gravity of the concrete section 

ρl Bottom longitudinal reinforcement ratio 

ρ’
l Top longitudinal reinforcement ratio 

ρw Shear reinforcement ratio 

fc Concrete compressive strength (uniaxial) 

fct Concrete tensile strength 

fy Steel yielding strength 

Ec Concrete elastic modulus 

Es Steel elastic modulus 

n Es / Ec 

EI Flexural stiffness 

ΔχTs Decrease of curvature due to tension stiffening 

q Distributed load 

Q Concentrated force 

ζEL Elastic over-design ratio 

γF Partial factor for actions including model uncertainties [7] 

γf Partial factor for action values [7] 



1782  |  Recalibration of partial safety factors for actions and resistances for new and existing bridges 

May 2025  147 

γG Partial factor for permanent actions including model uncertainties [2] 

γg Partial factor for representative values of permanent actions [2] 

γQ Partial factor for variable actions including model uncertainties [2] 

γq Partial factor for representative values of variable actions [2] 

γSd Partial factor covering uncertainty in action effects (model uncertainty) 

γM Partial factor for the material including model and geometrical uncertainties 

γm Partial factor for material properties 

γRd Partial factor covering uncertainty in the resistance model 

Frep Representative value of action variables 

Xk Characteristic value of material strength 

anom Nominal value of geometrical variables 

Ed Design value of actions 

Rd Design value of resistance 

σ Standard deviation 

α Sensitivity factor 

 

Notation for Section 4 

RC Weight In Motion 

WIM Partial Safety Factor 

FORM First Order Reliability Method 

MCIS Monte-Carlo Importance-Sampling 

IID Independent-Identically-Distributed 

CDF Cumulative Distribution Function 

PDF Probability Density Function 

GEV Gumbel Extreme Values 

LN Log-Normal 

CoV Coefficient of Variation 

GPR Ground Penetrating Radar Measurements 

PSF Partial Safety Factor 

PSFF Partial Safety Factor Format 

β Reliability index 

fc Concrete strength 

fy Steel yield strength 

fpk Characteristic value of the tensile strength of prestressing steel 

ρs Sectional reinforcement ratio 

Ac Concrete area 

heq Equivalent depth of concrete deck 

w Width of concrete element 
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G Permanent load 

G1 Structural self-weight 

G2 Non-structural self-weight 

Q Live load 

θE Model uncertainty in action effect calculation 

Vol Volume 

α Sensitivity factor 

αact Actualisation factors for the traffic load model 

V Coefficient of Variation of the resistance 

μ Bias factor 
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