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Abstract—With the increasing prevalence of heat pumps in
private households, the need for optimization is growing. At
the same time, the growing number of active smart electricity
meters generates data that can be used for remote monitoring.
In this paper, we focus on the automatic differentiation between
fixed speed and variable speed heat pumps using smart meter
data. This distinction is relevant because it is necessary for
evaluating the state or cycling behavior of a heat pump. In
addition, identifying fixed speed heat pumps is important because
they are known to be the less efficient systems and therefore
may be preferred targets in energy efficiency or replacement
campaigns. Our methods are applied to electricity data from
171 Swiss households with a resolution of 15 minutes. In this
setting, a K-Nearest Neighbor model achieves a mean AUC of
0.976 compared to 0.5 of a biased random guess model.

Index Terms—smart meter data, heat pump, machine learning,
variable speed, fixed speed, modulation, residential, inverter

I. INTRODUCTION

By the end of 2020, the European Heat Pump Association
(EHPA) estimated a total of 14.86 million installed heat
pumps in 21 European countries, which is an increase of
7.4% compared to the previous year [1f]. The European Union
(EU) plans on electrically heating 40% of all residential
and 65% of all commercial buildings by 2030 [2]. Hence,
increasing heat pumps distribution is part of the EU’s carbon
mitigation plan. Other regions of the world follow the same
trend [3]-[6]]. Thus, heat pumps will play a major role in heat
and cooling decarbonization [/7], [8].

However, many market-available and already installed
heat pumps are not connected to the internet. Cases of
connected heat pumps are often only pilot projects [9]. There
is an “adherence to proprietary solutions” because “from the
perspective of some suppliers, provider-specific solutions offer
a higher potential for customer retention than services based
on interoperable platforms” [[10]. Even if the digitalization of
heat pumps leads to the growth of the heat pump market in
the future [11]], the lack of connectivity and IOT-readiness of
already installed heat pumps will remain for the next decades.
On the other hand, the number of deployed smart meters is
constantly increasing. In 2019, the European Commission
expected that by 2020 almost 43% of European consumers
would have a smart meter installed [12]]. At this point in time,
already seven European Union states reached a roll-out rate of
80% and some started with the second-generation roll-out [|12]].
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In our work, we want to make use of both trends and
target towards exploiting smart meter data to monitor heat
pumps. We especially hope to identify systems with high
energy saving potential. Several works already demonstrated
that the existence of heat pump installations can be predicted
with smart meter data [[13]]-[15]] but there is a lack of work in
categorizing heat pumps by their modulation capability [16].
However, this information is a valuable insight for remote
monitoring services and energy saving campaigns. As shown
in [[17]], using pre-selection criteria to identify candidates for
a heat pump inspection campaign can lead to an average
energy saving effect of 15.2%. Therefore, we want to build
on previous work and take it one step further. Assuming the
existence of a heat pump installation to be known, we want to
distinguish variable speed and fixed speed heat pumps from
smart meter data only and analyze influential factors for the
classification results. The differences between variable and
fixed speed heat pumps and the reasons why this distinction
is relevant are briefly described in the following. More details
can also be found in [18].

Variable speed heat pumps (also called inverter driven
heat pumps) react to changes in heat demand by adjusting
the rotation speed of the compressor. Accordingly, the electric
power consumed depends on the compressor speed [[19].
Variable speed heat pumps are frequently also called (capacity)
modulated heat pumps. On the other hand, fixed speed heat
pumps can only run the compressor on one fixed speed and
thus, on a single electric power level. Accordingly, the system
reacts to changes in heat demand by switching on and off only.
Fixed speed heat pumps are often also referred to as fixed
output, single speed or on-off heat pumps. The differentiation
between variable speed and fixed speed heat pumps and their
correct identification is highly relevant in the context of remote
monitoring for a few reasons:

1) The existence of a fixed speed heat pump indicates
that a potentially old heating system or less-efficient
one is present which might need special monitoring
[18]]-[24]. Variable speed heat pumps are known to be
more efficient than fixed speed heat pumps because they
reduce the so-called “cyclic losses” [24]. Hence, they
perform less on-off-cycles. This is beneficial because a
significant amount of energy is lost during the start-up
transient of a heat pump (i.e., switching on and off),
which impacts the overall performance [24].



2) Closely connected to the previous point is that different
types of heat pumps lead to different cyclic behavior.
This also causes different observable patterns in the
smart meter data as it will be explained in Section [[II-D|

3) The information about the modulation capability of a
heat pump is preliminary information for follow-up
analyses and is necessary to derive correct evaluations
of a heat pump’s state and cyclic behavior. For example,
the annual operating hours and the number of start-up
transients can serve as evaluation parameter for fixed
speed heat pumps, but not necessarily for variable speed
heat pumps.

4) Lastly, a differentiation between modulating and non-
modulating heat pumps is also commercially attractive.
Fixed speed heat pumps will most likely be the first to
be replaced in the future due to older age and lower
average efficiency, which is why their owners might be
interested in replacement offers. In addition, variable
speed heat pumps have a potential for cross-selling.
The advantages of modulating heat pumps over on-off
systems are especially significant when there is a high
need for modulation, for example, in the context of a
variable electricity supply [19]]. Therefore, a variable
speed heat pump owner could be offered extensions
to the existing system. This could be either a digital
service for optimal control [25]-[28]] or the integration
of photovoltaic systems [29].

In this paper, we use real-world smart meter data from
171 Swiss households to differentiate between variable speed
and fixed speed heat pumps. A K-nearest neighbor model can
correctly classify the heat pump type with an AUC of 0.976
on a single week of data. Consequently, we can derive the
information in an automated manner even if the heat pumps
are not connected to the internet. The remainder of the paper is
structured as follows: First, we present related work, followed
by a description of the data set and the process of generating
ground truth data. Then, we explain the feature engineering
process, the evaluation scheme and corresponding results.

II. RELATED WORK

A recent study [30] provides an overview of the research
field of smart meter data analytics and categorizes existing
work into sub-groups. Here, especially “load profiling” as
reviewed in [31]-[33]] is closely linked to our work. It
“refers to the classification of load curves or consumers
according to electricity consumption behaviors” [30]. Hence,
the link to the present study is that a classification task
is applied to smart meter data. However, it mostly focuses
on categorizing user types in an unsupervised learning setting.

Other studies focus on identifying household characteristics
from smart meter data formulated as classification task. For
example, the work of [15]] uses smart meter data to “recognize
19 household classes related to 11 household characteristics
(e.g., electric heating, size of dwelling) with an accuracy
of up to 95%”. Similar work can be found in [34]-[37].

Likewise, the area of “non-intrusive load monitoring” aims
at “decomposing a mains electricity measurement into each
of its constituent individual appliances” [38]]. Different
techniques in this respect are reviewed in [[39]—[42]]. However,
it needs to be distinguished between work that targets towards
the identification of existent appliances and work that goes
one step further by trying to decompose the corresponding
patterns.

For the latter, a few studies with focus on heating systems
can be highlighted. In study [43]], a Bayesian model is
used to disaggregate the electrical heating component in
an unsupervised manner. The algorithm is evaluated on
676 households with an observation period of at least 6
months and 30-minute resolution. The authors report that
the mean (over all the households) relative RMSE error
is 16.6%. Kouzelis et al. [44]] provide a clustering-based
approach to separate flexible from non-flexible consumers.
The goal is to estimate the residential heat pump consumption
in a probabilistic way. However, the proposed method
does not further differentiate between different types of
flexible loads. Similarly, the work presented in [45] can
disaggregate electrical load into space and domestic hot water
heating. It covers residences with an electrical resistance
heating system and smart meter data with 5-minute resolution.

While the above-mentioned studies focus on heating sys-
tems in general, a few studies aim to detect heat pumps from
smart meter data. In [[13], smart meter data with 15-minute
resolution of 397 households is enriched with weather data
and geospatial data to classify if a heat pump is present
or not. Additionally, the presented algorithms are used to
predict a heat pump’s age (<10, >10, >20 years) and thermal
reservoir (ground or air source). The authors report AUC-
scores between 0.73 and 0.86. Similarly, in [[14], the daily
electricity consumption data of households is used to identify
heat pump installations. Depending on the type of features
being used, the authors report an Fl-score between 0.785 and
0.864. Lastly, one study [17] uses electricity consumption data
to pre-select heat pumps with a large saving potential for
energy efficiency campaigns. The authors estimate that using
pre-selection criteria can lead to an average saving effect of
15.2% per inspected heat pump. In short, there is existent work
which covers the detection and pre-selection of heat pumps
from smart meter data. Nonetheless, to the best of the authors’
knowledge, there is a lack of work to distinguish heat pump
installations by their modulation capability.

III. METHODS
A. The Data Set

In this paper, we use smart meter data from 171 different
households in Switzerland. The time series measurements have
a resolution of 15 minutes with each value representing the
electrical energy consumption in kWh in the last quarter of an
hour. The data covers eight years [from 2012 to 2020] with
on average 4.6 years of data for each household. Most of the



data (77.8%) comes from single family houses. For the rest
(22.2%), the building type is either a multi-family house or
unknown. All households have one smart meter that measures
only the heat pump’s electricity consumption and one smart
meter that measures any other appliance. Hence, we obtain
the values of an aggregated smart meter by adding the values
of the two smart meters at every timestamp (Figure [I). In
Section we evaluate our methods on both (the separate
heat pump smart meter and the aggregated one) to analyze
potential differences in performance. Therefore, we also test
whether our approach works in cases where only a single smart
meter is installed.
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Fig. 1. Overview of smart meters. One smart meter measures only the heat
pump’s consumption, while the other measures all other appliances. When
added, they form a third type of smart meter — an aggregated one. The
heat maps cover a single year and are shown with a fixed scale for valid
comparisons. Therefore, the color encoding corresponds to the electricity
consumption in kWh (blue refers to 0.0 kWh and red to 2.0 kWh).

B. Generating Ground Truth Data

To generate ground truth data for classifying if the smart
meter data of each household corresponds to a variable speed
or fixed speed heat pump, two energy consultants labeled
it. The targeted label is binary: fixed vs. variable speed
heat pump. Both energy consultants are experts in the field.
They have 10+ years of experience in on-site heat pump
consultations and optimization. The data was labeled with a
labeling tool, which showed the heat pump’s smart meter data
(without other appliances) of 2019 of each household. The
labels were derived from visualizations of the data as heat
maps and histograms.

The energy consultants labeled the images separately in in-
dividual sessions. Initially, we asked them to label data of
226 households. However, in 14 cases (6.2%), one of the
experts marked to be unsure and therefore did not provide a
label. There were mainly two reasons for this: In some cases,
there was not enough data available for the evaluation. In
other observations, the times during which the heat pump was
switched on were too short for a proper labeling (e.g., only 30
minutes on-times, i.e., just two readings in a row). All these
cases were excluded from our analyses. For the remaining

212 cases, the Fleiss’ Kappa measure [46] of 0.52 to evaluate
the inter-coder reliability can be interpreted as a moderate
agreement according to [47]]. There was disagreement between
the labelers in 41 of 212 cases (19.3%). In Section [[lI-D} we
describe why there can be cases that are difficult to judge. To
ensure a high quality of labels, these cases of disagreement
were dropped. Thus, only the remaining 171 households are
included in the following analyses. For these, the energy
consultants chose the same label independently of each other.
The final distribution of the labels is as follows: 130 variable
speed heat pumps (75.9%) and 41 fixed speed heat pumps
(24.1%). We are aware that both energy consultants could have
labeled some observations wrongly. However, this is a natural
problem when working with real-world data, as a recent study
shows that 4-6% of the observations in manually labeled,
well-known benchmarking data sets in the machine learning
community are mislabeled [48]].

C. Final Data Set Creation

Machine learning approaches need enough training data to
generalize, which is why we want to increase the number of
observations. Further, we want to account for differences in
patterns each year and potential influence of weather. There-
fore, we apply the following approach. A single household can
have multiple years of smart meter data. For each household,
we analyze the smart meter data multiple times in different
windows. The window sizes can cover a single year, a single
month, or a single week. Especially, analyzing a single week
is of interest to us because it is privacy preserving and only
a small amount of data is needed. We treat the time series
of a household in one window as one separate observation.
For example, when the window size covers a single year,
we consider a household with two years of data as two
separate observations. For the weekly and monthly windows,
we only examine the months October to February because this
covers the main heating period. Additionally, we only use time
series with more than 85% completeness. In total this makes
764 yearly, 4’435 monthly and 16’498 weekly observations
across all households. We assume that the heat pump type of
each household did not change over the years. Therefore, we
copy the binary label of each household to each observation
referring to the same household.

D. Feature Engineering

In the following, we want to describe the behavioral dif-
ferences between the two types of heat pumps in features
that we extract from the time series in each window. For
the monthly and weekly window size, we use 52 features.
For the yearly window size, we use 77 features because we
additionally consider more statistical features that refer only
to the winter period. Before explaining the derived features,
we first want to outline the underlying assumptions.

For a variable speed heat pump, we assume that the different
compressor speeds lead to a wider spread in the distribution
of electrical energy consumption values than for a fixed speed
heat pump. We suppose that for a well-planned modulating



heat pump the electricity consumption follows a normal distri-
bution centering around the middle of the possible range. This
would correspond to the compressor not constantly running on
maximum speed and would mean that the heat pump could
react to both a lower and higher heat demand. On the other
hand, we assume that the electricity consumption of on-off
heat pumps is almost constant, and that the distribution has a
clearly dominant peak.

Fixed Speed Heat Pump Variable Speed Heat Pump
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Fig. 2. Visualizations of the smart meter data of two heat pumps - one labeled
as fixed speed and the other as variable speed.

A heat pump can switch on or off at any time within a
15-minute measurement interval. The measured kWh-value
then corresponds to the fraction of 15 minutes the device
is switched on. Hence, the measurement values in this case
can be lower than other measurements although the heat
pump might have a constant electricity consumption. In the
following, we refer to these as “fractional readings”. We
suspect that the time points of on and off operations spread
equally across a 15-minute time interval and that it causes an
equal distribution at the lower left bound of a corresponding
histogram. Figure [2] shows visualizations of smart meter
data labeled as fixed speed and variable speed heat pump.
We observe differences in the shapes of the histograms and
the color gradients of the heat maps. For the variable speed
heat pump, we see a higher variety in colors with steady
transitions referring to the heat pump modulation.

There are edge-cases where the distinction is difficult. The
electricity consumption and related pattern are closely linked
to the installed size of a heat pump and the load it needs
to supply. For example, an undersized variable speed heat
pump would need to constantly run on its maximum level.
In return, a highly oversized variable speed heat pump would
frequently run on its lowest power level. In both cases the

variable speed heat pump would almost behave like a fixed
speed heat pump with its classical on-off cycles. At least,
wrongly predicting a fixed speed heat pump in this case
would still identify a system that needs special monitoring or
has a high energy saving potential.

TABLE I
DESCRIPTION OF FEATURES (HISTOGRAM BIN SIZE 100).

FEATURE CATEGORY \ DESCRIPTION

s [..]

STATISTICAL FEATURES: MAXIMUM, MINIMUM, MEDIAN,
STANDARD DEVIATION, MODE, KURTOSIS, SKEW, VARI-
ANCE. FOR YEARLY FEATURES ADDITIONALLY CALCU-
LATED WITH ONLY CONSIDERING DAYS IN WINTER AND DAY
TIME VS. NIGHT TIME.

RATIOS OF CONSUMPTION: MEAN TO MAXIMUM AND MEAN
TO MINIMUM.

r_[..]

NUMBER OF VALUES, WHERE THE CONSUMPTION EXCEEDS
OR EQUALS A GIVEN THRESHOLD (0.125 KWH, 0.25 KWH,
0.5 KWH, MEAN, MIN, MAX).

t_num_above_][...]

SUM OF ABSOLUTE DIFFERENCES OF CONSECUTIVE KWH-
VALUES. ONLY CONSIDERING VALUES WHERE THE ABSO-
LUTE DIFFERENCE IS GREATER THAN A THRESHOLD (0.1,
0.2,0.3,0.4,0.5). (NORMALIZED BY THE NUMBER OF ALL
ABSOLUTE DIFFERENCES.)

h_sum_norm_diff_>[...]

SHARE OF SUM OF ABSOLUTE DIFFERENCES OF CONSEC-
UTIVE KWH-VALUES. ONLY CONSIDERING VALUES WHERE
THE ABSOLUTE DIFFERENCE IS GREATER THAN A THRESH-
oLD (0.1, 0.2, 0.3, 0.4, 0.5). (NORMALIZED BY THE NUM-
BER OF ALL ABSOLUTE DIFFERENCES.)

h_share_diff_>[...]

SHARE OF VALUES THAT FALL INTO THE LARGEST HIS-
TOGRAM BIN OR NEIGHBORING BINS (LEFT AND RIGHT).

h_share_at_max_plus]...]_bin

ABSOLUTE DIFFERENCES OF LARGEST BIN AND AVERAGE
OF ITS NEIGHBORING BINS (LEFT AND RIGHT).

h_slope_{...]

NUMBER OF BINS THAT EXCEED A GIVEN THRESHOLD (1-7)
IN TERMS OF SHARE OF VALUES THEY CONTAIN.

h_num_bins_>[...]%

STATISTICAL FEATURES IN A WINDOW OF +- STANDARD
DEVIATION CENTERED AROUND THE DISTRIBUTION MODE:
STANDARD DEVIATION, SKEW, KURTOSIS, SHARE OF VAL-
UES FALLING INTO LEFT AND RIGHT SIDE OF MODE.

h_centered_window_][...]

MEAN NUMBER OF NON-ZERO-READINGS IN A ROW (LE.,
AVERAGE ON-TIME).

h_mean_readings_per_cycle

NUMBER OF UNIQUE CONSUMPTION VALUES DIVIDED BY
THE MAXIMUM CONSUMPTION. (CONSUMPTION ROUNDED
TO TWO DECIMALS.)

h_unique_vals_rel_to_max

We provide a complete descriptive list of feature categories
in Table [l and and want to present a few exemplarily. For
variable speed heat pumps, we expect to observe more non-
zero absolute differences of consecutive kWh-readings due
to the modulation. Additionally, we expect variable speed
heat pumps to have longer cycles and fewer on-off transients.
Therefore, we derive the features h_sum_norm_diff [... ] and
h_share_diff [...] which can be seen as a description of the
distribution of absolute differences of consecutive measure-
ments. The feature h_mean_readings_per_cycle denotes the
mean number of consecutive non-zero measurements. Hence,
it accounts for the average cycle-length. We assume that
the “peakier” the distribution of measurements, the more
likely is the observation to represent a fixed speed heat
pump. Consequently, we assume that in this case a few his-
togram bins in immediate adjacency cover most measurements.
Therefore, the features h_share_at_[...], h_slope_][...] and
h_unique_vals_rel_to_max describe how high the share of
values is that fall into the largest bin (histogram mode) or the
directly neighboring bins. Similarly, the h_num_bins_J... |-



features count the number of bins that contain a certain share
of measurement values.

E. Classification Procedure

We phrase the problem as a binary classification with
the classes fixed speed heat pump (1) and variable speed
heat pump (0). Then, we use the derived features to train
and test the following machine learning-based classification
models: K-Nearest Neighbor (KNN), Random Forest, Decision
Tree, Logistic Regression, Naive Bayes, and Support Vector
Machine. For testing, we perform 5-fold cross validation —
hence, we use five different random states for the evaluation.
Each classification model is evaluated by averaging the test
results across all random states. We perform the following
steps for each random state:

1) Data split and normalization: First, we split the data
into 80% training data and 20% test data. Then, we
normalize the data by applying standard scaling to the
training and test data (removing mean plus scaling to
unit variance).

2) Grid search: For each classifier we perform a grid
search on the training data to find the optimal hyper-
parameters for each model. It builds on a 5-fold cross
validation and the choice of parameters is evaluated in
terms of the AUC-score.

3) Training and testing: With the chosen hyper-
parameters, each classifier is trained on the whole train-
ing data and applied to the test data.

IV. RESULTS

In the following, we report the mean-scores (and standard
deviations) of the previously described models and of a biased
random guess model, which constantly predicts the label of the
most frequent class (variable speed heat pump). Therefore,
the biased random guess model accounts for class imbalances
and forms the strongest baseline possible. We evaluate each
possible combination of smart meter type and window size
(Table ). For the window size of a single year, we show the
performance scores of all models. The K-Nearest Neighbor
model performs best, followed by the random forest. For these
two models, we also report the results when using a window
size of a single month and single week. Figure [3] additionally
shows the mean ROC-curves of all models for aggregated
smart meters and a window size of a single week vs. single
year. All models perform better than a biased random guess.
However, the Naive Bayes model performs worst. The KNN
model constantly performs best and forms a robust estimator
for all settings since it constantly achieves an AUC above 0.95.

A. Recursive Feature Elimination

In the following, we test the robustness of our methods
by evaluating if the performance is maintained when using
less features. This would be beneficial in terms of scalability
and cost of computation. Here, we want to focus on the most
relevant use-case in practice: using single weeks of data from
aggregated smart meters. Therefore, we apply the Recursive
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Fig. 3. Overview of the mean-ROC curves of each model when using
aggregated smart meters and a window size of a single week vs. a single
year.

Feature Elimination (RFE) algorithm to this setting, where
iteratively the least important features are dismissed while
training the classifier [49]. We use an adapted version as
implemented in [50]] that “includes a cross-validation loop to
find the optimal number of features” [49]]. The implementation
provided in [50] cannot be applied to the KNN model. How-
ever, the RFE is typically used in combination with random
forests. In our case we also choose the random forest model
because other than the KNN it delivers solid results but also
has more room for improvement (AUC of 0.876). Hence, we
can evaluate if the random forest trained with less features
even outperforms the one trained with more features. We apply
the RFE algorithm with a 5-fold cross validation to the random
forest with the best hyper-parameters found in the grid search
(see process described in Section [[lI-E). The RFE yields that 7
features (13.4%) can be removed. Now we re-train and test the
random forest only on the remaining 45 features with a 5-fold
cross validation. We use the same data set splits as before in
the previous evaluation (Section[[TI-E). Table [[TI| shows that our
methods are robust and stable. With less features, the random
forest performs almost equally well (AUC of 0.874 vs. 0.876)
as the same model that was trained on all features.

V. DISCUSSION

Up to this point, we can summarize that for the given
problem the K-Nearest Neighbor model outperforms all other
classification models. With this model, we achieve good
and stable performance scores for all settings. In the most
relevant use-case in practice (single week of data from an
aggregated smart meter), the KNN achieves a mean AUC of
0.976. When choosing a random forest model instead, the
performance decreases by approximately 10% (mean AUC
of 0.876). However, also here the results are stable. The
performance remains almost the same (mean AUC of 0.874)
when decreasing the number of features with a recursive



TABLE II
TABLE OF RESULTS. FOR THE WINDOW SIZE OF A SINGLE YEAR, WE REPORT THE PERFORMANCE SCORES OF ALL MODELS, WHILE FOR A SINGLE
MONTH AND WEEK WE ONLY SHOW THE TWO BEST MODELS. THE HIGHEST PERFORMANCE IN EACH CATEGORY IS MARKED IN BOLD.

Winbow Size | SMART METER TYPE |

SEPARATE (HEAT PUMP ONLY)

| AGGREGATED (HEAT PUMP & OTHER APPLIANCES)

SCORE ‘ AUC ACCURACY PRECISION RECALL F1-SCORE ‘ AUC ACCURACY PRECISION RECALL F1-SCORE
K-NEAREST NEIGHBOR 0.965 (0.004)  0.928 (0.027)  0.932 (0.026)  0.898 (0.03) 0.912 (0.028) | 0.958 (0.005) 0.915(0.023)  0.906 (0.025)  0.888 (0.027)  0.896 (0.024)
RANDOM FOREST 0.962 (0.011)  0.859(0.025)  0.894(0.027) 0.772(0.018)  0.804 (0.021) | 0.918 (0.024)  0.851 (0.036)  0.900 (0.023)  0.756 (0.039)  0.788 (0.044)
LOGISTIC REGRESSION 0.940 (0.006)  0.886(0.021)  0.869 (0.013)  0.855(0.022) 0.861(0.018) | 0.889(0.027) 0.847(0.036) 0.835(0.029) 0.788(0.042)  0.803 (0.039)
SINGLE YEAR SUPPORT VECTOR MACHINE | 0.930(0.013)  0.876 (0.022)  0.862 (0.019)  0.834(0.029)  0.845(0.024) | 0.876(0.037) 0.844 (0.041)  0.832(0.039) 0.781(0.044)  0.799 (0.044)
DECISION TREE 0.866 (0.029)  0.843(0.027)  0.813(0.033)  0.807(0.034)  0.808 (0.032) | 0.855(0.025) 0.827(0.028) 0.798 (0.036)  0.779 (0.049)  0.784 (0.045)
NAIVE BAYES 0.856 (0.032)  0.582(0.028)  0.675(0.037)  0.682(0.019)  0.579 (0.032) | 0.760 (0.040)  0.510(0.027)  0.627 (0.030)  0.623 (0.035)  0.507 (0.029)
BIASED RANDOM GUESS 0.500 (0.000)  0.702 (0.048)  0.351(0.024)  0.500 (0.000)  0.412(0.016) | 0.500 (0.000) 0.702(0.048) 0.351(0.024)  0.500 (0.000)  0.412 (0.016)
K-NEAREST NEIGHBOR 0.977 (0.004)  0.945(0.007)  0.936 (0.009)  0.916 (0.010)  0.925 (0.009) | 0.966 (0.003)  0.919 (0.009)  0.901 (0.013)  0.884 (0.009) 0.892 (0.010)
SINGLE MONTH | RANDOM FOREST 0.929 (0.009)  0.846 (0.014)  0.851(0.023)  0.724(0.017)  0.758 (0.020) | 0.879 (0.007) 0.798 (0.010)  0.811(0.023)  0.622(0.013)  0.638 (0.018)
BIASED RANDOM GUESS 0.500 (0.000)  0.745(0.007)  0.372(0.004)  0.500 (0.000)  0.427 (0.002) | 0.500 (0.000) 0.745(0.007)  0.372(0.004) 0.500(0.000) 0.427 (0.002)
K-NEAREST NEIGHBOR 0.988 (0.002)  0.966 (0.005)  0.958 (0.006)  0.949 (0.007)  0.953 (0.006) | 0.976 (0.001) 0.935(0.003) 0.918 (0.003)  0.907 (0.004)  0.912 (0.002)
SINGLE WEEK RANDOM FOREST 0.925(0.007)  0.847(0.009)  0.863 (0.013) 0.713(0.011)  0.749 (0.012) | 0.876 (0.004) 0.796 (0.011)  0.831(0.006) 0.602(0.016) 0.611 (0.025)
BIASED RANDOM GUESS 0.500 (0.000)  0.751(0.010)  0.375(0.005)  0.500 (0.000)  0.429 (0.003) | 0.500 (0.000) 0.751(0.010)  0.375(0.005) 0.500(0.000) 0.429 (0.003)

TABLE III
RANDOM FOREST WITH AND WITHOUT RECURSIVE FEATURE
ELIMINATION. WINDOW SIZE: SINGLE WEEK; SMART METER TYPE:

AGGREGATED.
SCORE | AUC ACCURACY PRECISION RECALL F1-SCORE
RF (WiTHOUT RFE) 0.876 (0.004)  0.796 (0.011)  0.831 (0.006) 0.602 (0.016)  0.611 (0.025)
RF (WITH RFE) 0.874 (0.006)  0.794 (0.013)  0.822(0.010)  0.599 (0.022) 0.606 (0.035)

BIASED RANDOM GUESS | 0.500 (0.000)  0.751 (0.01)  0.375(0.005)  0.500 (0.000)  0.429 (0.003)

feature elimination algorithm by approximately 13.4%. When
we evaluate the influence of the smart meter type, we can
observe the following: Using a separate smart meter can
increase the performance up to 10%. Only the KNN is not
affected by the difference in smart meter type because as
mentioned earlier it performs well for all settings. Similar
behavior occurs when evaluating the influence of the window
size. Apart from the KNN, the behavior is as expected: the
more data considered, the better. However, the difference is
not substantial (in the range of 1-5%). We can conclude that a
single week of data is enough to achieve a good performance
in distinguishing variable speed from fixed speed heat pumps.
Surprisingly, for the KNN model, the results for single weeks
of data are even better than for single years. Our findings
are relevant for three reasons: First, using a small amount of
data is in accordance with the principle of data reduction and
data economy of the European data protection law. Second,
our algorithms apply to households where a smart meter was
installed recently. Third, when the heat pump does not need
to be measured by a separate smart meter, it reduces costs and
also covers households with a single smart meter.

A. Limitations and Future Work

A limitation of the work presented in this paper is that we
gained the ground truth data in a preliminary labeling step
(as described in Section [[II-B). Hence, the heat pump labels
were derived from the smart meter data. Therefore, future work
should cover a verification with additional meta data about
the heat pump installations. Additionally, we want to evaluate
our methods with data from more households for different
geographical conditions and by considering local weather.
Further experiments can extract less features and smaller
window sizes to explore the limits and improve scalability.

VI. CONCLUSION

We demonstrate that real-world smart meter data with 15-
minute resolution can be used to distinguish variable speed
heat pumps from fixed speed heat pumps. We further show
that our results are robust to different settings and that only a
small number of features need to be computed. A single week
of data is sufficient for a K-Nearest Neighbor model to achieve
a mean AUC of 0.976. The differentiation of heat pumps’
modulation capability is of a high practical use because fixed
speed heat pumps are known to be less efficient systems
[18]-[24]]. Hence, our work can help to identify potentially
inefficient heat pumps. The differentiation is important for
heat pump replacement or energy efficiency campaigns, and
to correctly evaluate a heat pump’s cyclic behavior. Future
work can build on our findings and extract the type of heat
pump as preliminary information for methods in predictive
maintenance.
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