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Summary 
AISOP aims to create an AI-assisted decision support system for the electric distribution system 

operators (DSOs) to drive decarbonisation that is underpinned by advanced digital 

technology. The decision-support system securely and privately acquires, processes, interprets, and 

exploits data for the benefit of DSO operational planning. In this context, AISOP expands data-driven 

techniques for improved operational planning in distribution grids with high shares of DERs by 

integrating AI/ML-based solutions, enhanced situational awareness and market incentives. Within the 

proposed project we combine (i) data access and ingestion, (ii) distribution grid situational 

awareness, (iii) decision-support for distribution grid management, (iv) dynamic tariffs, and (v) digital 

platform integration with exploitation through test and training environments.  

In the current reporting period, we focus on practical aspects of situational awareness for decision 

support, such as unsupervised anomaly detection and user interface. An approach based on dimension 

reduction and clustering is demonstrated on measurements from a grid sensor. The methodology for 

ML-based dynamic tariffs and the virtual demonstration are also part of this reporting period. Thus, the 

current approach based on regression and clustering applied on a rural grid is presented. Finally, an 

outlook to the final stage of the project is provided. 
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1 Introduction 

1.1 Context and motivation 
Digitalisation of the electric energy systems creates opportunities to improve grid situational awareness 

and operational planning. As distribution grids incorporate more renewable energy sources and demand 

becomes more flexible (i.e., prosumers), more information about the current and future state of the grid 

becomes vital for operating the grid in a cost-effective way. Digitalization is therefore essential, as it 

facilitates data acquisition and processing. As distribution system operators (DSOs) explore the use of 

monitoring solutions, the volume of data and the associated costs increase. Thus, automated processes 

are required to manage and use energy system data to the advantage of DSOs. However, these 

processes need to ensure data protection and security and be designed in a way that improves the 

quality of underlying data sources. 

AISOP aims at creating an AI-assisted decision support system for DSOs. The decision-support system 

securely and privately acquires data using state-of-the-art digital platforms. It then processes and 

interprets it to generate knowledge for situational awareness and dynamic tariff setting. Using 

heterogeneous data, the overall objective is to improve operational planning in active distribution grids 

by integrating AI- or ML-based solutions, enhanced situational awareness, and market incentives. Thus, 

it combines (i) data access and ingestion, (ii) distribution grid situational awareness, (iii) decision-support 

for distribution grid management, (iv) dynamic tariffs, and (v) digital platform integration. 

Traditionally, operational planning prepares TSOs for real-time operation such that the probability of 

experiencing unexpected deviations in the balance of supply and demand is minimized. Such 

operational planning has not been necessary for distribution systems as the end-customers are only 

consumers of electricity. However, as the distribution systems are preparing for unprecedented levels 

of prosumers, DSOs will benefit from planning schemes in the long-term (decades time scale), the near-

term (multiple years), operational planning schemes (intraday to years). Such operational planning 

schemes, need good information of the current and future grid situation [1-4]. Specific applications 

include better control renewable energies taking into account uncertainty [5], and dynamic pricing of 

electricity to incentivize flexibility of demand and ameliorate grid congestion issues [4,6]. The focus of 

AISOP lies on tools for situational awareness that serve to design dynamics tariffs and overall support 

DSO operation planning decisions. These tools are envisioned to inform on intra-day, day-ahead, and 

yearly timescales. 

1.2 Project Objectives 
The AISOP project objectives are to: 

1. increase grid observability by using data from multiple sources and in different time 

resolutions, 

2. help DSOs operate the grid using data-driven decision support tools, 

3. improve the efficiency of network operations, 

4. reduce curtailment of renewable energy and distributed energy resources, and to 

5. improve options for tariffs for DSO’s and prosumers. 

AISOP’s solutions will acquire, process, interpret and exploit data for the benefit of DSO operational 

planning, integrating AI/ML-based solutions, enhanced situational awareness, and market incentives. 

The project aims to create actionable, tangible, and applicable outcomes for distribution systems to 

improve operational planning and support decarbonisation. The outcomes will take the forms outlined 

in Table 1. 
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Table 1: AISOP project outcomes. 

Methodologies and knowledge Technologies Services 

Accessing and combining 

heterogenous, dispersed datasets 

Developing grid situational 

awareness using edge and 

embedded network devices 

ML-based risk analysis and risk 

quantification 

AI/ML-based identification of 

dynamic tariffs for congestion 

management 

Data analytics (forecasting, 

local optimisation) 

ML-based anomaly detection 

and fault prediction 

Digital process twin for 

distribution systems 

Embedded and distributed 

sensors for LV and MV 

networks 

Dynamic tariffs 

DSO congestion 

management 

Fault detection and 

prediction 

Operational risk 

management 

Integration of community in 

digital platforms 

 

In addition to the outcomes described above, AISOP will deliver environmental and socio-economic 

impacts as described in Figure 1. 

 

 

Figure 1: Environmental and socio-economic objectives in AISOP. 
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2 Approach, method, results and discussion 

This section describes grid situational awareness (SA), and dynamic tariffs approaches and analyses 

recently conducted. In Section 2.1 our grid situational awareness model is described, with focus on 

anomaly detection and user interface. A description of the approach to design dynamic tariffs is provided 

in Section 2.2 along with illustrations on a selected case study. Finally, Section 2.3 provides the 

description, plans and the progress in virtual demonstrators. 

2.1 ML-based grid situational awareness 
The goal of grid SA is to predict risky states of the grid. To achieve this goal, we defined four calculation 

workflows: sequential power flow simulations, power flow forecasting, anomaly detection, and risk 

assessment which are summarized below and described in more details in [8].  

(a) Sequential Power Flow Solutions to characterize the impact of connecting more solar PV, 

electrical vehicles (EVs), and heat pumps. 

(b) Power Flow Forecasting to estimate grid conditions in the next day(s). 

(c) Anomaly Detection to detect faults such as short circuits, equipment failures, or incipient faults, 

and irregularities at the end-user side including new consumption patterns indicating new 

demand and generation from EVs and solar PV. 

(d) Risk Assessment where compliance to EN 50160 is evaluated and risk metrics such as 

operational Over (or Under) Voltage Risk are calculated. 

In this reporting period we focus on unsupervised anomaly detection in Section 2.1.1. Moreover, for 

these tools to be applicable, we look into how to organise data for visualization, and how to facilitate that 

users interact with analytics results in Section 2.1.2.  

 Unsupervised anomaly detection 

It is essential to automate the analyses of data and the extraction of information to help operators identify 

situations where data may inform of potential cyber-attacks and risky operation states (i.e., anomalies 

with a relevant underlaying cause) or where data itself may be of poor quality (i.e., outliers due to missing 

or corrupted measurements). These two aspects are typically threated in different parts of the data 

ingestion and processing chain, once data from a given source has a minimum level of accessibility and 

quality, data analytics can start. Following, we describe an approach that can be applied to either step 

of the data analytics chain and demonstrate it with data recorded by a grid sensor [9]. In this way, we 

illustrate its application for SA where anomalies in voltages measured at the LV side of a distribution 

transformer with data obtained with a GridEye sensor.  

Demonstration site. A district of the community of Rolle which combines commercial and residential 

customers was equipped, during the project “Romande Energie Electric network in local balance 

Demonstrator” (REEL Demo) within the context of SCCER-FURIES [9], with grid monitoring sensors 

and smart meters to develop, amongst other, activities on techno-economic and socio-economic 

methods for increasing energy flexibility. We tap on a curated data from the REEL demo that concerns 

a LV feeder in this district. As described in Table 2 we have access to heterogenous sources of data 

such as grid topology, grid sensor and smart meter data concerning a single feeder, also open data from 

the Swiss building register and weather data is accessible to enhance our analysis in future iterations.  
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Table 2: Description of available datasets in Rolle demonstration site. 

Data Description 

Grid 

topology 

Describes the LV grid of feeder 13 in Rolle, it is provided in matpower [11] format, and 

JSON format standard according to the open-source software pandapower. [12] 

Grid 

sensor 

Data recorded by a GridEye sensor between October 2018 to December 2019, 10-min 

values of power quality measurements: 58 quantities that describe voltage, power, 

current, harmonics, and grid frequency. 

Smart 

meter 

Small sample of active power data recorded by RE smart meters installed in the REEL 

Demo. 

Building 

Federal Register of Buildings and Dwellings (RBD) provides a view of the current 

buildings and dwellings stock of Switzerland, continuously updated by communal 

building departments. It includes energy relevant data such as energy reference area 

(GEBF), energy source for hot water (GENH1, GENH2) and for heating (GENW1, 

GENW2). 

Weather 

Historical and recent weather data is available for a large variety of providers most 

notably for solar radiation and ambient temperature, historical data from the National 

Solar Radiation Database (NSRDB) and measurements provided by MeteoSwiss 

stations. 

 

Approach and results. Processing large amounts of grid monitoring data and detecting points that are 

different to the bulk is typically approached with data quality control rules or by means of unsupervised 

anomaly detection: statistics, thresholds set on the basis of domain knowledge, and unsupervised 

learning can be applied. Here we demonstrate a classical ML approach to unsupervised anomaly 

detection. First step is pre-processing the GridEye data by removing the mean and scaling the dataset 

to have unit variance. Then, removing linear correlations and performing dimension reduction by 

applying singular value decomposition are performed. A final step is to find those data points that are 

most different to the majority, in this case by applying density-based clustering method (DBSCAN) and 

manipulating two hyperparameters: a distance to neighbour threshold, and a number of samples around 

a cluster centre. Results are shown in Figure 2, where the 58 dimensions of the dataset are reduced to 

two dimensions that clearly synthetise the variability of the original data and let us, even visually, identify 

anomalies. On these two dimensions DBSCAN is applied to identify clusters. The results are then 

mapped back to the original data as shown in Figure 3 where the three anomalies highlighted in Figure 

2 are found to show relatively odd power quality values as observed in the homopolar components, 

voltages, and harmonics metrics. Inverted and homopolar components are negative- and zero-

sequence components of the three-phase voltages, thus higher values indicate that the system is not 

perfectly balanced giving also potential indications of faults. This is also reflected in the voltages as 

observed in the plot, while the effect is not so noticeable in the total harmonic distortion shown in the 

bottom subplot. This is consistent with the nature of power where load imbalances and faults are not 

necessarily linked to harmonics.    
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Figure 2: First two principal components of GridEye data and clusters derived with BDSCAN. 

 

Figure 3: Anomalies detected in the GridEye power quality data by clustering in the first two principal components 

Discussion. Benefits of this approach include that it is explainable, very easy to tune, and to implement 

on embedded hardware. Thus, opening the door to various applications such as interactive use where 

the user may select different data sources and adjust parameters to filter and select different number of 

anomalies. Also, it can be used for data compression and anomaly detection at the edge. We use 

efficient open-source implementations [10], which can be ported or rewritten to run in embedded devices 

subject mainly to memory constraints. 

 Data co-pilot concept 

A key aspect of a decision support system is how its tools fit into established practices of operators. 

These practices are expected to adapt as digitisation and automation increases [12,13], particularly for 

TSOs, but DSO are also expected to benefit from increasing automation. Moreover, preferences for user 

interfaces and access to information as seen by the actual operators or engineers that make use of a 

given tool should also play a role in designing user interfaces for decision support tools. Understanding 
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the preferences of users in the different DSO departments is important to design the information content 

and form of the interfaces to these users, which may include a graphical user interface (GUI), a 

command line for advance users, a natural language interface (e.g., Chatbot) possibly tapping into the 

capabilities of large language models (LLMs). As a first step, illustrated in Figure 4, the digital process 

twin (DPT) structure and main software building blocks applicable to the grid congestion use case were 

framed as a cyber-physical system to better visualise different concerns, as we aim for a modular AISOP 

Decision Support System. Details of the proposed architecture for the decision support system itself, 

are further described in Appendix and Figure 16. 

 

 

Figure 4: Data co-pilot concept consisting of user interfaces, a delegator that controls the main application flow, agents that abstract 

functionality by calling on tools and LLMs. 

Web application interface. Generative AI, expressed as LLMs and foundation models, has taken a 

remarkable position in the development of AI applications, even in technical domains numerous 

simulation and data analytics commercial offers are developing functionalities based on these 

technologies to automate tasks and enhance user experience. A predominant approach to develop 

these applications resorts to agentic or multi-agent patterns, where LLM agents determine the 

application control flow. However, relying on LLMs to control task execution does not guarantee high 

reliability and increases cyber-security risks. Thus, in our concept LLMs have a limited scope of control 

and are meant to help with retrieving context data and facilitating a conversational interface. A first 

architecture consisting of User Interfaces, Delegator, Agent(s), Tool(s) and LLMs blocks is shown in the 

Data Co-Pilot block in Figure 4.   

1. Delegator. Takes the form of a rule-based expert system, with a small knowledge base (i.e., 

definitions of agents, tasks, and tools) and an inference engine (i.e., set of rules). It has a tree 

structure to address each case depending on the inputs of the user. Its main function is to assign 

agents and tools to tasks.  

2. Agents. Software object with states and memory, as well as minimal autonomy steaming mainly 

from rules. It can act and exchange data with other agents, and call tools within its limited scope 

(e.g., Hewitt's Actor model). 

3. Tools. Hard coded functionalities that are part of workflows, or functions that wrap models or 

smaller analytics pipelines that are commonly used to return grid state information to the user.  

4. LLM. It has the same hierarchy and more autonomy as an agent. Corresponds to agents in 

Langchain framework [Ref.StateofAgents] and autonomous agents utilizing LLMs in MetaGPT 

framework. [Ref.Hong2024] Here, their scope is limited to access tools that provide functions 

that are not essential for computational workflows.  
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AISOP Decision Support System. This block consists of several modules that facilitate operational 

planning by providing information about current and future grid states. They correspond to SA and 

dynamic tariffs work packages, whose outputs are combined to create a virtual demonstrator as 

described in Section 2.3. 

Discussion. Feedback from technicians and operators involved in operational planning, as well as 

relevant IT-personnel is key to useful user interfaces. While interactive visualisations may be engaging, 

in some cases concrete information maybe more desirable. On the other hand, some advanced users 

may want to go beyond interactive visualisation and be able to perform analysis, for these users, tools 

as presented here are attractive. In terms of the web application development and implementation, we 

believe that an expert systems approach in combination with consolidated, machine-readable data could 

take us a long way, but the potential of generative AI cannot be underestimated and needs to be 

balanced to costs, information security and cybersecurity. We followed common implementations 

patterns but kept LLMs with a limited scope. Potential further development could include letting LLMs 

access data in different ‘security zones’ and if needed run LLMs on DSOs digital infrastructure in this 

way data never leaves the premises. Another application very popular in other domains is summarisation 

of company data.  

2.2 ML-based dynamic tariff  

 Methodology 

Objective: Dynamic tariffs are increasingly seen as a means for a utility to influence the power 

withdrawal and/or injection patterns of its customers, with objective to eventually reduce the grid loading 

whenever and wherever this might be desired due to otherwise excessive flows. 

Designing such a tariff is far from being a trivial task. The utility needs to: 

1. Understand what exactly the tariff should try to influence (the target). A utility needs to 

decide the measure (i.e., KPI) according to which it assesses the success of its tariff scheme. 

Following is a non-exhaustive list of such KPI candidates: 

• The loading of NL6 transformers 

• The loading of specific cables  

• The average voltage throughout the LV grid (NL7) 

• Nodal voltages at specific buses 

In addition to the above-listed spatial KPIs, temporal aspects can also be evaluated as part of 

the KPI: focusing only on specific moments in time (e.g., hours of date, months, seasons) 

2. Understand how the target can be influenced. 

• Targeting the behaviour of specific customers or specific device types (spatial aspect) 

• Targeting the behaviour of customers at certain time intervals (temporal aspect) 

Once steps 1 and 2 are completed, a utility can devise a tariff that aims at influencing the behaviour of 

those customers that we identified as the most relevant in step 2. 

Depending on the level of observability of its distribution network, based on substation 

measurements, grid sensors, smart meters etc., a utility can have access to a heterogeneous set of data 

that contains potentially useful information. This data can be combined with other sources of 

information, such as weather measurements (i.e., solar irradiation, temperature). Such data can be 

collected over lengthy periods of time and grouped into datasets. 

It is noted that, in addition to (or alternatively to) the measured data, these datasets can also include 

data created by means of simulation of various scenarios. 
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The objective of this work has been to develop methods and processes for a utility to extract knowledge 

from such datasets, which can be used to develop appropriate dynamic tariff rules and schemes. 

 

 

Figure 5: The framework for creating the ML-model to set the dynamic tariffs 

Approach: In its essence, the proposed approach, illustrated in Figure 5, consists of two steps. 

Processing the input data to create appropriate working datasets. 

Extracting valuable knowledge from these datasets, in an automatic manner, by applying appropriate 

machine learning algorithms. 

Step 1. Data processing 

Data collection: The required raw input data is collected and/or created by means of simulations. Such 

data include, but are not limited to, voltage and current measurements at different network nodes and 

branches, active and reactive power injections and withdrawals at different network connection points, 

generation, and consumption by various devices (such as PVs, EV chargers, heat pumps), temperature, 

solar irradiance, and others. They are typically in the form of a time series, at various time resolutions. 

Other information that can be part of the “raw input data” includes calendar information, such as the 

hour of the day, the day of the week, month, public holiday information, etc. 

The objective is to develop the methodology or a set of methodologies which can be used with various 

levels and types of data available to the utilities. Therefore, the methodology or the set of methodologies 

are not dependent on a given set of data. 

Input feature creation: At this step, new synthetic input features are created by using the available raw 

data. The objective is to have features that represent situations not strongly reflected in each variable 

in the raw data. A representative list of such “data transformations” are the following: 

• Creation of cyclical features to represent time 

• Aggregate nodal power injections with topological criteria (e.g., along a feeder, downstream 

from a specific node etc.) 

• Aggregate power generation or consumption per type of device 

Output feature creation: At this step, different potential “target features” are created. As explained in 

the previous section, these features shall represent the objective that the utility tries to achieve by 

applying a dynamic tariff scheme. They will be used by the machine learning algorithms in step 2 

(presented in the sequel), to drive the knowledge extraction results. 

Two examples of such “target features” are: 



 

16/34 

• Per node, create a new feature for “nodal voltage in violation of the desired limits,” which is the 

nodal voltage magnitude (in p.u.) when the voltage exceeds a selected maximum value (e.g., 

1.08 p.u.) or falls below a selected minimum value (e.g., 0.92 p.u.) Otherwise, it is 1 p.u. Such 

a feature allows the ML-model to distinguish over- or under-voltages while treating values in the 

acceptable range in the same manner, thus allowing the user to focus on cases when the power 

injections and withdrawals at electrically nearby nodes have to be influenced so that the voltage 

falls back into the desired interval. 

• Per branch, create a new feature for “branch current in violation of desired thermal limits,” which 

is the branch loading (in %) when the loading is above a selected maximum value (e.g., 80%), 

and it is 0 otherwise. Such a feature allows the ML-model to distinguish branch currents that 

approach the limit while treating all the acceptable values in the same manner, thus allowing 

the ML-model to focus on cases when the power injections and withdrawals at electrically 

nearby nodes have to be influenced so that the branch current is under the selected limit. 

Step 2. Knowledge extraction 

Two techniques have been developed to enable automated processing of the data in order to eventually 

identify the input features that shall be the “targets to influence” by means of a dynamic tariff scheme. 

Approach I. Identification of the most important input features by means of training of a 

regression model 

General approach: This approach relies on the fact that a side-outcome of the training of certain types 

of regression models allow the ML-model to identify the candidate input features that turned out to be 

the most critical for achieving a high-quality model, which is as accurate as possible. 

A suitable machine learning model that is selected to identify the most important input features is the 

“random forest.” Random forests are ensemble models. They are created by training many decision 

trees. The random forest model consists of all the trained decision trees. Its prediction is the average of 

the individual decision tree predictions. Different decision trees are obtained by repeatedly sampling the 

training dataset and creating diverse (different from each other) subsets. 

During the training of each decision tree, the algorithm uses a metric to identify the feature to use to 

make the split at each tree node. A metric such as the “Gini importance index” is utilized to select the 

feature (and the feature value) for which the split at a node maximizes the decrease in impurity (i.e., 

randomness) of the data in its leaf below that node. Hence, a side-result of the process of training a 

random forest is that the value of each feature in splitting the data has been estimated many times, as 

the various trees are being built. Based on these calculations, a by-product of the training process of a 

random forest is a value per feature indicating its importance in efficiently splitting the data. Typically, 

this feature’s importance value is in a range from zero to one.  

Application: We use this technique to identify the candidate input features, created in step 1, that are 

the most relevant for each target output feature created in step 1. For example, a random forest is 

trained as a predictor of the “voltage outside limits” feature (see step 1) for a given node in the network. 

A by-product of this training is that each candidate input feature (such as those described in step 1) will 

be assigned a value indicating its relevance. Obviously, the most relevant features are these that the 

utility shall aim at influencing via a dynamic tariff scheme. 

Approach II. Utilization of clustering to identify a range of values of the input features associated 

with the target output features 

Clustering is a powerful unsupervised machine learning technique. It splits a dataset into subsets, such 

that the data within each subset are “as similar to each other as possible” and “as different from the data 

in the other subsets as possible.” 

Application: First, one or more target output features, among those computed in step 1, are selected. 

Following, the data are clustered based on the values of these target features. If the number of clusters 

is selected properly, some clusters will contain the data samples where one or more of the target output 
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features take non-desirable values (e.g., a cluster with nodal over voltages). Finally, the input features 

of each cluster are analysed, e.g., by performing basic statistical calculations, to identify the desired 

ranges of the input features, to avoid violations. This information is used to devise appropriate dynamic 

tariff schemes. 

 Case study 

Example 

A rural grid with 103 nodes and 105 branches is used for prototyping, testing and validating. For each 

grid connection point (i.e., Hausanschlusskasten – HAK), the electric heat pump demand time-series, 

the conventional household demand time-series, the solar PV time-series and EV charging time-series 

are created for nine (9) representative days (i.e., Workday, Saturday and Sunday in Winter, Summer 

and Transition seasons) in 15-minute resolution. The HP, EV and PV proliferation levels correspond to 

Energy Perspective scenarios for 2050. The methodology used to create the time-series for each grid 

connection point is described in the final report of TDFlex project1. 

Voltage violations (over- or under-) per each node and loading violations per each branch, defined 

according to the rule described in Step 1 above (see “output feature creation”), are used as the output 

features. Per node and per branch, the algorithm identifies the most influential input features. As a 

general rule, these input features are dependent on the output feature, i.e., different input features 

impact different violations.  

Figure 7 illustrates the ten input features that are observed to be, on average, the most influential i.e., 

the input features that seem to influence most of the grid violations. Nine of these features refer to the 

aggregated net injection / withdrawal downstream of a give node. These are denoted with yellow colour 

arrows in the network diagram in Figure 6, and one feature refers to the net injection / withdrawal across 

a given feeder. 

As an example, Figure 8. Five most relevant input features for the over-loading of the branch between 

nodes 16 and 17. DS-N-X stands for the aggregated net power injection/withdrawal downstream of node 

X. NI-N-X stands for the net power injection/withdrawal at node X. Min-Sin denotes a cyclical feature 

that was created by representing the time by means of two variables, a sine and a cosine, thus being 

able to express the time cyclicality (otherwise, for example, 23:00 would be interpreted by the algorithm 

as being very different from 00:00, while, in reality, they are equally close as, for example, 02:00 is to 

03:00). The y axis indicates the relative importance of each feature. shows the five input features that 

are the most relevant for the (over-)loading of the branch connecting the nodes 16 and 17. In addition 

to the net injection downstream of given nodes and the net injection at a given node, the time turned out 

to also be a relevant feature for this overloading. 

 
1 C.Y. Evrenosoglu, J. Garrison, A. Fuchs and T. Demiray, “TDFlex – TSO-DSO Flexibility: towards 
integrated grid control and coordination in Switzerland,” Swiss Federal Office of Energy, Final Report 
SI/501735, 2022. 
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Figure 6. A rural grid used for prototyping ML-based tariff methodologies. Yellow colour arrows denote the nodes relating to the ten most 

influential features on average. Red colour arrows denote the nodes relating to the features that are more influential for the over-loading 

of the branch between the nodes 16 and 17. 

 

Figure 7. The ten most relevant features on average. DS-N-X stands for the aggregated net power injection/withdrawal downstream of 

node X. NI-F-X stands for the aggregated net power injection/withdrawal of all nodes across feeder X. The y axis indicates the relative 

importance of each feature. 
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Figure 8. Five most relevant input features for the over-loading of the branch between nodes 16 and 17. DS-N-X stands for the aggregated 

net power injection/withdrawal downstream of node X. NI-N-X stands for the net power injection/withdrawal at node X. Min-Sin denotes a 

cyclical feature that was created by representing the time by means of two variables, a sine and a cosine, thus being able to express the 

time cyclicality (otherwise, for example, 23:00 would be interpreted by the algorithm as being very different from 00:00, while, in reality, 

they are equally close as, for example, 02:00 is to 03:00). The y axis indicates the relative importance of each feature. 

2.3 Virtual demonstrator 
In this section we describe our activities towards a virtual demonstrator. First, we present the current 

file-based concept of AISOP Decision Support, and the concept for federated data assimilation. 

Following, a use-case is presented that is designed to combine multiple modules in a closed-loop 

operation: grid simulations, dynamic tariffs, end-user optimization and risk forecasting. 

 Data federation based on data spaces 

An approach to facilitate access to data in a secured and federated way is a data space, which the 

International Data Spaces Association (IDS) defines as: " ... a virtual space that provides a standardized 

framework for data exchange, based on common protocols and formats, as well as secure and trusted 

data sharing mechanisms. The IDS data space is designed to support data sovereignty, meaning that 

data owners retain control over their data and can determine who can use it and under what conditions." 

Moreover, a data space in a given domain, say transport is intended to be compatible with data spaces 

in other domains. Specific to the energy domain, [15] describes high level goals and use cases such as 

coordination of TSO-DSO for congestion management. Also, uses cases in the interface between local 

communities and energy utilities (e.g., DSOs, Stadwerke), such as grid the facilitation of grid connection 

processes and maintenance services are mentioned as having potential benefits from accessing 

heterogeneous data sets within an energy data space. 

Minimum Viable Data Space (MVDS). As data spaces aim at being fully interoperable and 

standardized, along with their definitions reference implementations are provided, for example by IDS, 

by Eclipse Foundation, and by private companies. In order to investigate data federation in AISOP, we 

look into advancing the current approach outlined in Figure 9 into that described in Figure 10, where a 
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data space and a data extraction system operated by the DSO or by a 3rd party facilitate the access to 

sensor data, instead of a simple file exchange, or the forwarding of data via ftp as done in the Swiss 

Energy Data Hub.  

                                     

Figure 9: Current file-based implementation of AISOP software modules using data from the REEL Demo provided by Romande 

Energie. 

 

Figure 10: Concept for data federation in AISOP illustrating the extraction of data from sensors from DSOs and a MVDS consisting of 

identity management and data connectors. 

The main difference between the current file-based implementation is that the Parser module is 

responsible of accessing data and convert them to AISOP data models. Thus, this data management 

module keeps a data catalogue and data models, and it would establish SSoT when formalising the 

implementation of a DPT. Details of an architecture pattern are given in Figure 15. Whereas, when data 

is federated via a data space, a Data Consumer module needs to be created to pass the data to AISOP 

Parser module. The MVDS illustrated in Figure 15 consist of a minimum set of components with enough 

features to experiment the provision of identities and the creation of data connectors. We experimented 

with the deployment of a MVDS with open, pre-configured implementations contained in the IDS Testbed 
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git repository that include a Certificate Authority (CA), Dynamic Attribute Provisioning Service (DAPS), 

Dataspace Connector(s) (DSC), and MetadataBroker (not shown in Figure 10).  

The main learning from deploying the IDS Testbed is the need for more powerful ICT infrastructure as 

we had been operating. Namely, we use two virtual machines with 4 and 12 GB of random access 

memory (RAM) for the implementations in Figure 9, whereas for testing the basic data space 

components we had to use a separate machine with 18 GB RAM and 500 GB of free disk space.  

Discussion. Although data spaces have recently gained much relevance, their standardization is on-

going and there are several challenges when looking into their implementation. Some of them are related 

to the maturity of the technologies, the learning curve, and costs. Other, are related to the business 

models and data governance that needs to be in place. Moreover, data spaces as per their definition 

and standardisation do not consider computation itself. This brings them to some extent in conflict with 

SSoT, which is a fundamental characteristic of a DT, as the data space federates the access to data. 

Therefore, implementing SSoT in data spaces is another challenge that does not have standardised 

practices. Looking further into the future, AI marketplaces, where users can access data consolidation 

workflows, securely share data across stakeholders, and ultimately deploy analytics workflows including 

state-of-the-art AI models [16]. AI marketplaces are less established as data space, data virtualisation, 

data as a service (data products), software as a service, or (application) platform. They hinge on the 

value of data that can be monetized, [16] presented archetypes of business models focused on a 

demand response use case. Thus, AI marketplaces could have benefits over data spaces, as they aim 

at an ecosystem of digital products and services, where users can trade datasets, provide labelling and 

curation services, download or run AI models in the cloud. On the other hand, they do not necessarily 

promote data sovereignty. In the context of AISOP, the creation of a fully fledge data space is beyond 

scope, but the MVDS provided a basic understanding of the technologies behind and generated 

synergies with research initiatives that are focused on data spaces within the energy domain.   

 Closed-loop use-case 

The concept and the interactions among the selected modules in the project are trialled and 

demonstrated inside the ReSIM2 simulation tool, which originated from a former project, ReMaP, funded 

by the SFOE, and is described in final report in detail3. 

 

Figure 11: Visualizing the basic layout for the virtual demonstration with ReSIM 

 
2 fen/resim 
3 ReMaP – Renewable Management and Real-Time Control Platform, Swiss Federal Office of Energy, 
Final Report SI/501810-1, 2023. sfoe/remap. 

https://www.fen.ethz.ch/activities/tools/resim.html
https://www.aramis.admin.ch/Texte/?ProjectID=41788
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The goal of the virtual demonstration is to show the feasibility of a closed-loop simulation combining a 

grid model and power flow data with a dynamic tariff algorithm based on power flow results and several 

end-users distributed throughout the grid that react to the changing tariffs. Figure 11 illustrates the setup 

for this virtual demonstration in ReSIM, where the individual components are modelled as follows: 

• End-user optimizer: 

o The end-user models and the optimizer are provided by the HSLU team and integrated 

into ReSIM via a wrapper class designed by the FEN team. The optimizer is set up to 

minimize the household’s energy cost throughout the day. 

o There are three end-user models defined in the virtual demonstration setup, each of 

them placed at a separate node of the selected grid. While each end-user receives a 

different electricity retail tariff signal, all other parameters are identical and designed to 

represent an electrified household: 

▪ The grid connection capacity of each end-user is assumed to be 15 kW which 

corresponds to a typical single-family house4,  

▪ The base (conventional) electricity demand, excluding the EV charging and the 

HP, is 89.6 kWh per day with a peak of 7 kW. 

▪ A 10-kWp PV system along with a 5-kWh / 3-kWp battery is installed. 

▪ The battery-electric car is assumed to have 50-kWh battery and is assumed to 

arrive at home at 18:00 with a state-of-charge of 50%. The EV-charger has a 

maximum power of 11 kW. 

▪ The house is assumed to be heated with a 3-kWp (el.) heat pump connected 

to a 200-L heat storage tank that serves 30.2 kWh per day heat demand 

peaking at 4 kW. 

▪ End-user 1 receives a static retail tariff of 26.36 Rp/kWh, End-user 2 a stepped 

tariff based on the common high/low tariff structure with the low tariff being 

18.76 Rp/kWh (before 6 AM and after 9 PM) and the high tariff 30.16 Rp/kWh 

(between 6 AM and 9 PM) and the dynamic tariff for End-user 3 follows a 

sinusoidal form with a maximum value of 30.6 Rp/kWh and an average of 22.6 

Rp/kWh. 

▪ The feed-in tariff for solar PV excess generation is assumed to be 10 Rp/kWh 

for all end-users. 

o When setting up the virtual demonstration, the type of new demand or generation (e.g., 

PV+BESS first, followed by EV charging and HP and thermal storage) and the amount 

of installed infrastructure for each end-user was increased step-by-step (in the order 

described above, apart from the tariffs which were always present) to check the 

behaviour of the end-users. 

 

• Grid Model: 

o An open-source synthetic network from Simbench5 is used for designing and testing. 

The "1-LV-urban6--0-sw" network model represents an urban low-voltage grid. The 

Simbench dataset provides the timeseries of load data at each node and these time-

series are used whenever “end-users” introduced above are not used. 

 
4 Branchenempehlung: Werkvorschriften CH, Technische Anschlussbedingungen für den Anschluss 
von Verbraucher- Energieerzeugungs- und elektrischen Energiespeicheranlagen and das 
Niederspannungsnetz, VSE, 2021.  
5 S. Meinecke, D. Sarajlić, S. R. Drauz, A. Klettke, L.-P. Lauven, C. Rehtanz, A. Moser, and M. Braun, 
“Simbench—a benchmark dataset of electric power systems to compare innovative solutions based 
on power flow analysis,” Energies, vol. 13, no. 12, p. 3290, Jun. 2020 
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• Power Flow Solver: 

o The commercial Adaptricity power flow solver, integrated as part of the ReMaP project 

was replaced by an open-source power system analysis package, pandapower 

[Ref.Pandapower], which is now integrated into the core ReSIM code. 

• Data collection: 

o The power flow results (including transformer and line loadings, nodal voltages, net 

loads etc.) and the results of the end-user optimizers are collected and stored by 

ReSIM’s internal data management, which makes the data available throughout the 

simulation and takes care of storing the data at the end. 

• Assessment of tariff impact and network tariff rule: 

o Key performance indicators (loadings and voltages) are extracted from the power flow 

results and stored to create a historical trend of grid congestion which serves to both 

measure tariff impact and guide network tariff rules. 

o For network tariff rules, both randomized day-ahead tariffs and grid-performance based 

tariffs can be generated. To properly benchmark the end-user behaviour, the results in 

the next section are generated using the predefined retail tariffs described above. 

Example: Figure 12, Figure 13, and Figure 14 serve as examples for how the end-user optimizer 

reacts to different tariff structures for a fully electrified residential building (PV + BESS, HP, EV) 

according to the parameters described above for the three end-users. If we focus on each device one 

at a time, we can make the following observations: 

The EV, which arrives at home at 18:00 with a half empty battery, needs to charge 20 kWh before the 

end of the optimization horizon (e.g., in this case 1 day is selected from 0:00 to 23:45). With a static 

retail tariff, the EV starts charging immediately upon arrival and charges most of the required energy 

before 20:00. Although the PV panels are still producing power at that time, this is already being used 

by the conventional electricity demand which peaks around this time. Thus, the EV causes a large 

additional peak demand at a time, when the electricity grid is highly loaded. If a variable retail tariff (either 

stepped or sinusoidal) is assumed, almost the entire EV demand is shifted to the very end of the day 

(starting at 21:45), which is desirable from a grid perspective. 

For any of the discussed tariff structures, the HP operation is scheduled for the afternoon, when plenty 

of PV power is available and it is thus contributing to an increased degree of self-consumption, 

unaffected by the tariff. When the HP operation occurs at or near the peak PV production, which can be 

seen for End-user 3, this is not only beneficial from the financial perspective of the end-user but also 

performing “PV peak-shaving” for the grid.  

In case of a static retail tariff, the battery energy storage system (BESS) is purely used to increase the 

degree of self-consumption by charging on excess PV power and discharging after PV stops producing. 

It, however, does not synchronize its discharge with the highest demand peak as there is no cost for the 

peak load. For End-users 2 & 3, which are subjected to varying retail tariffs, the battery still stores some 

excess PV power for the evening. Additionally, it adjusts its charging/discharging based on the variable 

tariffs, charging when electricity prices are low and discharging to minimize the net load at the moments 

with the highest tariffs. 

The combined efforts of the HP-flexibility and BESS work towards reducing PV feed-in but do not 

achieve a significant effect due to their limited capacity. However, the example is designed to 

demonstrate the architecture and the principles behind the developed modules and the approach. 
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Figure 12: End-user 1; configured as a fully electrified household, optimized for a constant retail tariff of 26.36 Rp/kWh. 

 

Figure 13: End-user 2; configured as a fully electrified household, optimized for a stepped retail tariff of 30.16 Rp/kWh (high, during the 

day) and 18.76 Rp/kWh (low, at night). 
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Figure 14: End-user 3; configured as a fully electrified household, optimized for a sinusoidal retail tariff with a minimum of 10.2 Rp/kWh 

and a maximum of 30.6 Rp/kWh. 
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3 Conclusions and outlook 

Results on grid situational awareness for decision support, such as detection of anomalies using only 

grid sensor data, demonstrated the use of unsupervised ML techniques which are potentially easy to 

deploy for DSOs without requiring them to invest large efforts to create datasets for training and testing 

supervised learning algorithms. In this way, supervised approaches that were developed in the first 

stage of the project, on the basis of physics-based simulations, are complemented with unsupervised 

approaches of different level of complexity and applied to different data that are representative of various 

levels of grid digitalisation. Furthermore, for grid SA tools to be effective they need to be well integrated 

within the DSOs digital infrastructure and be suitable and informative in the context of human workers. 

Thus, we conceptualize and work towards a prototype of an interactive user interface, that can be used 

as a starting point for future decision support systems. 

An approach for ML-based dynamic tariffs is introduced along with current development of software 

modules and the concept for data federation in a virtual demonstrator. Dynamic tariffs have the potential 

to incentivise changes of consumption patterns to benefit the grid, with relatively low effort from the grid 

operator, but methods and tools to investigate and design tariff rules need to be further developed. In 

this reporting period, an approach based on regression and clustering is described for ML-based 

dynamic tariffs and illustrated using a real grid data while the customers are represented with synthetic 

time-series for HPs, EV charging and solar PV generation to reflect future scenarios. In addition, as part 

of the virtual demonstrator development, mock dynamic tariffs are integrated to the collaboration 

platform, ReSIM, to demonstrate, in closed loop, how the selected end-user change their behaviour 

based on tariffs resulting in changes in the grid loadings. A synthetic grid was used for the demonstration 

purpose. 

Current activities and next steps include the following.  

Load Forecasting. Documentation of ensemble models for load forecast, and evaluation of a subset 

with multiple metrics error metrics that resemble more closely the DSO use cases such as prediction of 

peak loads. 

Power flow. Linking forecasts and sequential power flow simulations to data from demonstration sites. 

Risk. Extend situational awareness with risk estimation by using data obtained from REEL Demo sites. 

Risk metrics that capture time-varying operating conditions of a given asset are to be calculated to 

support grid operation by forecasting risks in the next day(s).  

ML-based dynamic tariff. The identification of importance of input features and clustering framework 

will be supplemented by a rule-based algorithm to translate the knowledge extracted from the 

identification and clustering process to temporal and spatial tariffs. The output of the risk forecasting 

module will be incorporated as an input to the ML-based dynamic tariff. Hive Power will provide 

temperature and solar irradiation forecasts, which will also be used as input to the ML model. The 

relevance and importance of the risk forecasting results, and the weather forecasts will be assessed 

and the final list of relevant data to develop a meaningful ML-model will be determined. 

Virtual demonstrator. The developed ML-based dynamic tariff will be integrated and tested with the 

end-user optimizer module. Part of the grid provided by Romande Energie will be used, replacing the 

synthetic grid used for prototyping. 
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4 National and international cooperation 

The collaboration between the team at ZEDO e.V. (TU Dortmund) is ensured by means of virtual 

synchronization meetings (monthly or quarterly), and advisory board meetings where the activities in 

both countries are presented to the Advisory Board consisting of representatives from BKW, Amprion 

and Elia Grid. The deliverables in the form of conference papers, presentations and reports are shared. 

The ZEDO e.V. activities focus on anomaly detection with very limited data, i.e., power flow 

measurements at the MV-LV transformers. The unexpected and unregistered PV generation, EV 

charging, new heat-pumps, meter failures, and drastic changes in consumption patterns at the customer 

end are classified and identified as anomalies, and the methodologies are developed to extract 

knowledge from the MV-LV transformer measurements to identify such instances. The methodologies 

are documented in conference publications [17] and [18] as well as in a report which will be published 

on the project website soon. 

Communication channels are established with groups in two ERA-Net funded projects: Lasagne, 

OWGRE, and Digicities. Industry has shown interest on our approaches, the exchanged with two 

companies has help to gain perspective on innovative products and the gap between commercial offers 

and current research.  
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5 Publications and other communications 

This section lists publications, but also participations in events, as well as upcoming activities. The 

research activities in the current reporting period produced published results in the form of a master 

thesis report, a journal publication, and multiple conference papers where project participants 

disseminated results and ongoing work in international events such as AMLD, CIRED, IEEE ISGT. 

Details of these activities and upcoming ones are shown in Table 3. Newsletters are prepared and 

disseminated via social media (i.e., Linkedin) and the project website (www.aisopproject.com), which is 

updated frequently to disseminate the activities and the project progress. Most of these documents, are 

accessible in the project website under Resources (www.aisopproject.com/resources/). Moreover, 

AISOP members participate in the ERA-Net Smart Energy Systems working groups on System 

Architecture and Modelling, and Regional Matters as well as in CETPartnership TRI5 & JPP ERA-Net 

SES Knowledge Community Meeting. 

Table 3: Dissemination activities by the Swiss team, reporting period December 2023 to November 2024. 

Activity Description 

Journal 

paper 

R. Khatami, S. Nowak and Y. C. Chen, "Measurement-Based Locational Marginal 

Prices for Real-Time Markets in Distribution Systems," in IEEE Trans. on Pow. 

Syst., vol. 39, no. 6, pp. 6974-6985, Nov. 2024. 

Organized 

Event 

Applied Machine Learning Days (AMLD) EPFL 2024 Track for AI for Energy Utilities 

• Matthias Bucher, Swissgrid AG. Where AI could help to keep operating the 

transmission grid in a safe and efficient way. (Mar. 26, 2024). 

• Stefanos Delikaraoglou, Axpo Group. AI for energy trading. (Mar. 26, 2024). 

• Arthur Cherubini, Romande Energie. Data-driven generation of synthetic load 

curves for grid planning. (Mar. 26, 2024). Accessed: Nov. 18, 2024. [Online 

Video]. Available: https://youtu.be/BqYRFtYlwPA?si=wD6Tb41lN4p17CA3  

• Max Zurkinden, SwissLLM. Enhancing LLM performance with Retrieval-

Augmented-Generation. (Mar. 26, 2024). Accessed: Nov. 18, 2024. [Online 

Video].Available: https://youtu.be/4EnsIOhEKcI?si=W_r1RqUA0e8xI4A7 

Data B. Barahona, Mar. 2024, “CKW Smart Meter Data,” Zenodo, doi: 

10.5281/zenodo.13304499. 

Report D. Papadopoulos, “Low Voltage Load Forecasting Using Ensemble Methods,” 

M.Sc. thesis, School of Business, HSLU, Lucerne, 2024. 

Presentation B. Barahona et al., “A data co-pilot for electric distribution utilities to support grid 

situational awareness”, AMLD EPFL 2024, April 2024. 

Conference 

paper 

B. Barahona et al., “A framework for data-driven decision support for operational 

planning in active distribution networks,” in the Proc. of CIRED 2024 Vienna 

Workshop, June 2024. 

Presentation C.Y. Evrenosoglu, AISOP Project in ERA-NET Energy Systems Peer-to-Peer 

Feedback Sessions 2024, SESSION 2 - AI and ML for Energy Systems, June 

2024.  

Presentation B. Barahona, et al., AISOP Project in CET Partnership TRI5 & JPP ERA-Net SES 

Knowledge Community Meeting, November 2024.  

https://aisopproject.com/
https://aisopproject.com/resources/
https://expera.smartgridsplus.eu/Navigable%20Site%20Pages/AthenaHome.aspx
https://youtu.be/BqYRFtYlwPA?si=wD6Tb41lN4p17CA3
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CIRED 2025 Abstracts submitted: 

• Risk metrics for guiding decisions in operational planning of active 

distribution networks 

• Evaluation of ensemble methods for low-voltage load forecasting using 

multiple metrics 

upon acceptance participation takes place in Lausanne, June 2025.  
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7 Appendix: Architecture of SA tool 

Part of the recent activities consisted in defining specific data management approaches and defining 

the organization of the modules and workflows. The following sections describe the current results of 

these activities that shape the architecture of the SA decision support tools describe in Section 2.1. 

Data management. The following aspects were investigated with the objective to define specific 

implementation paths: 

• data models and standards to facilitate data interoperability and ingestion, and 

• data spaces solutions or ETL tools 

Clearly, multiple possibilities arise, and no single combination of technologies rules every other option. 

In our case, we are creating software modules (i.e., digital twin) and then combining them in workflows 

(i.e., digital process twin) to prototype an application (i.e., TRL 6) for specific use cases such as anomaly 

detection. We resort to standards and popular opensource tools that are well maintained and in active 

development or well stablished. For data models, standards such as IEC 61850 [19], CIM [20], or FMI 

[21] are often referred to in data models of smart grid components and grid simulation models 

respectively. However, at this stage in the development we find the minimal datapackage [22] 

specification is suitable given that we are developing with files as the data source, its simplicity, and its 

extensibility. Therefore, we selected it as the basis model for describing data in a catalogue; for 

extracting these data and then validating it we resort to the Frictionless Framework [22]. 

The second point, data spaces or ETL tools, refers to how the data is to be access. In Section 2.3, we 

refer to data spaces as a solution for federated data access, here we document the more established 

extract load transform (ETL) tools, such as Airbyte or dbt  and workflow orchestrators such as Airflow, 

dbt, Prefect, or argo workflows. The later can also be applied to the orchestration of computational 

workflows which are at the core of our SA tool. At this stage, we see that a combination of Airbyte for 

data ingestion, dbt for transformation and quality, and Prefect for orchestration could be suitable for our 

prototype. Ultimately, with this toolchain, we aim at single source of truth (SSoT) that procures data 

consistency and reliability through the various layers, the implementation concept is illustrated in Figure 

15. 
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Figure 15: Illustration of Single Source of Truth (SSoT) implementation. 

Note that SSoT is a process that, although may be highly automated, like other ICT processes it needs 

monitoring and maintenance. Moreover, although the motivation to implement SSoT is clear (i.e., big 

data, heterogeneous data sources, interoperability), and SSoT is considered a fundamental process to 

maintain attribute values of DTs, there is no encompassing implementation. Comprehensive definitions 

of DTs that emphasise SSoT, such as [14], provide no information about the actual practical 

implementation patterns and tools. 

 

Architecture. Beyond the virtual demonstrator diagrams shown in Figure 10 and Figure 11, and the 

implementation of SSoT shown in Figure 15, a software architecture is needed to guide the 

implementation by linking desired functionality to specific tools and software modules. Figure 16 shows 

the main components of the proposed architecture: Data Sources, ETL Layer, Orchestration, Core 

Components and the Interface to the user. The core parts in the scope of AISOP project are the 

orchestration of computation workflows and the software modules themselves which implement load 

forecasting, power flow forecasting, sequential power flow simulations, anomaly detection and risk 

assessment. For these we selected the main software libraries and started implementations (i.e., *.py 

scripts). Regarding data sources, a comprehensive data catalogue was created, and a few data sources 

are in use corresponding to grid topology, grid sensors, smart meters, weather and building data. 
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However, integration into and SSoT implementation is part of future work. Note that this also reflects the 

fact that in practice there always needs to be some data integration step before being able to apply new 

modelling and forecasting tools in an operational set up. 

 

 

Figure 16: SA tool implementation illustrating the data assimilation, workflow orchestration, core components and user interface. 

Moving on to the ETL Layer, this can be implemented as a data space (Section 2.3) or via ETL tools. 

(which can be implemented as a Web application as it was illustrated in the co-pilot example) 

Note that with this architecture we aim at clarity and viability of a DPT in the specific context of AISOP. 

Unlike architecture concepts and definitions such as those based on SGAM [14] that serve as a vision 

that aims to comprehensive interoperability integrating current and future commercial solutions.  

 


