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Résumé 
Au niveau mondial, l'utilisation de combustibles fossiles pour le transport routier représente 12% des 

émissions de gaz à effet de serre (GES). En Suisse, le transport routier représente 30 % des émissions GES, 

avec une tendance à la baisse en raison de l'électrification progressive du secteur. Depuis 2020, la part des 

véhicules électriques (VE) dans les nouvelles ventes est passée de 20 % à plus de 50 %. Cependant, la 

nature stochastique de la recharge des VE et de la production d'énergie renouvelable a un impact sur 

l'équilibre du réseau électrique à la fois pour les réseaux de transmission et de distribution. La 

littérature récente a montré comment l'intégration proactive des véhicules électriques dans les systèmes 

électriques, alimentés par des sources de production renouvelables, peut améliorer le fonctionnement global 

du réseau pour répondre aux besoins locaux et globaux. À cet égard, le projet vise à améliorer le 

fonctionnement d'un réseau de distribution d'électricité hébergeant des ressources renouvelables 

stochastiques (de puissance nominale de l’ordre des MW), des systèmes de stockage d'énergie par 

batterie(BESS - de puissance nominale de l’ordre des MW), et des bornes de recharge rapide de niveau 3 

pour les véhicules électriques (EVCS), afin de répondre à de multiples objectifs opérationnels du réseau. À 

cet égard, quatre groupes de questions de recherche ont été définis en relation avec : (a) le comportement 

des utilisateurs de VE, (b) la contrôlabilité des EVCS de niveau 3, (c) la capacité du réseau de distribution 

d'électricité hébergeant une production renouvelable stochastique substantielle d'EVCS à être dispatché et 

contrôlé avec succès en temps réel, et (d) la fourniture de services auxiliaires multiples par les réseaux de 

distribution d'électricité hébergeant des BESS et des EVCS contrôlables. Les principaux résultats du projet 

sont les suivants : (i) la combinaison d'EVCS et de BESS contrôlables présente des avantages mesurables 

pour le dispatching, l'exploitation et le contrôle du réseau locale de distribution, (ii) le contrôle des EVCS peut 

réduire le besoin d'investissement dans les BESS (c'est-à-dire réduire la puissance et l'énergie nominales) 

sans pour autant réduire de manière significative le niveau de satisfaction des utilisateurs de l'EVCS, (iii) le 

déploiement de contrôles spécifiques des EVCS peut réduire de manière significative leur impact négatif sur 

le réseau électrique (i.e., congestions et réglage de tension), et encore plus lorsque ces EVCS sont associés 

à la charge programmée de flottes d'EV commerciales, (iv) la rentabilité économique des BESS couplés aux 

EVCS est spécifique à chaque cas et, dans les conditions du marché actuelles et la configuration du projet, 

les services système fréquence est le contrôle qui offre le meilleur retour sur investissement. 

Summary 
The utilization of fossil fuels’ for the road transportation accounts for 12% of the global greenhouse gas 

emissions (GHGs). In Switzerland, the road transport account for 30% of Swiss GHGs emissions with a 

decreasing trend due to the sector’s progressive electrification. Since 2020, the electric vehicles’ (EVs) share 

in new sales has increased from 20% to over 50%. However, the stochastic nature of both EV’s charging and 

renewables generation has an impact on the power grid for both transmission and distribution 

networks. The recent literature has shown how the proactive EV integration in renewable-based power 

systems can enhance the overall power system’s operation to satisfy local and bulk grid needs. In this respect, 

the project aims to enhance the operation of a power distribution grid hosting stochastic MW-class renewable 

resources, MW-class battery energy storage systems (BESSs), and level-3 EV fast charging stations (EVCSs), 

to serve multiple grid operational objectives. In this respect, four sets of research questions were defined in 

relation to: (a) the EV users’ behavior, (b) the controllability of level-3 EVCSs, (c) the ability of the power 

distribution grid hosting substantial stochastic renewable generation and EVCSs to be successfully dispatched 

and controlled in real-time, and (d) the provision of multiple ancillary services to the power transmission grid 

by power distribution grids hosting controllable BESSs and EVCSs. The main project outcomes are the 

following: (i) combining controllable EVCSs and BESSs has measurable benefits for grid dispatching, operation 

and control, (ii) the control of EVCSs can reduce the need for BESS investment (i.e., reduce both power and 

energy ratings) without significantly affecting EVCS users’ satisfaction, (iii) the deployment of specific controls 

of EVCSs can significantly lower their negative impact on the power grid, and even more when these EVCS 

are associated with scheduled charging of EV commercial fleets, and (iv) the economical profitability of BESSs 

coupled with EVCSs is case-specific and, under the current market conditions and the projects’ setting, the 

frequency containment reserve (FCR or primary frequency regulation reserve) is the control with the best return 

on investment. 
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1. Introduction 

1.1 Background information and current situation 
The worldwide utilisation of fossil fuels’ as primary source of energy accounts for most global greenhouse 

gas emissions (GHGs). International efforts, such as the Paris agreement [1], aim to address this issue, 

requiring countries to develop national GHGs emissions targets and associated actions for their achievement. 

Switzerland has already undertaken several steps in this direction. On January 1st, 2018, the Swiss Energy 

Strategy 2050 came into force, and on 27 January 2021, the Federal Council adopted the climate strategy for 

Switzerland, aiming for a net zero emissions target by 2050 [2]. Since energy usage represents 75% of the 

national GHG emissions [3], fossil fuels need to be replaced by renewable energy resources for the 

achievement of this strategy. This would require the electrification of several sectors (e.g., private heating and 

mobility along with several industry processes) and the massive integration of distributed renewable energy 

resources into the power grid. 

Regarding the road transport, it accounts for 30% of Swiss CO2 emissions [4]. In recent years, significant 

progress has been achieved in the electrification of this sector, via the massive rollout of low-emission vehicles, 

including electric vehicles (EVs)1 (Figure 1) [5]. It is indicative that, since the beginning of the MESH4U project, 

in 2019, the EVs’ share in new sales has increased from 20% to over 50%. 

 

The transport sector electrification entails several challenges for the power grid. Indeed, this transition should 

be paired with the massive integration of renewable energy resources to positively affect the GHGs of the 

sector. However, the stochasticity of both EV’s charging and renewables generation both have an impact on 

the power grid equilibrium. In this respect, proactive EV integration in renewable-based power systems can 

serve as grid-connected small-scale distributed battery systems capable to enhance the overall system’s 

operation. As a matter of fact, EVs can adapt their charging patterns to provide ancillary services to both 

transmission and distribution grid operators such as: dispatchability of the aggregated local resources, 

frequency containment and restoration reserves, as well as support to voltage control and line congestion 

management of the local distribution grid. They can further facilitate the integration of renewable energy 

resources, especially if coupled with stationary battery energy storage systems (BESSs). 

1.2 Purpose of the project 
The synergy between EVs and renewables allows for a reduction of fossil-fuel dependency in both the 

electricity generation and transportation sectors. The deployment of smart grid solutions, including EV charging 

strategies, along with the optimal coordination of distributed energy resources, requires a multi-disciplinary 

approach and the solution of complex control problems of stochastic nature. Furthermore, a suitable validation 

 
1 By EVs, we refer to vehicles with a full electric power train and an on-board battery energy storage system (BESS). 

Figure 1: Trend of the new sales of 
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in realistic scale pilot and demonstration sites can be made possible via close collaboration between academia 

and industry. 

The MESH4U project capitalizes on the existing infrastructure in two demo sites: one in Aigle developed in the 

frame of the SFOE P&D REeL project, and another one represented by the smart grid demonstrator on the 

EPFL campus. For the purpose of the project, these sites have been expanded by adding to the EPFL smart 

grid platform a high-power EV fast charging station and establishing in Aigle links with various energy actors, 

notably the local distribution system operator (DSO), Romande Energie, and the local municipality of the city 

of Aigle. This setup is ideal to develop specific and advanced control frameworks aiming at: (i) optimizing the 

EV integration in renewable-supplied power grids, (ii) analyzing the performance of the developed tools in a 

real environment, while (iii) considering insights and feedback from the DSO’s and the society’s perspectives. 

In view of the above, the aim of this project is to enhance the operation of a power distribution grid hosting 

stochastic MW-class renewable resources, MW-class BESSs, and EV fast chargers, in order to maximize 

multiple grid operational objectives and by leveraging the controllable power electronics converters of the 

considered resources. 

1.3 Objectives 
For the achievement of the above-mentioned project’s multiple aims, the research activities focused on the 

development of advanced control algorithms for optimal resources control. These algorithms have been 

developed and validated in different settings, namely: (a) off-line simulations, (b) experiments on the EPFL 

smart grid platform, and (c) simulations based on the real-scale experimental setup in Aigle.  

The developed control algorithms interact with the controllable resources’ power electronic units to enable the 

provision of power system ancillary services, even in the presence of large stochastic EV charging. A 

centralized master-level controller is designed for the coordination of the controllable resources for the optimal 

provision of these services, while respecting the single units’ and grid operational constraints. For example, 

when controlling the EV fast-charging station, the EV batteries’ wear and tear associated with a variable power 

charging process are minimized with the objective of maximizing the users’ energy demand while respecting 

all operational constraints of EVs and their batteries. The inputs of the main controller are: (i) the actual status 

of the available controllable resources (such as the information on the equivalent virtual battery of the 

aggregated available EVs given the users’ needs and the real-time status of the controllable BESS) and (ii) 

the real-time power grid conditions, e.g., system frequency, nodal voltages and loading levels of 

lines/transformers. These last are made available via a cutting-edge sensing infrastructure based on advanced 

phasor measurement units (PMUs) specifically developed for power distribution grids. These devices have 

already been installed in both experiment sites at the EPFL campus and Aigle demo (see Section 2). 

Since the existing literature has largely proven that the uncontrollable EV charging can severely and negatively 

impact the power-grid, we envisage that through the joint control of BESSs and EVCSs, our proposed control 

algorithms are capable to guarantee the provision of the above-listed power system services even in the 

presence of a large stochastic EV charging patterns.  

More specifically, the elements of the proposed control methodology are the following: 

• Type of measurements: nodal voltages, branch currents, active/reactive powers, resource-specific data. 

• Method of measurements: measurements at the BESS, PV and EVCS grid connection points and for the 

electrical grid by means of a PMU infrastructure. Further resource-specific data are also be pulled in order 

to create databases that can be used for forecasting purposes. 

• Objective of the measurement: input and validation of control approaches for real time congestion, load 

profile management and voltage control of MV power distribution grids. 

• Duration of each measurement: during the entire activity. 

• Frequency of measurements: minimum 1 Hz 

• Planned evaluation of efficiency: ability to control the EVCSs according to the objectives set in all stages of 

the control algorithm (see Section 3 where it is explained that the proposed framework includes both a day-

ahead and real-time phases). 
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2. Description of facility 
As mentioned in 1.3 Objectives, the control algorithms are validated through simulations both at the EPFL and 

in Aigle as well as on a real hardware at the EPFL smart grid platform. This iterative process enables the 

implementation and control's benchmarking first in a simulation setup and then in a real-scale experimental 

environment before assessing, via simulations, its impact at the Aigle demo site. In this respect, both the demo 

site in Aigle and the one at the EPFL possess similar assets, namely PV generation, a MW-class BESS and 

PMUs for the real-time situational awareness of the local power distribution grid. Yet, the laboratory facilities 

possess a wider variety of controllable elements such as supercapacitor bank, heat pump, and fuel cells, 

allowing the development of a control framework applicable in a wide range of use cases. Furthermore, since 

the infrastructure is connected to the EPFL power grid, there is more flexibility to study and validate future 

business models that cannot be tested in a real-life grid. In what follows, details about the two experimental 

set-ups are provided. 

2.1. The EPFL smart grid platform at the EPFL Distributed Electrical Systems laboratory 

(EPFL-DESL) 
A dedicated hardware infrastructure has been developed at the EPFL-DESL with a similar structure to the 

Aigle demo site (meaning REeL + MESH4U infrastructure). This enables the iterative process of validating and 

improving the developed controls. This infrastructure includes the following elements (see Figure 2): 

a) A low-voltage Cigré benchmark microgrid connected to a 21kV busbar through a 630 kVA 21kV/400V 

transformer that hosts the following resources (non-exhaustive lists of the relevant resources that are 

used in this project): 

a. 40kW (peak) photovoltaic (PV) system, divided in three separated power plants supported by 

measurement units of meteorological quantities (e.g., solar irradiance, environmental 

temperature etc.); 

b. 25 kW – 25 kWh BESS based on Lithium Titanate Oxide electrochemistry; 

c. fast dynamic AC electronic load emulators up to an overall rated power of 30 kVA; 

d. a level-2 charging station combining two type 2 EV plugs (up to 22kW) and a bidirectional (up 

to 10 kW) CHAdeMO-type charging station. 

b) A GoFast EV fast charging station equipped with the same technology of the foreseen installation in 

the Aigle site. It is connected to the same 21kV busbar of the microgrid through a 630 kVA 21kV/400V 

transformer (see Figure 6 and Figure 7). 

c) A 720kVA / 560 kWh Lithium Titanate Oxide BESS connected to the same 21kV busbar of the 

microgrid through a 0.72 MVA 21kV/300V transformer (see Figure 3 and Table 1). 

d) Two independent PMU-based real-time situational awareness systems capable of performing a low-

latency high-frequency state estimation of: (i) the 21kV grid and, (ii) the low-voltage microgrid. 
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Figure 2: Configuration of the EPFL smart grid platform. 

More details on some key pieces of infrastructure used for the project are presented below. 

EV fast charging station  

A GoFast fast-charging station infrastructure for private EV users is available on the EPFL smart grid platform. 

It is composed of an off-board Combined Charging System (CCS)/CHAdeMO EV chargers (EVC), with a power 

rate of up to 150 kW. A single transformer is used to supply this charging station from the 21 kV MV utility grid 

and from the same busbar where the BESS, as described below, is connected. 

BESS 

A 720 kW/560 kWh BESS connected to a 21 kV distribution feeder. It is based on the Lithium Titanate Oxide 

technology, which can perform up to 20.000 complete charge-discharge cycles at 4C discharge rate. Table 1 

presents the main parameters of the EPFL BESS. 
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Figure 3: External view of the utility-scale BESS available at the EPFL smart grid platform and used for this project. 

Table 1: Main parameters of the EPFL BESS 

 

PMU-based grid sensing infrastructure 

A cutting-edge sensing infrastructure for modern electrical distribution systems is available on the Aigle 

demonstrator site offering low-latency (<100ms) and high refresh rate (50 estimations per second) accurate 

awareness of the grid state. In particular, it is a commercial power grid monitoring and automation system 

based on time-and-phase aligned measurements of the grid voltage/current synchrophasors. Such a sensing 

system provides operators, and the foreseen controllers, with the real-time knowledge of the grid status and 

allows to locate and isolate faults enabling the restoration of power. 

These devices provide measurements with a reporting rate of 50 frames-per-second (i.e., a reporting time 20 

ms) and a total vector error in the order of 0.0X%2. The measurements provided by these devices are used for 

both the day-ahead dispatch plan construction (i.e., using historical data) as well as for the real-time control of 

the system (see Figure 4).  

 
2 The total vector error is the quantity used by the IEEE Standard C37.118 to quantify the accuracy of PMUs. 
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Figure 4: Image of a PMU toolkit installed in both demonstration sites. 

Solar irradiation measurement units 

A Global Irradiance and Temperature (GIT) measurements box has been installed at the EPFL smart grid 

platform in order to support a data-driven intra-day forecast of PV generation. The GIT box measures the 

global horizontal irradiance (GHI) and the PV cell temperature. The GHI is measured using a pyranometer 

Apogee SP-230 and the temperature using a Mouser 595-LMT87LP sensor. The acquisition system is based 

on a ruggedized National Instrument (NI) cRIO 9063. Measurements are sent to a central server using a 4G 

modem and saved at 1-second resolution in order to capture fast GHI dynamics (see Figure 5). 

  

Figure 5: The GIT measurements box. 

 

Figure 6: The EV fast charging station at the EPFL smart grid platform. 
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Figure 7: Technical specifications of the GoFast EV fast charging station at EPFL smart grid platform. 

2.2. Demo site - Aigle 
The demo site in Aigle is a field test facility already developed in the frame of the SFOE P&D REeL project 

and maintained as a permanent research infrastructure. It is located in a rural area, hence it embeds all the 

peculiarities of modern distribution networks: relatively long radial feeders, presence of distributed generators, 

and relatively large, concentrated load (e.g., the under-development EV fast charging station). More 

specifically, the feeder originates in Collombey (VS) and interfaces 68 independent producers (1790 kW, out 

of which 815 kW from small hydro power stations) and a large PV installation of 1.6 MW at the Migros-Carports. 

The power consumption reaches 4.3MW during the winter and 2.9MW during the summer. Therefore, it 

represents a unique field test site to carry out research in the domain of control and coordination of renewables-

fed medium-voltage grids.  

In the frame of the MESH4U project, this site was used for the assessment of the impact of the deployment of 

fast EVCSs on the power grid. This was achieved through simulations that consider all the specifications of 

the existing infrastructure and those of the EV fast charging station which is already foreseen to be developed 

on this site. The controllability of the available units, i.e., an MW-class BESS connected to a 20kV grid hosting 

the multi-MW PV and small hydropower plants, allows for the provision of several power system services, such 

as system frequency regulation, local voltage control, and lines congestion management, considering the 

actual status of the grid provided by an-already-deployed PMU-based situational awareness system. A 

dedicated setup for the measurement of meteorological quantities is also installed in the vicinity of the PV 

plants, to enable the accurate intra-day forecasting of the PV generation to support the formulation and 

implementation of predictive controls. 
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A schematic representation of the demonstration site is shown in Figure 8.  

 

As already mentioned, the site includes devices that have been installed in the frame of the SFOE P&D REeL 

project and were used in the frame of the MESH4U project too. Additional details about these devices are 

given below.  

MW-class battery energy storage system 

The MW-class BESS installed at the Aigle demonstration site is characterized by rated power and energy 

capacities of 1.6 MVA and 2.5 MWh, respectively. The BESS cells’ electrochemistry is Lithium, Graphite / 

Nickel Manganese Cobalt. This specific type of cells’ electrochemistry allows up to 4,500 complete charge-

discharge cycles at 100% depth of discharge (DoD) at a 1C rate3. The BESS is equipped with a 1.6 MVA 4-

quadrant converter that can operate in current source control mode (CSC, or grid-feeding) or in voltage source 

control mode (VSC, or grid-forming) with a seamless transition between the two operating modes. 

Furthermore, the BESS and its converter are characterized by a power ramping rate of several tens of MW/s 

(therefore, suitable to provide frequency containment reserve). 

A 3-phase step-up transformer with a nominal power of 1.6 MVA connects the LV AC side of the BESS 

converter to the external medium voltage utility grid. The high-voltage side of the transformer has a delta 

connection with phase-to-phase rated voltage of 21 kV. 

To achieve maximum flexibility and fast controllability of the system, a custom-made energy management 

system (EMS) is available to interact independently with the BESS power converter controller and the master 

string controller of the BESS cells. Such a design enables to send commands to the power converter via 

Ethercat with fast and low-latency communication (i.e., latency and refresh rate below 10 ms).  

The technical parameters of the MW-class BESS, along with some insights on its controllability, are included 

in the Table 2. 

 
3 The C-rate is the unit to measure the speed at which a battery is fully charged or discharged. More specifically, the 1C 
rate of a battery cell represents the level of constant current charge or discharge that the cell can sustain for one hour of 
time. 
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Figure 8: Schematic representation of the field demonstration site in Aigle.  
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Table 2: Technical parameters of the available MW-class BESS 

 

Level 3 EVCS 

Initially, 4 EVCS, identical to the one installed on the EPFL smart grid platform, were foreseen to be installed 

at the Aigle demo site. Given the evolution of the EV market (see 1.1 Background information and current 

situation), the foreseen power rate of each of them was in the meantime increased to 300 kW for each of them. 

Since the authorization for their installation was postponed after the end of the project, simulations were 

undertaken based on the characteristics of the foreseen EVCS and data from other sites. 

GIT meteo-boxes 

Four Global Irradiance and Temperature (GIT) measurement boxes have been installed at the demo site in 

Aigle. These boxes are identical to the one installed at EPFL smart grid platform (see description above). 

PMU measurements units 

20 PMUs have been installed at the Aigle demo sites. These units present similar characteristics with those 

described above.  

3. Procedures and methodology 
To achieve the targets of this demonstration project, a set of activities have been defined. First, the project 

covers a series of simulation studies for the design and performance assessment of control solutions for 

optimal management of resources in converter-dominated modern power distribution grids. The simulation 

studies are based on realistic models of both Aigle the EPFL test facilities. Both models include insights of the 

resource’s actual communication features (e.g., time latencies) and technical constraints (e.g., capability 

curves of the controllable converters). Then, a set of tests is undertaken on the real hardware available at the 

EPFL-DESL laboratory test facilities, which iteratively enables the implementation on a reduced-scale 

experimental environment before testing the proposed solutions on the larger experimental environment at the 

EPFL smart grid platform. Finally, the validated methodology is used for the Aigle site to simulate the foreseen 

integration of the EV fast charging station within the local power distribution grid. In particular, the same 

hardware for the EV fast charging station foreseen in Aigle is used in the laboratory environment, making it 

possible to test the control features of the available hardware as well as to enable real-time 2-way 

communication with the backend of the off-board EV charger. Information flow from the EVS is necessary for 

the centralized controller since it takes into consideration the status of the EV battery as well as the EV user’s 

needs (e.g., desired departure time and desired EV State-of-Charge - SoC). This information is indeed used 

by the centralized controller to define the optimal and fair scheduling of the EVs charging processes. 

The following list discusses the specific activities with associated detailed descriptions.  

 

Parameter Value

BESS energy capacity 2.5 MWh

Expected battery cycle life
4.500 full cycles (100% DoD @ 1 C discharging 

rate). Remaining end of life capacity: 80%

Maximum AC apparent power 1.6 MVA

Rated AC grid voltage 21 kV

Rated grid frequency 50 Hz

DC voltage range 620 - 840 V

AC converter voltage 380 V ±10%

Operation on 4 AC P/Q quadrants Capable

Distortion factor (THD) at the HV

connection of the step-up transformer
< 3%

Efficiency > 90% for all the operating conditions

Type of cooling forced air convention

CSC operation mode Capable

Refresh rate of CSC operation mode 10 ms

VSC operation mode Capable

Refresh rate of VSC operation mode 10 ms
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1. EV users behavior analysis  

The first step is to grasp a behavioral assessment of EV users. In this respect, a survey was undertaken to 

know how flexibility can be harvested from charging sessions with minimal impact on customer satisfaction. 

The second step is to collect a large set of EV charging sessions data. This allows building statistical models 

to generate reliable scenarios of EV charging sessions. 

2. EV Charging station controllability 

In practice, controlling EV charging sessions is a complex task. Each EV, each plug type and each charging 

station have their own peculiarities, constraints, and capabilities and no one size fits all control frameworks in 

the context of controlling EV charging. Hence, the objective of this part is to assess the controllability of 

sessions in the context of a specific EV car, plugs and station.  

3. Dispatch plan and real-time control  

Providing day-ahead accurate prediction of the power profile of a whole subnetwork is a valuable information 

for aggregators and distribution systems operators (and even more so as intermittent renewable generation 

and stochastic EV charging consumption grows). Dispatching and real-time control to provide such service 

has been extensively researched by EPFL and Gridsteer partners of the project. Here the goal is to include 

highly stochastic, yet partially controllable EV charging stations, to the controllable assets of the targeted power 

distribution grid.  

4. Multi-service battery control 

This activity aims at undertaking a market assessment of economic and technical interest of an extensive list 

of services that BESSs can provide. Each service is listed in terms of economic interest but also 

complementary with other services provision. Then, a control framework is developed to allow multi-service 

provisioning from BESSs. Simulations and dedicated experimental campaign are performed in this respect. 

These activities valorize the involvement into the project of a variety of energy stakeholders, namely the DSO, 

local authorities and operators of EV charging stations. 

4. Activities and results 

4.1. EV user behavior analysis 
4.1.1. Behavioral assessment 

Context 

Understanding the EV users’ behavior, and willingness to provide flexibility during a charge, is crucial to 

developing a feasible EV charging station control scheme. A web-based system and a QR code have been 

placed on the parking spots of the EV fast-charging station installed at EPFL since end of January 2022. Once 

the customer scans the QR code, an on-line survey is made available. Although no reward scheme has been 

set, over 89 valid submissions have been recorded until April 2023. On top of these submissions, an additional 

42 surveys have been given in person during experiments. A total of 131 participations have then been used 

for this analysis.  

The goal of this survey is two-fold: 

1. understand the willingness of the customers to participate in providing flexibility in their EV charge; 

2. quantify the accuracy of the user to estimate their EV charge duration and energy needs.  

Questions 

The questions of the survey have been defined to be easy and fast to answer yet yield as much interesting 

information as possible. To this date, the average time spent on the survey is less than 3 minutes. The set of 

questions (from a mobile device) is reported in the screenshots here below. 
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Results 

With the submitted responses, the actual charging profile of each user has been compared to the (user’s) 

predicted one. The set of questions and post-process analysis allowed to yield results on the following 

behavioral features: 

a) deviation of energy delivered vs expected; 

b) deviation of stay duration vs expected; 

c) end of session decision factor; 

d) tolerance for flexible charge; 

e) gamification readiness. 
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Deviation of energy delivered vs expected 

The energy delivered to the customer vs his prediction has been computed based on the customer’s inputs on 

(a) the EV starting SoC; (b) the EV target SoC at the end of the session; and (c) the vehicle model (for retrieving 

the battery capacity). 

The post-process analysis determined whether the delivered energy is higher, lower, or similar to the customer 

target. From 79 valid answers and charge profiles, it turns out that customers tend to charge in average about 

4.3% more energy than the targeted value (see Figure 9) and that the spread of that deviation is quite large.  

In general, users tend to leave with delivered energy close to their targeted one. Although not significant 

enough for a statistically strong conclusion, it seems some users may receive slightly less energy and still 

reach their target (and be satisfied by their charging session). Hence, some (limited) controllability could be 

applied with minimized customer dissatisfaction.   

 

Deviation of stay duration vs expected 

Comparing the expected vs realized charge duration of 100 valid answers, we found that users tend to stay, 

in average, 10% longer than anticipated (see Figure 10). The overall answers are also quite precise between 

planned and actual stay duration. This is most probably due to the accurate prediction of the EV on-board 

computer to reach the target SoC.  

 

 

 

 

 

Figure 10 : Stay duration of customer vs his prediction. 

Figure 9: Energy delivered to customer vs his prediction. 
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End of session decision factor 

Out of 101 valid answers, the decision factor to stop the charging session has been assessed. More than half 

of the participants decide to stop their session based on the EV battery SoC. About a third of them leave when 

their stay time is reached and, finally, 5% leave when a specific cost is reached (see Figure 11).  

Figure 11 : Distribution of the end-of-session decision factor. 

Tolerance for flexible charge 

To assess the customers’ readiness to allow for a slower charge if this helps the electrical grid, the following 

question was posed: 

 

“Would you agree to increase your charging time (a few minutes) to help the electric grid? “ 

 

More than two thirds of 101 participants would accept to provide flexibility and half of them would do it even 

without a discount (see Figure 12). This shows a rejoicing number of customers ready to participate in grid 

flexibility. It is however possible that these participants could be considered as early adopters in the EV sector 

and as electric cars will gradually hit the common mass market, these results may change over time. 

 

Figure 12 : EV customers tolerance for flexible charge. 

Gamification readiness 

Asking users to provide some information on their upcoming charge profile might be crucial to control their 

charge without significantly impacting the user’s satisfaction. However, the user does not have any incentive 

to answer honestly. A competition between users for the most accurate answers could serve as such incentive. 

In this respect, the following question was formulated. 

 



 

 

 

19/82 

 

 

 

“Would you participate in a competition where the 3 users of this charging station that have responded the 

most accurately to the questions of this survey win free charges (you would be required to provide your email 

address)?” 

 

Out of 60 valid answers, it appears that the reluctance to share one’s email is still significant. 40% of users 

would rather not participate and an additional 27% are unsure (see Figure 13).  

 

Figure 13 : EV customers gamification readiness. 

Conclusions 

Results show that slightly controlling the EV charging profile for the benefit of the grid without significantly 

changing their charging satisfaction, is a feasible control option. This conclusion can be derived in view of the 

following considerations: 

1. customers tend to receive, in average, more energy than targeted (4% more); 

2. customers leave, in average, later than anticipated (10% later); 

3. customers are ready to extend their charge duration (by few minutes) to help the grid (35% against a 

discount and 32% even without a monetary discount). 

Finally, it is worth observing that a control framework leveraging these flexibilities should consider that most 

users (65%) plan their EV charge based on a target SoC than a target stay duration or cost.  

4.1.2. EV user statistical modelling4  
Since EVCSs are considered as controllable entities, i.e., the active (and reactive) power injections of EVCSs 

are variables of the problem, there is the need to forecast EV users’ behavior. More specifically, for a given 

EVCS, EV users behavior refer to: (i) the number of EV charging sessions per day, (ii) the EVs’ arrival and 

departure times, (iii) the initial and final, i.e., target, SoCs of EVs’ batteries, (iv) the EVs’ battery capacities, 

and (v) the minimum and maximum active power injections (defined as, respectively, the maximum and 

minimum imposed by either the EVCSs’ converters limits or by the EV on-board controller). 

In view of the large number of quantities that define EV user behavior, a data-agnostic tool was developed that 

uses any amount of data with as many features as an input, and outputs the best Probability Density Functions 

(PDFs) that would model the data. As the input data is multi-variate, the output PDFs can be anything from 

several univariate distributions to a full Gaussian Mixture Model (GMM) that models all input variables (or 

features) simultaneously. The algorithm’s idea is to fit the data with different functions then output the best- 

performing-probabilistic-model. The flowchart of the developed toolbox is depicted in Figure 14. As can be 

seen, the input data is first filtered then fitted to: (i) one multi-variate GMM (Multivariate GMM- approach, see 

Figure 14), (ii) N-univariate GMMs (Univariate GMM-approach, see Figure 14), with N being the number of 

input features, and (iii) a mix of multi- and uni-variate GMMs (Mixed GMM-approach, see Figure 14). Once all 

three fittings converge, they are compared using accuracy, bias and correlation metrics. Finally, the fitting with 

 
4 This section is adapted from the work presented in [14]. 
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the overall best metrics is selected as the best-performing-probabilistic- model, where from the latter, EV user 

behaviors can be inferred based on the features – i.e., season and day-type – of the day we wish to forecast. 

 

In the following, each sub-block of the flowchart in Figure 14 is explained. 

Pre-selection of observations. The Z × N – where Z is the number of measurements and N is the number of 

features or variables – input matrix of measurement is automatically filtered based on a set of control 

parameters specified by the user. Namely the user chooses the season and the day-type (i.e., weekend or 

weekday). Indeed, this enables the user to create EV user behavior models that pertain to a specific season 

and day-type. The tool automatically provides the best model that statistically represents a subset of the 

historical data where only the desired season and day-type are included. The block outputs a reduced 

measurement matrix with a dimension of K × N, where Kmeas is the number of selected measurements. 

Multi-variate GMM approach. In this block, the built-in MATLAB function fitgmdist is used together with K-

fold cross-validation [15] to compute an optimal GMM5 considering all filtered inputted variables 

simultaneously. The fitgmdist function has multiple parameters that can alter the outputted model. 

Therefore, in the proposed method, we loop over the number of components of the outputted GMM (from one 

to a user- defined maximum GMM order). For each GMM order, cross-validation is used to avoid over- fitting 

in cases where the GMM order gets too high (see Figure 16). Namely, for each GMM order, first, the filtered 

dataset is randomly divided into T groups (or folds) of the same size. Then, for each fold, the training and 

testing process is repeated T times. The training and testing process consists in fitting a GMM to the training 

data using the order of the current iteration, then, regenerate data using the GMM model and compute the 

mean absolute error between the newly generated data and the test set. Every fitted GMM-distribution is saved 

during the iterations. The model with the least mean absolute error at the loop exit is, then, chosen. The general 

scheme and details of the proposed method are shown in, respectively, Figure 15 and Figure 16. 

 

 
5 A Gaussian Mixture Model is a weighted sum of multivariate normal distributions. More information about GMMs can be 
found in [16]. 

Figure 14: Flowchart of the data-agnostic EV user statistical modelling toolbox.  
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Figure 16: Flowchart of the mixed GMM-based process. 

Figure 15: Flowchart of the multi-variate GMM approach block. 
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Uni-variate GMM approach. In this block, in contrast to the Multi-variate GMM approach that implicitly considers 

the input dataset variables or features to be correlated, the input data is modelled separately, i.e., each variable 

(column of the filtered data matrix) is considered independent of the others and, therefore, is fitted with its own 

GMM. Hence, the output of this block is a set of N GMMs. A schematic diagram of the block is shown in Figure 

17. 

 

Figure 17: Flowchart of the univariate GMM approach block. 

Mixed GMM approach. This block combines the functionalities of the two previous ones. Indeed, if the variables 

of the input dataset are split into correlated and uncorrelated datasets, it is optimal to fit the correlated variables 

with the multivariate-GMM approach. In contrast, the uncorrelated variables would be fit separately using the 

univariate-GMM approach (see Figure 18). In this approach, the correlation analysis block uses Pearson's 

Linear Correlation Coefficient (PLCC)6. The correlation tolerance is user-configurable, with a default value set 

at 0.57. 

 
6 The interested reader is referred to [17] for more information about the PLCC. 
7 Recall that PLCC values range from -1 to +1, where -1 corresponds to negative correlation while +1 corresponds to 
positive correlation. 
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xk 

 

Figure 18: Flowchart of the mixed GMM approach block 

Select best GMM approach. A set of metrics is used to select the best-fitted models between the three 

approaches. The metrics aim at evaluating the performance of each approach based on (i) accuracy (A), i.e., the 

average discrepancy between individual pairs of observation and forecast, (ii) bias (B), i.e., the mean deviation 

from average observation and average forecast, (iii) correlation (R), i.e., PLCC correlation of observation and 

forecast vectors, and (iv) goodness-of-fit, i.e., the result of a P-value (two-sample Kolmogorov-Smirnow) test 

on the null hypothesis of having the same underlying distribution for the observation and forecast datasets. 

Table 3 enumerates all the metrics used to quantify accuracy (Table 3.a) and bias (Table 3.b), where ϵk = yk 

− xk is the forecast error and Qk = y k / x k , with x and y being, respectively, the K-dimensional observation 

and forecast vectors. The final selection relies on the global forecasting error defined as a weighted sum of 

all the metrics. Formally, the forecasting error (FE) is defined as FE = w1 A + w2B + w3R, where w1, w2, w3 

are user-defined weights, and A, B, R given by the following definitions. 

(1) 

where each Rn corresponds to the PLCC correlation of the observation and forecast vectors for a given feature. 

The other metrics are defined in Table 3. The weights need to be assigned by the user based on the application 

requirement. In our case, based on the observed performance, it was observed that setting all the weights to 1 

lead to the best results as the obtained models were not biased in favour of a specific metric. Note that in (1), the 

absolute value is used as the aim is not to evaluate the direction of the bias, i.e., under or over-estimation. Finally, 
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the best-fit is chosen as the set of models of the approach that leads to: i) the smallest FE, and (ii) a two-sample 

Kolmogorov-Smirnow test result that is lower than a user-defined critical value of 5% significance level8. 

Table 3: Metrics to compare different approaches and choose the best-fit. 

 

4.2. EV charging station controllability 
There are different types of EVs being sold worldwide. In terms of charging, EVs present different plug-types 

based on their charging modes. Type-1 and type-2 charging plugs refer to single-phase and three-phase EV 

plugs for charging. As the electric connection of these plugs is AC, this requires the EV to have an on-board 

converter to convert AC to DC electricity supply. The IEC-61851 protocol used to communicate between a 

type-1 or type 2 AC plugs and an EVCS. The protocol is based on an analog square wave signal that dictates 

to an EV the maximum per phase RMS AC current it can absorb. DC charging plugs (e.g., CHAdeMO and 

CCS) refer to EV plugs that have a DC power supply (i.e., the AC-to-DC converter is outside the EV and 

installed into the EVCS). The ISO-15118 protocol used to communicate between the DC plug and the EVCS. 

This protocol is based on an TCP/IP layer protocol, that, in practice, can dictates to an EV its maximum 

allowable bidirectional active power exchange. In theory, the protocol also enables unidirectional (i.e., from the 

EV to the grid) reactive power control. However, in reality, the off-board AC-to-DC inverters in DC EVCS do 

not offer that possibility (this is also the case of the DC EVCS of this project). 

Since different EV manufacturers produce vehicles with different components, EVCSs’ controllability becomes 

dependent on both: (i) the EVCS (e.g., internal control mechanisms, different available plug types and front-

end communication protocol), and (ii) the EV management system, converter ramping time for on-board 

chargers and charging limitations that are function of the battery SoC and its state (mainly temperature and 

cells balance). 

As previously detailed, in the scope of the MESH4U project, a commercial GoFast (EVTec) charger was 

installed at the EPFL smart grid platform. As shown in Figure 7, the charger includes 6 plugs: 2 CCS, 1 

CHAdeMO, 1 DC Tesla Plug, 1 AC Type 2 plug and 1 AC Type 2 socket. The idea of this section is to 

experimentally test the controllability of the GoFast charger. The aim is to compute EV charging power set-

point at the centralized master multi-objective-controller level that will communicate, in real-time, with the single 

distributed units. The backend of all the EVC is accessible through the custom EMS, which continuously 

communicates with the external master controller. The EMS provides information about the connected EVs 

(e.g., SoCs, expected departure times, and total energy [kWh] needed to be charged within the available times) 

in order to offer an aggregated degree of flexibility that the main controller can consider and exploit in both the 

day-ahead dispatching and the real-time tracking phases of the proposed overall optimization problem (OP) 

(see Section 4.3 for more details). In the real-time phase, within the boundaries communicated by the EMS, 

optimal EV charging set-points are computed to set the charging power rates to be satisfied at best by the EV 

 
8 We refer the interested reader to [18] for more information about the Two-sample Kolmogorov-Smirnow test. 
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users’ needs while satisfying the power grid constraints. With this IT configuration, only an external 

communication link from the main centralized controller to the EMS has to be established. 

The manufacturers of the charging station (i.e., EVTec) gave access to the specifications of their proprietary 

communication protocol called DCMS. The DCMS protocol aims to exchange data packets containing: (i) 

monitoring information (packet sent from charger to our controller) and (ii) active power setpoints (packet sent 

from our controller to the charger). The protocol is based on a communication framework where setpoints can 

only be sent when a monitoring packet is issued/sent9. EVTec developed two versions of the DCMS protocol: 

1. v0.9 enables a bidirectional communication with the EVCS allowing to exchange aggregate 

information. In other words, one can receive aggregate information (i.e., sum over all plugs) from the 

charger and can send setpoints only at the charger level (i.e., cannot control separate plugs). 

2. v2.0 that extends v0.9 by allowing a per-plug control and data polling. 

Both versions of the protocol have been integrated into a dedicated LabView code. This code streams the 

collected data to a dedicated database installed in a local server for logging purposes. A GUI of the logged 

data has also been developed on Grafana (see Figure 19 for an example of some of the recorded data of an 

uncontrolled EV charge).  

 

(a) Three-phase (Green) measured power and (Yellow) power setpoint 

 

(b) (Green) Battery capacity and (Yellow) Measured SoC 

Figure 19: GUI based on Grafana for the DCMS logged data from the EVTec EVCS installed at the EPFL. 

 
The controllability assessment experiment was performed on the EVTec GoFast EVCS at EPFL using a Tesla 

Model S90D (the car was equipped with a dedicated adapter making it compatible with a CCS plug). The 

experiment consists in sending to the car subsequent step-like power setpoints in order to measure its 

response (i.e., ramp-up and ramp-down times) and the accuracy (i.e., error between the requested setpoint 

and implementation in steady state). The durations of the steps are long enough for the implementation to 

stably reach a steady state. Before and after the step-like setpoints requests, the requested power has been 

kept to 20kW. The results are shown in Figure 20 and Table 4. The measured ramp-up and ramp-down times 

are in the order of several seconds and are linearly increasing with the setpoint amplitude, meaning that the 

power ramping is constant (we measured values in the range of 3 – 5 kW/s). 

The implementation error is characterized by a quadratic trend where for low and high setpoints the errors are 

the larger. 

 
9 In practice, we observed that monitoring packets are issued by the charger in an event-based fashion. 
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Figure 20: Results of GoFast station controllability experiment: Active power setpoint vs. implementation 

Table 4: Results of GoFast station controllability experiment: rise times & implementation errors. 

Setpoint [kW] Rise Time [s] 
Descent 

Time [s] 

Maximum 

absolute steady 

state error [W] 

Mean absolute 

steady state 

error [W] 

100 17.6 7 2300 1366 

80 11.95 6 600 270 

60 9 3 997.5 1730 

40 5 3 1412 4390 

20 N/A N/A 1722 1980 

 

Furthermore, tests were carried on the non-commercial EV charging stations at the microgrid. Power-to-current 

lookup tables were characterized in order to enable explicit, active power control of Type-2 plugs10. As a result, 

power-to-current lookup tables were precomputed for every available Type-2-EV charging plug. The tables are 

shown in graphical format in Figure 21. These lookup tables are obtained for two cars: Renault Zoe and Tesla 

Model S 90D. From the plot for Renault Zoe, it can be observed that when the setpoint – i.e., per-phase current 

maximum allowable current – is lower than 7A, the car does not consume any active power. This, in practice, 

means that the EVCS controller could ask this car not to consume power while remaining plugged. This is not 

the case for the Tesla Model S as it consumes power even when the setpoint is set to the IEC-61851 standard’s 

minimum allowable setpoint of 6A. As a result, a plugged Tesla Model S will always consume around 3kW11. 

 
10 Note that Type-2 plugs are controlled through an analog pulsed signal that dictates to the EV the RMS value of the 
maximum per-phase current it can consume. 
11 Note that, in practice, the Tesla Model S’s power could be reduced to zero if, as explained in the IEC-61851 standard, 
the duty-cycle of the control pilot signal is set to a value higher than 95%. However, through testing, it was observed that 
this created issues for the EV’s on-board controller as the car was constantly locking and unlocking its plug. As a result, 
the look-up table was deliberately started from a minimum three-phase power of 3kW. 
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Figure 21: Power-to-current setpoint lookup tables. 

 

4.3. Day-ahead and real-time control12 

4.3.1. Introduction 
As discussed in [9]: "Day-ahead and intra-day scheduling of heterogeneous DERs has been advocated in the 

literature as a way to minimize the effect of uncertainties. It consists in determining an average power trajectory 

(dispatch plan – DP) at a certain resolution before operations, that is then followed during real-time operation.". 

Even though the presented algorithms in [9] are aimed to work for heterogeneous resources, EVCSs’ power 

and energy demands were not explicitly accounted for in the proposed problem formulation. Therefore, with 

adequate control, EVCS can be turned from given boundary conditions (i.e., demand) to controllable assets 

for the control of ADNs. 

As a result, in the frame of the MESH4U project, the work in [9] was extended by accounting for EVCSs’ power 

and energy demand flexibilities in both day-ahead and real-time stages. More specifically, in the scheduling 

phase on the day before operations, the stochastic OP computing an aggregated DP at the Point-of-Common-

Coupling (PCC) is extended to account for EVCSs as controllable entities. We recall that the proposed day-

ahead OP in [9], accounts for: (i) demand/generation forecasting errors using scenarios, (ii) resource 

 
12 This section has been readapted from the work presented in [14]. 
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constraints, and (iii) grid operational constraints by leveraging the so-called grid sensitivity coefficients (SCs). In 

the real-time phase, the grid-aware model predictive control (MPC)-based control algorithm proposed in [9] is 

extended with an MPC-augmented-version of the EV-subproblem model presented in [19]. The real-time OP 

of [9] aims to securely – i.e., while accounting for resource and grid operational constraints – compute active 

and reactive power set-points for heterogeneous resources so that their aggregated contributions track the day-

ahead optimally computed DP. 

In summary, this activity enhances previous work of the EPFL-DESL by: i) extending the day-ahead OP of [9] to 

account for EVCSs as controllable entities by leveraging a developed EV user behavior forecasting tool, ii) 

extending the real-time control-algorithm of [10] with a MPC-augmented version of the EVCS GULC in [19], iii) 

numerically illustrating the merits of considering EVCSs as controllable entities in the day-ahead DP generation 

stage, and iv) experimentally validating on the EPFL smart grid platform the proposed real-time extension by 

safely tracking an optimally generated DP. 

The rest of this section is organised as follows. In Sec. 4.3.2 the general assumptions, e.g., grid modelling, and 

problem formulation are presented. In Sec. 4.3.3 the day-ahead problem extension is presented. The latter 

also includes details on the developed EV user behaviour forecasting tool and illustrative numerical simulations 

to showcase the advantages of controlling EVCSs in the day-ahead stage. In Sec. 4.3.4 the real-time problem 

extension is presented. In Sec. 4.3.5 an experimental validation, performed on the EPFL-DESL microgrid, of 

all contributions of this chapter is shown. Finally, Sec. 4.3.6 concludes this section. 

4.3.2. Problem Statement & Overview 
The focus is on power grids whose states are evolving slowly enough such that they can be modelled by 

phasors. Specifically, ADNs are considered where the admittance matrix is known and whose power 

equilibrium is described by the standard AC power-flow equations. Furthermore, such grids shall contain 

uncontrollable and controllable resources. Hereinafter, controllable resources are considered to be interfaced 

through grid-following Controllable-Power-Converters (CPCs), that can receive active and reactive power 

setpoints44. This chapter focuses on the ADNs’ dispatching at their PCC according to an optimally computed 

DP through a two-stages process as shown in Figure 22. 

 

Figure 22: Schematic overview of the proposed two-stage ADN dispatch. 

Day-ahead stage: in this stage, the operator computes a DP in the form of an active power profile to be 

followed at the PCC during the next-day operation. The DP is generated by accounting for ADNs and 

controllable resources operational constraints by leveraging proper forecasting of next-day grid status (i.e., 

injections of uncontrollable resources and EV user behaviours). As a result, this stage is split into two 

processes, named as forecasting and DP in Figure 22. During the forecasting process, historical data is input 

into statistical engines that output parametric probabilistic models. During the DP process, a security-

constrained scenario-based OP, leveraging the models created in the last process, is solved to generate a 24h 

active power DP. Typically, the generated DPs are injection profiles with time resolutions of 30-600 seconds. 

The DP is operational starting at 00:00 of the next day. 

Real-time stage: as explained in [9], in this stage, the ADN resources are controlled in real-time to compensate 

for power mismatches at the PCC between the optimal DP and actual realization. As in the day-ahead stage, 

the control problem accounts for ADNs and controllable resources operational constraints. Unlike the day-

ahead stage, the resources’ states are assumed to be known through accurate sensing. The problem is 

expressed by leveraging a MPC formulation to account for potential uncertainties along the optimization 

horizon. This stage’s control algorithm starts and ends at, respectively, 00:00 and 23:59 of the day of operation. 
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As a final note, it is important to remind that, given the large uncertainties accompanying forecasting next-day 

grid statuses, the day-ahead stage considers ADNs to be balanced and, as a result, only the single-phase 

direct sequence equivalent of the ADN is considered.  

4.3.3. Day-ahead stage 
As previously mentioned, the main goal of the day-ahead stage is to compute the DP. Indeed, when proper 

forecasting tools are used, building a 24h active power profile at the PCC to be tracked by the next-day-real-

time controller promotes optimal next-day usage of controllable resources. For instance, as the OP leverages 

a full-day MPC formulation, with proper next-day solar irradiance forecasting, the controller can anticipate the 

charge/discharge of a controllable BESS. Furthermore, as explained in [9], the grid operator can practically 

assume knowledge of the next-day PCC active power consumption since: (i) the DP is generated through 

stochastic scenario-based security-constrained optimization and (ii) the real-time controller steers the 

controllable resources to guarantee that the PCC injection realization matches the DP. As a result, the grid 

operator will have fewer potential risks of operational and financial costs related to real-time balancing or 

reserve activation needs [16]. 

This chapter’s contribution extends the developed algorithms in [9] by accounting for EV user needs and 

considering EVCSs as controllable resources in both day-ahead and real-time stages. As EV user behaviours 

(e.g., arrival/departure times and energy needs), and associated Charging Profiles (CPs), exhibit high 

stochasticity, including EVCSs in the problem formulation increases the prediction and control complexities of 

the day-ahead stage. However, by adequately anticipating the latter, the whole bulk power-grid would need 

less secondary and tertiary power reserves. 

In summary, the DP is the optimal result of a stochastic MPC-based OP. As in [9], the OP accounts for (i) next 

day-stochasticity of non-EV injections through scenarios, (ii) grid operational constraints by leveraging SCs and 

(iii) controllable resources’ operational constraints (e.g., PQ capability and state-of-energy constraints). Unlike 

in [9], the OP (i) further accounts for next day-stochasticity of EV user behavior through scenarios, and (ii) is 

solved iteratively in order to alleviate the inaccuracies introduced by the linearization of the power-flow 

equations. In the following, first the details of the forecasting block of Figure 22 – i.e., the scenario generation 

block – are given, then the OP objective, constraints and solution algorithm are presented. Finally, the 

advantages of considering EVCSs as controllable resources in the day-ahead stage are showcased through 

numerical simulations. 

Scenario Generation 

Since the day-ahead OP is solved before the realizations of the next-day, proper forecasting is needed to 

predict different next-day quantities. The idea of the forecasting tool is to generate scenarios that can be used 

to formulate the OP of the day-ahead stage. In the following, first the techniques used to create probabilistic 

models for different stochastic quantities are described. Then, the ways those models were combined to 

generate scenarios are presented. 

Non-EV injection models 

For non-EV injections, a model can be in the form of a PDF created from historical data. Specifically, the PDFs 

are created using historical data in the form of active and reactive nodal injection profiles for every resource 

connected to a given node of the targeted ADN. For load resources, each of these profiles is first clustered into 

4 seasons (i.e., winter, spring, summer and autumn), then, sub-clustered into day-type (i.e., working days, 

weekend or vacation days), then, finally sub-sub-clustered into the fixed time resolution of the control algorithm. 

For generation resources, assumed to be in the form of PV plants, each of these profiles is first clustered into 

4 seasons (i.e., winter, spring, summer, and autumn), then, sub-clustered into sky-clearness (i.e., sunny, 

cloudy, and overcast), then, finally sub-sub-clustered into the fixed time resolution of the control algorithm. In 

both cases, for every sub-cluster, a Gaussian mixture model (i.e., a sum of multivariate Gaussian normal 

distributions) is fitted to the data using MATLAB’s function fitgmdist. This is done to account for the time 

correlation between the different time-steps for each specific sub-cluster. In the end, we obtain multivariate 

PDFs (the random variables here are all the time-steps of a given day) for each nodal injection (i.e., 
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uncontrollable generation or load) pertaining to a season and day-type or sky clearness. From those models, 

daily injection profiles can be inferred based on the features – i.e., season and day-type for loads and season 

and sky-clearness for generation – of the day we wish to forecast. 

EV injection models 

Refer to Sec. 4.1. 

Combining non-EV injections and EV user models into scenarios 

Following the non-EV injections and EV user models presented above, it is natural to define a non-EV injection 

scenario as a day-long power injection profile and, an EV user scenario as the set of all charging sessions for 

a specific day, where each charging session is described by: (i) the EV’s arrival and departure times, (ii) initial 

and desired EV battery SoCs, (iii) the EV’s battery capacity and (iv) minimum and maximum active power 

injection limits. Each uncontrollable resource would, therefore, have at least two associated non-EV injection 

scenarios (active and reactive power injections) and each EVCS would have one associated EV user scenario. 

The total number of scenarios would be the total combinations of all generated scenarios for all uncontrollable 

resources and EVCSs. This, clearly, can lead to a high complexity if the method of selecting the number of 

scenarios, presented in Rem. 3 of [14], is used without any assumptions. Therefore, first, we conservatively 

assume that the non-EV load and generation injection scenarios are all either at their 5 or 95% percentiles 

when inverse-sampling from the constructed models. Namely, this would lead to the four non-EV injection 

scenarios described in Table 5. With this assumption, the total number of scenarios would be four times the total 

number of considered EV user scenarios. 

Table 5: Considered non-EV injection scenarios 

Scenario 

number 

Percentile of all 

uncontrollable loads [%] 

Percentile of all 

uncontrollable generation (P-V plants) [%] 

1 5 5 

2 5 95 

3 95 5 

4 95 95 

 

Since that reduced number still led to an OP with high complexity, a step further was undertaken to reduce the 

number of considered EV user scenarios. To do so, the k-means clustering algorithm [20] was leveraged together 

with the scenario number selection method explained in Rem. 3 of [14]13. Namely, first the number of needed 

scenarios to achieve statistically meaningful results is computed. Then, after generating the needed EV user 

scenarios, the scenarios are partitioned and stored into a user-defined number of clusters (NUM_CLUSTERS) 

using the k-means  clustering algorithm. Then, the medoid, i.e., the original scenario with the lowest probability 

distance from the centroid of a cluster, of each cluster is selected as a representative EV user scenario for the 

ones stored in that cluster. The reason the medoid is selected rather than the centroid, i.e., cluster analytical 

center, is that the centroid of a cluster is an artificial scenario that might not have any physical meaning. Finally, 

the output is the representative EV user scenarios, i.e., the cluster medoids. Naturally, this means that the 

reduced total number of considered EV user scenarios is equal to the user-defined number of desired clusters 

for the k-means algorithm (i.e., NUM_CLUSTERS). 

It is important to note that, in their natural form, EV user scenarios are not easy to input into the k-means 

clustering algorithm. This is due to the complexity of their forecasting models, e.g., it is difficult to compare, 

for instance, a scenario that has 2 morning charging sessions w.r.t a scenario that has 3 evening charging 

sessions. As a result, extra-features needed to be defined to describe each EV user scenario. These features 

are listed in Table 6 and were used as input to the k-means clustering algorithm. 

 
13 For the interested reader, a similar yet more complex method of leveraging the k-means clustering algorithm to reduce 
the number of needed scenarios in a stochastic OP can be found in [21]. 
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Table 6: Considered extra-features to describe an EV user scenario 

Feature 

number 

Description 

1 Total number of charging sessions 

2 Sum of all stay duration of all charging sessions 

3 Sum of all energy demands of all charging sessions 

4 Average maximum active power injection limits of all charging sessions 

5 Occupancy rate* from 00:00 to 3:59 

6 Occupancy rate* from 04:00 to 7:59 

7 Occupancy rate* from 08:00 to 11:59 

8 Occupancy rate* from 12:00 to 15:59 

9 Occupancy rate* from 16:00 to 19:59 

10 Occupancy rate* from 20:00 to 23:59 

*For a given time interval, the occupancy rate is defined as the ratio of the number of control time-steps 

where a plug is used, over the total number of control time-steps. 

Optimization Problem 

As previously explained, the second process of the day-ahead stage is to solve a stochastic scenario- based 

security-constrained OP that outputs an optimal DP. Compared to the one in [9], the proposed OP (i) accounts 

for EVCSs14 as controllable resources with specific objectives and constraints, (ii) does not include minimum 

PCC power factor hard-constraints but a minimization of the absolute reactive power flow at the PCC in the 

OP objective, and (iii) is solved iteratively in order to reduce potential power-flow linearization inaccuracies. In 

the following, the OP objective is first presented. Then, the constraints are listed. Finally, the full OP formulation 

is given together with its resolution algorithm. 

Objective  

The OP objective is threefold. The first aim consists in minimizing the deviation between the active power flow 

at the PCC for all scenarios d = 1,..., D and the optimally computed DP 𝑃𝑠,𝑡
𝐷𝑖𝑠𝑝𝑎𝑡𝑐ℎ 

where t = 1, ..., T is the timestep 

and s ∈  S is the slack node index. Formally, this is given by, 

(2) 

where the norm-1 operator was used instead of the Euclidean norm to avoid quadratic terms and, 

consequently, decrease computation times. The second aim consists in minimizing the absolute reactive power 

flow at the PCC for all scenarios and timesteps. Formally, this is given by, 

(3) 

The third objective consists in minimizing all resource-specific cost functions that, as explained in [9], reflect the 

controllable resources’ willingness to provide regulating power. Table 7 lists the different considered resources 

with their respective cost functions. For a BESS, the cost function tries to simply minimize its usage, i.e., 

absolute injections (|𝑃𝑖,𝐵𝐸𝑆𝑆,𝑡
𝑑 |), to prevent its ageing due to cycling. On the other hand, for EVCSs the cost 

functions aim is twofold. First, they try to guarantee that each EV’s departure SoC15 (𝑆𝑜𝐶𝑘,𝑖
𝐿𝑒𝑎𝑣𝑒𝑑

 for a plug 𝑘 ∈

 
14 In the following, all types of three-phase EVCSs are considered, i.e., Type-2 AC plugs and DC plugs. 
15 As explained in [14,15], 𝐾𝑖 is the total number of plugs of the EVCS connected to node 𝑖 ∈ 𝐶. Furthermore, 

at each node 𝑖 ∈ 𝐶, there’s an EV aggregator that can send active and reactive power setpoints to all CSs 
(or plugs). 
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 ̄ ¯̄ 

𝐾𝑖, node 𝑖 ∈ 𝐶 and scenario d=1,…,D)  is close to its desired SoC  (𝑆𝑜𝐶𝑘,𝑖
𝑇𝑎𝑟𝑔𝑒𝑡𝑑

 for a plug 𝑘 ∈ 𝐾𝑖, node 𝑖 ∈ 𝐶 

and scenario d=1,…,D). The max function is used to penalize EVs only until they reach their target SoC without 

limiting extra charging/discharging when applicable (i.e., grid-secure). Second, they try to minimize EV battery 

wearing by avoiding large deviations of EV injections (𝑃𝑡,𝑘,𝑖
𝑑  for a plug 𝑘 ∈ 𝐾𝑖, node 𝑖 ∈ 𝐶 and scenario d=1,…,D 

at timestep t=1,..T) between subsequent time-steps [22]. All the factors scaling all presented cost functions, 

e.g., 
3600

Δ𝑡𝐷𝐾𝑖
 where Δ𝑡 is the DP time-resolution, are included in order to render all objective terms of the same 

nature (i.e., here, powers). The final OP objective is a weighted sum of all presented cost functions. 

Table 7: Cost functions of all considered controllable resources 

 

Constraints 

The OP constraints are twofold. The first set of constraints are the ADN operational constraints. As the ADN is 

assumed balanced in the day-ahead stage, the operational constraints are, formally, given by 

 

(6) 

where, Emin and Emax are, again, the allowed extremes of the nodal voltage magnitudes, Ii j ,max , is the 

vector of branch ampacity limits, Ss,max is the substation transformer apparent power limit and the superscript 

d refers to a given scenario. |𝑬̅t |, |𝑰̅i j ,t | and |𝑺̅s,t | are generically linearly approximated by, 

(7) 

Where, Γ ∈ {
|
𝑬̅𝑡 

|
, |𝑰̅𝑖 𝑗 , 𝑡 |,

|
𝑺̅𝑠, 𝑡 

| 
}, Γ̃𝑡

𝑑( 𝑠̃̅𝑡
𝑑) is the electrical quantity resulting from the system-state obtained 

from a LF computation with nodal injections  𝑆̃̅𝑡
𝑑 = 𝑠̃̅𝑡

𝑑 + 𝑠̃̅𝑡,𝐶𝑜𝑛𝑡𝑟𝑜𝑙
𝑑 𝜐−1

, where 𝑠̃̅𝑡
𝑑 are the sampled non-EV injection 

scenarios and  𝑠̃̅𝑡,𝐶𝑜𝑛𝑡𝑟𝑜𝑙
𝑑 𝜐−1

= 𝑝̃̅𝑡,𝐶𝑜𝑛𝑡𝑟𝑜𝑙
𝑑 𝜐−1

+ 𝑗𝑞̃̅𝑡,𝐶𝑜𝑛𝑡𝑟𝑜𝑙
𝑑 𝜐−1

= 𝑆̅𝐵𝐸𝑆𝑆,𝑡
𝑑 𝜐−1

+ 𝑆̅𝐸𝑉,𝑡
𝑑 𝜐−1

 are the optimal injections of all 

controllable resources (i.e., 𝑆̅𝑖,𝐵𝐸𝑆𝑆,𝑡
𝑑 = 𝑃𝑖,𝐵𝐸𝑆𝑆,𝑡

𝑑 + 𝑗𝑄𝑖,𝐵𝐸𝑆𝑆,𝑡
𝑑  for a BESS connected to node 𝑖 ∈ 𝐾 and 𝑆̅𝑖,𝐸𝑉,𝑡

𝑑 =

𝑃𝑖,𝐸𝑉,𝑡
𝑑 + 𝑗𝑄𝑖,𝐸𝑉,𝑡

𝑑  for a BESS connected to node 𝑖 ∈ 𝐶) at the previous resolution   iteration 𝜐 − 1. Finally, the 

partial derivative (or SCs) in (7) represent the partial derivatives of the electrical quantity  Γ with respect to 

nodal active and reactive power injections, computed with the injections 𝑆̃̅𝑡
𝑑 using the method presented in [23]. 

The second set of constraints are the controllable resources operational constraints. Table 8 lists the different 

considered resources with their respective constraints. The BESS constraints consist in: (i) SoC energy bounds 

(c.f. (8)), where E max is the BESS’s maximum energy capacity, and (ii) apparent power limits (c.f. (9)). The 
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EVCS constraints consist in: (i) per EV SoC evolution constraints (c.f. (10)16), (ii) per EV SoC bounds (c.f. (11)), 

(iii) per EV definitions of the SoCs at departure 𝑆𝑜𝐶𝑘,𝑖
𝐿𝑒𝑎𝑣𝑒𝑑

 
 
(c.f. (12)17), (iv) per plug maximum/minimum active18 

(c.f. (13)), reactive19 (c.f. (14)) and apparent (c.f. (15)) power constraints, and (v) constraints linking the per plug 

variables to the per node aggregate EVCSs injections (c.f. (16)). 

It should be pointed out that in the SoC constraints (i.e., (8) and (10)) the efficiency is assumed unitary. 

However, since in practice this is not true for both BESSs and EVs, power losses are accounted by integrating 

the latter’s equivalent series resistance into the network admittance matrix as explained in [9]. 

Table 8: Constraints of all considered controllable resources. 

 

Recap and Problem Resolution 

The final OP of the day-ahead stage is given by (17). The variables of the OP are all the apparent power 

injections of all controllable resources together with the optimal DP (𝑃𝑠
𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ

). The different α• are user-tunable 

weights. Finally, for clarity and completeness, Alg. 1 summarizes all the needed steps for both processes of 

the day-ahead stage, where tp and tc are, respectively, maximum tolerances for control variable and cost 

function variations between consecutive OP resolutions. 

 

 
16 As explained in [19], 𝑡0,𝑘,𝑖

𝑑  is the arrival time of an EV at plug k=1,…,Ki and node 𝑖 ∈ 𝐶 for scenario d = 1,…,D. Also, 𝐸𝑘,𝑖
𝑑,𝑚𝑎𝑥

 

is the battery capacity of the EV connected to plug k=1,…,Ki and node 𝑖 ∈ 𝐶 for scenario d = 1,…,D. In the day-ahead stage, 

both quantities are forecasted (i.e., are part of the EV user behaviour scenario). 
17 As explained in [19], 𝑡𝑓,𝑘,𝑖

𝑑  is the departure time of an EV at plug k=1,…,Ki and node 𝑖 ∈ 𝐶 for scenario d = 1,…,D. In the 

day-ahead stage, the latter quantity is forecasted (i.e., are part of the EV user behavior scenario). 
18 As explained in [19], 𝜔𝑡,𝑘,𝑖

𝑑  is a known Boolean expressing whether, or not, an EV is connected to plug k=1,…,Ki. 
19 As previously mentioned, reactive power limits depend on the plug type. Namely, if the EV plugs are DC-Typed plugs, 
the reactive power injections are non-null and are only limited by the plug’s apparent power bound, otherwise, they are 
null. 
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4.3.4. Numerical Simulations 
To showcase the advantages of considering EVCSs as controllable resources in the day-ahead stage, two sets 

of numerical simulations are performed. All simulations were performed on MATLAB using the same electrical 

grid that contains one BESS and two EVCSs aggregators. The main difference between the two sets of 

simulations is that the second set of simulations performs a sensitivity analysis w.r.t. to the BESS’s energy and 

apparent power capacities. In the following, first the simulation setup is described, then, both sets of 

simulations are presented. Note that, in the appendix the reader can find further simulations that were 

performed on the EPFL-DESL microgrid. 

Simulation setup: the EPFL smart grid platform 

All simulations were performed using a virtual twin (single-phase equivalent) of the low-voltage electrical-grid 

of the EPFL smart grid platform. A schematic of the grid is depicted in Figure 2 where the greyed-out resources 

were not used for the simulations and node B01 corresponds to the unique slack node. EVCS2 corresponds to 

the CS described in Table 9. EVCS1 is the commercial GoFast EV fast-charger whose photographic depiction 

and technical specifications can be found in Figure 6 and Figure 7. B1 is a commercial utility-scale BESS whose 

external view and technical specifications can be found in Figure 3 and Table 1. Table 10, Table 11 and Table 

12  give, respectively, the branch, nodes, and transformers parameters of the network. The latter parameters 

were used as is in all the simulations of this section. Table 13 lists the used resource parameters. Table 14 

lay-out the used simulation parameters. Finally, Table 15 describes the origin of the historical data used for 

every resource in the forecast & scenario generation block of Figure 22. 
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Table 9: EV Charging station protocols, protection and rating 

 



 

 

36/82 

 

Table 10: Day-ahead numerical simulation: branch parameters. 
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Table 11: Day-ahead numerical simulation: node parameters. 

 

Table 12: Day-ahead numerical simulation: transformer parameters. 

 

Table 13: Day-ahead numerical simulation: controllable resources parameters. 
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Table 14: Day-ahead numerical simulation: simulation parameters. 

 

Table 15: Day-ahead numerical simulation: inputted historical data. 

 

Simulation 1: EVCSs as the only day-ahead controllable entities 

The first set of simulations considers the case where the BESS is not connected to the grid of Figure 2 (i.e., 

B1). Namely, the only controllable entities in the day-ahead stage are EVCS1 and EVCS2. Using the same 

scenarios, the idea of these simulations is to compare the obtained DPs when (i) EVCSs are not controlled 

and plugged EVs simply charge at their maximum rated power, and (ii) EVCSs are considered controllable. 

Since there are no controllable entities in the latter case (i), the resulting DP is nothing more than the average of 

all scenarios of the active power injections at the PCC. In order to compare DPs, a set of metrics is defined 

that are given in Table 16. As defined in [25], the UEE+ and UEE− represent the cumulative worst-case, 

respectively upper- and lower- bound of the energy discrepancy needed to merge all PCC nodal active power 

into the unique DP (i.e., for the PCC active power injections for all scenarios to be equal to the DP). The MAE 

quantifies the maximum absolute error, in terms of power, between the DP and the PCC active power injection 

realizations. The MPP is equal to the maximum absolute PCC active power injection realizations. The MEVUS 

metric represents the worst ratio, over all charging sessions of all scenarios, of received over best feasible 

energies, where the best feasible energy is the minimum between what the EV user requested, i.e., the 

forecasted quantity given by  
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(17a) 

And the maximum energy an EV can receive if it was charging at its maximum power – i.e., no control – for 

its whole plugged duration, i.e., the forecasted quantity given by 

(17b) 

Table 16: Metrics used to quantify the performance of the result of Alg. 1. 

 

The results of the simulations are depicted in Figure 23, Figure 24 and Table 17. Figure 23 a and b show, 

respectively, the active and reactive nodal power injections at the PCC. Figure 24 shows the time evolution of 

the UEE.  

 

Figure 23: PCC nodal power injections. 

 

Figure 24: UEE time evolution. 



 

 

40/82 

 

Table 17: Simulation 1 – results 

 

All results lead to the same conclusion: controlling EVCSs in the day-ahead stage (i) improves the merger of 

all PCC active power scenario realizations into a unique DP, (ii) reduces the untracked energy error and (iii) 

shaves the peak PCC injections, without penalizing EV users’ satisfaction. However, in practice, having only 

EVCSs as controllable entities in the day-ahead stage is not enough to fully merge the PCC active power 

realizations into the DP as they do not have enough bidirectional energy storage capabilities20. Finally, note 

that no voltage, branch current, or slack power plots are shown as there were no grid operational constraint 

violations for any scenario in both simulations, i.e., with and without EVCSs control. Indeed, as the grid awareness 

of the developed method was already showcased in [9], our goal was not to stress-test Alg. 1 by tightening the 

grid operational constraints tolerances, but to illustrate how EVCS can help merge the PCC active power 

realizations into a unique DP. 

Simulation 2: EVCSs and BESSs as day-ahead controllable entities 

In the second set of simulations, the BESS is considered connected to the grid of Figure 2 (i.e., B1). Namely, 

the controllable entities in the day-ahead stage are the BESS, EVCS1 and EVCS2. As in the previous 

simulations, the same scenarios are used and the idea is to compare the obtained DPs when (i) neither EVCSs 

nor the BESS are controlled, (ii) only the EVCSs are controlled and (iii) both EVCSs and the BESS are 

controlled. The novelty, w.r.t Simulation 1, is that the comparison is done for different sizes – in terms of 

maximum apparent power and energy capacity – of the BESS. All simulations assume that for all scenarios 

the BESS’s beginning of day SoC is 0.5. Since the BESS is considered, two extra metrics are introduced: the 

maximum BESS usage (MBU) and the Maximum absolute BESS injections (MABI). The MBU is defined as the 

ratio of (i) the largest energy usage of the BESS over all scenarios, and, (ii) the total usable capacity of the BESS. 

It is given by: 

 (17c) 

The MABI is defined as the absolute maximum BESS active power injections over all scenarios and timesteps. 

The results of all simulations are summarized in Table 18 and Table 19. In terms of merging the PCC active power 

realizations into a unique DP, Table 18 a, b & c confirm that (i) the BESS decreases the UEE more than EVCSs, 

(ii) increasing the BESS size decreases the UEE, (iii) controlling EVCSs always further decreases the UEE, and 

(iv) the PCC active power realizations are only perfectly merged when the BESS is sufficiently large and the 

EVCSs are controlled. As in the previous simulation, there were no grid operational constraints’ violations. As 

a result, all simulations lead to perfect EV user satisfaction (c.f. Table 19a). Table 19b shows the BESS’s MBU 

for different BESS sizes and simulation configurations. Increasing the BESS’s apparent power limit had little-

to-no influence as the maximum active power injections were practically all equal. This behavior is due to: (i) the 

scenarios used for the simulations that did not require extra BESS injections, and (ii) the lack of ADN operational 

constraints violations. Finally, Table 18c proves again the advantages of controlling EVCSs as it always led to 

less utilization of the BESS for the same EV user satisfaction (c.f. Table 19a). 

 

 
20 Indeed, this could change in the future with the potential penetration of large quantities of bidirectional public chargers 
which would render the aggregate usable storage of plugged EVs comparable to BESSs used in grid-applications. 
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Table 18: Simulation 2 – results. 
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Table 19: Simulation 2 – results – continued. 

 

Simulation setup: the Aigle demo site  

Although the installation of the four charging stations on the Aigle demo site have been delayed beyond the 

scope of the project, the simulation of a dispatch plan with the existing infrastructure with the anticipated 

stations has been performed.  

Grid topology 

As shown in Figure 25, the grid topology features a similar number of nodes than the EPFL setup. However, 

the complexity and global prosumption of the network are significantly larger. At the PCC, the power fluctuates 

between -2MW and +1MW whereas on EPFL setup, it fluctuates between 0 and 200kW. The Aigle demo site 

thus has a PCC overall amplitude variation fifteen times larger than the one of the EPFL setup. It is planned to 

install four charging stations similar to the one installed on the EPFL smart grid platform (described in Figure 

7), however with 300kW peak power each instead of 150kW. The BESS has a rated apparent power of 1.6MVA 

and a rated capacity of 2.5MWh. More technical specifications can be found in Section 2.  
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Figure 25 : Figure from source [31] - (a) Topology with locations of the PMUs, PV plants, hydro-power plants, (b) Location of the substations and 

lines on the map, and (c) BESS and PV infrastructure: (1) Satellite view of the centralized PV plant of capacity 1.8 MWp, (2) battery container and 

(3) interior of the battery. 

Results 

Simulation 1: four charging stations 

20 scenarios of prosumption on every node has been generated based on historical data. For each scenario 

an additional anticipated scenario for the four EVCS has been added. The PCC power for each scenario is 

shown in blue in Figure 26. We notice how the dispatching squeezes the profiles thanks to the control of both 

the battery and four charging stations. The profiles don’t overlap perfectly because the variance is too high 

with respect to the size of the battery and charging stations.  

 

Figure 26 - PCC active power for all scenarios (4 EVCS) 

The uncovered energy error reduced from 16.39MWh without control down to 6.88MWh with BESS+EVCS 

control as shown in Figure 27.  
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Figure 27 - Uncovered energy error (4 EVCS) 

Using the metrics presented in Table 16, we notice the strong contribution of controlling the battery. Adding 

the four charging stations control does improve the metrics yet only in a small manner as the flexibility provided 

is very small with respect to the PCC volatility.  

 

Table 20: Aigle simulations metrics (4 EVCS) 

 

Simulation 2: forty charging stations 

GoFast anticipates increasing the number of charging stations at this location as demand increases. Let’s 

suppose that not four but forty charging stations are installed. The total uncovered energy error without control 

rises from 16.39MWh up to 17.5MWh brought by the additional stochasticity of the stations. However, as they 

are controllable, they bring additional flexibility to the whole system reducing the uncovered energy error with 

control from 6.88MWh down to 4.81MWh. This shows that adding new highly stochastic charging stations can 

have a positive impact on the overall consumption predictability if they are adequately controlled. And this 

without significantly impacting the customer satisfaction as seen in the MEVUS metric.  

 

Figure 28 - PCC active power for all scenarios (40 EVCS) 
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Figure 29 - Uncovered energy error (40 EVCS) 

Table 21: Aigle simulation metrics (40EVCS) 

 

Discussion 

The comparison between simulation 1 (4 stations) and simulation 2 (40 stations) highlights a key takeaway 

message for planners. It is ubiquitous that adding fast charging stations is inevitable to promote the transition 

towards electric mobility. It is also known that their deployments are viewed as a risk for the grid from the 

added stochasticity and peak power demands. However, with an adequate control of the stations, not only 

lower their impact on the grid can be lowered but they can also provide grid support by increasing the overall 

day-ahead predictability. Public fast charging stations can therefore help the electric mobility transition while 

providing grid flexibility under the condition that they are both controllable and controlled. It is thus important 

to consider this aspect in the selection process of future charging station providers.  

Simulation setup: the EPFL case with commercial fleet versus public fast charging station (international 

cooperation within the MES4U project) 

Context 

As EPFL, the group of Prof. Mulone at the University of Rome Tor Vergata, Italy, is a partner of the MESH4U 

consortium. Prof. Mulone’s group has worked extensively on optimal sizing and scheduling of commercial fleet 

charging stations specifically for grid support. More information on results can be found in [32]. On the EPFL 

side, the dispatch plan and real-time control has the objective of providing a reliable day-ahead prediction of 

power profiles to also enhance grid support. Within the MESH4U project, this dispatching has been extended 

to include public fast charging stations reflecting the physical setup on the EPFL smart grid platform and, 

eventually, in Aigle. However, the larger control and flexibility of a commercial fleet charging station is an 

interesting topic to include in our optimization problem. The collaboration with Prof. Mulone’s group has 

enabled the consideration of such commercial fleets. Data generated by his group allowed the comparison of 

the dispatchability performance between public fast charging stations (PFCS) with respect to a commercial 

fleet charging station (CFCS).  
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Model and objective 

Providing a perfectly predictable power profile at the PCC with the inclusion of loads, solar power and charging 

stations is not achievable with the control of the charging stations alone. An adequately sized battery is 

necessary. The size of the battery grows with the stochasticity of the power generated/absorbed by the non-

controllable resources. A larger battery is required for PFCSs compared to CFCS as costumers’ arrival and 

departure time is not scheduled and the charging power delivered must remain high to ensure customer 

satisfaction. The objective is to assess the battery size difference in both cases.  

The grid topology considered in this assessment is the same presented in section 4.3.4 Numerical Simulations. 

For the case of CFCS, the GoFast EVCS has been replaced by a station with ten 22kW slots, one per vehicle. 

The shift schedule and energy demand per vehicle for each day of the week is given by the optimization 

problem of the University of Rome Tor Vergata. For our comparative analysis we will use the scheduling of the 

first working day of a generic week (i.e. Monday), as show in Table 22. 

Table 22: Monday optimal shift schedule and energy demand 

 

This data input is then slightly different to the data generated by the forecasting method presented in section 

4.1.2 EV user statistical modelling. For PFCSs, several scenarios are generated including session start and 

end time as well as the energy demand. The optimization problem for the commercial fleet must then be 

readjusted. 

Hypotheses: 

1. Each commercial vehicle is assigned to a plug. 

2. Each commercial vehicle is constantly plugged except during its shift. 

3. The real-time demand is equivalent to the scheduled scenario. 

4. For each day, all the sessions start at midnight and last 24h. A single session is considered per 

vehicle with an interruption of charge during the shift.    

Cost function modifications:  

The same cost function as in section Objective in 4.3.3 Day-ahead stage is used with the additional objective 

of reaching the SoC target upon start of shift. The additional piecewise cost element is shown in blue.   

 

for timestep t=1,…,T, plug k=1,…,K , node 𝑖 ∈ 𝐶 and scenario d = 1,…,D 
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Constraints modifications: 

The same constraints as in section Constraints in 4.3.3 Day-ahead stage are used with a few modifications. 

The first is that SoC dynamics need to account for the energy consumption during the shift. The second is a 

limitation on the overall active power consumption as the grid topology is not dimensioned for ten EVs charging 

at 22kW at the same time. Only up to a total of 150kW is possible without exceeding the ampacity limit of the 

line following the charging station node. Third, all power limits are only in active power as we cannot control 

the reactive power on type-2 AC chargers. Finally, the node index i has been removed as all the plugs are 

supposed to be on the same charging station node. Note that even if we have a single scheduled scenario for 

the EVs, we have several scenarios to reflect the uncertainty of load consumption and solar production. Hence 

the charging behavior will differ from one scenario to the next even if they all share the same schedule. 

Changes in the constraints are shown in blue. 

 

for timestep t=1,…,T, plug k=1,…,K and scenario d = 1,…,D. As explained in [19], 𝜔𝑡,𝑘,𝑖
𝑑  is a known Boolean expressing 

whether, or not and EV is plugged.  

Results 

The physical battery on EPFL smart grid platform is large enough to remove all the uncovered energy errors 

in both public fast charging and industrial fleet. However, even if the daily energy throughput is the same for 

both CFCS and PFCS, the BESS energy throughput and maximum active power is approximately ten times 

larger to remove the UEE for PFCSs with respect to industrial fleet. These results can be seen in the three last 

rows of Table 23. Two reasons account for this significant difference.  

The main is that the battery needs to compensate for the high uncertainty of arrival, departure, and energy 

demand of PFCS customers. Figure 30 (a) shows the PCC power volatility between scenarios. In Figure 30 

(b) the differences between scenarios are only due to the load and PV uncertainties which with a good forecast 

can be fairly small. Indeed, the scheduling of the fleet EVs allows a perfect knowledge of arrival, departure, 

and energy demand which the battery doesn’t need to compensate for.  

The second reason is that the EV fleet are plugged in much longer and have no rush to differ their charge 

whereas public fast charging stations have a high demand and small flexibility. The last point can also be 

grasped by focusing on the contribution of EVCS control. The BESS throughput is reduced by about 20% for 

the PFCS and 50% for the CFCS when EVCS control is applied.  

Figure 30 (b) also displays the effect of the following piecewise cost element: 
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The goal of this cost function is to minimize the EVCS battery damage by gradually changing the power 

setpoint. With EVCS control, the charging profiles are less abrupt.  

Table 23: Dispatching public and fleet charging stations  

 

 

Figure 30 - PCC active power for all scenarios with and without control for (a) a public fast charging station and (b) an industrial fleet charging 

station 

Discussion 

The key takeaway of this collaboration is that, for the same charging station energy demand, the required 

battery size to track the dispatch plan is ten times smaller for a CFCS. 

In terms of required infrastructure and investments, one can achieve more grid predictability and flexibility with 

lower investments by implementing dispatch plans on nodes encapsulating schedulable and controllable 

commercial fleet charging stations. Due to the significantly higher stationary battery investment costs, when 

truly necessary for the grid, tracking a PCC node encapsulating highly stochastic PFCSs can be achieved.  

The qualitative plot below shows the grid support versus cost analysis between different levels of 

prediction/scheduling and control for both PFCS and CFCS:  
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Figure 31 - CFCS vs PFCS measures analysis in grid stability and cost. 

4.3.5. Real-time stage 
As previously mentioned, the main goal of the real-time stage is to track the optimal DP determined by the 

day-ahead stage. To do so the same problem formulation is used and distributed solution method described 

in [9]. However, since we consider EVCSs as controllable entities, extra objectives and constraints are added to 

the centralized OPF (11) of [9]. Indeed, we leverage the EV-subproblem objectives and constraints presented 

in [19]. However, as the OP in [9] is expressed as an MPC problem, the latter are expanded for a given time 

horizon (denoted by tH as in [9]). Furthermore, as the real-time controller developed in [9] assumes balanced 

operation for the ADN, the unbalanced constraints are here omitted. This leads to the objectives and constraints 

described in Table 24. As previously explained, the objective is twofold. The first one tries to reach the target EVs 

SoCs as soon as possible (c.f. (18)). The second minimizes the EV battery wearing by penalizing large setpoint 

variations (c.f. (19)). All objectives are weighted21 in a way to favor plugged EVs with shorter remaining 

connection times and higher remaining energy demands. In terms of constraints, the first set of constraints 

guarantees that an EVs’ SoCs do not surpass users requested target (c.f. (20)). The second set of constraints 

guarantees that the computed setpoints are within the EVCS and plugged EVs operational constraints (c.f. 

(21)). Additionally, the maximum and minimum EV power limitations are considered as time-dependent and 

known at time t . Finally, the last set of constraints (c.f. (22)) was added to guarantee the knowledge of the 

inputted data at time t over the MPC time horizon (i.e., from t to tH). Indeed, as the problem is formulated using 

MPC, proper forecasting is required to predict the evolution of the inputted EV user behavior, e.g. the Boolean 

ωt ,k,I expressing whether, or not, an EV is plugged to plug k = 1,..., Ki of node i ∈ C at timestep t . As a result, 

the constraints impose persistent forecast of the latter over the considered horizon. This is acceptable as the 

horizon is usually selected to be in the order of minutes and the EV user behavior usually does not drastically 

change during these timescales. 

 
21 The details of how the weights are defined can be found in [19]. 

Grid stability

Cost

CFCS scheduling

CFCS scheduling + control

CFCS & small BESS scheduling + control

PFCS prediction

PFCS prediction + control

PFCS & small BESS prediction + control

PFCS & big BESS prediction + control

Best path
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Table 24: Real-time stage objectives and constraints of an EVCS aggregator connected to node i ∈ C. 

 

 

4.3.6. Experimental validation 

This section presents an experimental validation of both the day-ahead and real-time stages. First an optimal 

day-ahead DP is calculated and then, the real-time controller is used in order to track the DP while accounting 

for ADN and resources operational constraints. The goal of the experiment is twofold. First, we show that the 

integration of EVCSs in both the day-ahead and real time stages improves the tracking of an optimally computed 

DP. Second, we experimentally prove the aptness of the proposed real-time EVCS controller to best satisfy EV 

user demands. In the following, first the experimental setup is described. Then, some notes on the experiment 

are given. Finally, the results of the experiment are shown. 

 

Experimental setup: the EPFL low voltage microgrid 

The experimental validation of the proposed algorithms is performed on the EPFL smart grid platform as shown 

in Figure 7.  The experiment uses: (i) the IT infrastructure described in [26], (ii) the branch and node parameters 

listed, respectively, in Table 10 and Table 11, and (iii) the PMU-aided monitoring infrastructure shown in Figure 

25. While the grid interfaces several resources, for the purpose of this experiment, only a subset is considered, 

namely the three uncontrollable PV plants (PV1 (Perun), PV2 (Solarmax) and PV3 (Solis-Facade), controllable 

EVCS (EVCS1 and EVCS2) and a battery (BESS1). The loads at nodes B20, B21 are assumed to be 

uncontrollable. The resource parameters are summarized in Table 25. 
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Table 25: Specification of resources for the real-time experiment. 

Resources Nominal Rating Units 

PV1 (Perun)  

Rate power of PV cells 

Apparent power 

Controllability  

13 

13 

Uncontrollable 

kWp 

kVA 

- 

PV2 (Solarmax) 

Rated power of PV cells  

Apparent Power 

Controllability 

16 

16 

Uncontrollable 

kWp 

kVA 

- 

PV3 (Solis-Facade)  

Rated power of PV cells  

Apparent Power 

Controllability 

15 

15 

Uncontrollable 

kWp 

kVA 

- 

BESS1 

Ratings  

Controllability 

See Figure 23  

Active and reactive power controllable 

 

EVCS1 

Ratings  

Controllability 

See Table 12 

Active power controllable 

 

EVCS2 

Ratings  

Controllability 

See Table 12 

Active power controllable 

 

 

Experimental notes: As the goal of the experiment was not to stress test the algorithms in terms of ADN and 

resources operational constraints, all resources were used at full capacity and the ADN operational limits were 

set to the values in the EN-50160 standard. However, for the battery available at the microgrid, the maximum 

and minimum allowable SoCs for the BESS are limited to 0.9 and 0.2, respectively. 

Figure 37 shows the sequence of the operations and communications flows during the real-time operation. At 

00.00 local time, the real-time operation starts. It takes as input the dispatch plan computed at the day ahead-

stage based on the forecasts of the uncontrollable injection and flexibility offered by the controllable resources. 

The real-time controller runs every 30 seconds with updated short-term forecasts of the load, generation, and 

EVCS demand. It computes the active and reactive power setpoints and sends them to the resources for 

actuation. This cycle is repeated each 30 second till the day's end. 
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Figure 32: Sequence of operations during real-time control 

Results  

The experimental validation was performed for several days, exhibiting different day types and irradiance 

conditions. For the sake of brevity, the results of two distinct days are presented. Day 1 is a weekday and a 

cloudy day, whereas day 2 is a weekend day and rainy. Results for multiday experiments are shown, 

demonstrating that the dispatching framework can run successfully for multiple contiguous days. The 

experimental results are described below. 

Day 1 (17-April-2023) 

It corresponds to a weekday (Wednesday) and is characterized by a day with cloudy irradiance patterns. The 

source of uncertainty is the generation from the photovoltaic plants and the EVCS power demand.  

 

Figure 33: Dispatch plan, and power at the GCP with and without control. 
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Figure 34: Active power regulation from the BESS1, and lower panel: minimum and maximum state-of-charge (SoC). 

 
 

Figure 35: Upper: Controlled active power consumption by EVCS1, lower: EV SoC during the day along with the SoC target. 

 

Figure 36: Upper: Active power consumption by EVCS2, and lower: EV SoC during the day along with the SoC target. 
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Figure 37: Demand profiles: ELLA and ELLB represents the aggregated loads of the ELL building of the EPFL smart grid platform, at 

nodes B20, and B21. 

 

 

Figure 38: PV generation at nodes B14 and B16. 

 

Figure 39: Cumulative distribution function (CDF) of Dispatch error with and without control. 

Figure 33-39 shows the experimental results obtained on day 1. 

 

Figure 33 shows the dispatch plan in shaded green and realized power at the GCP with and without control is 

shown in black and red color, respectively. Since each experiment day is unique with respect to the solar 

irradiance, number and energy demand of EV charging sessions, it is impossible to redo the same experiments 

in “without control” mode. Therefore, we obtain the plot “without control” by removing the contribution of the 

BESS and re-running the AC load flow with the rest of the injections.  

Figure 34 shows the power injections and the SoC from the controllable battery BESS1. Figure 35 and Figure 

36 show the EV demand (with control) and the EV SoC of the connected cars at the EVCS1 and EVCS2, 

respectively. In these figures, the target SoC is shown in red, and the SoC is shown in black. Figure 37 and 
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Figure 38 show the uncontrollable demand (at nodes B20 and B21) and PV generation (at nodes B14 and 

B16). Figure 39 shows the cumulative distribution function (CDF) of the error in power (averaged over the 

dispatch period of 5 minutes) with and without real-time control.  

The dispatch plan is tracked with high fidelity (

 

Figure 33), thanks to the power injected from the controllable BESS and curtailments actions from EVCS(s). 

From the plot, it can also be observed that the variation in the generation at the PV plants is well compensated 

by the battery storage. In Figure 34, the BESS SoC is respected within the imposed constraint of 20 to 90 %. 

Figure 35-Figure 36 shows the target SoC of the EVs, and in most of cases, EV users meet their target SoC.  

Table 26 shows different metrics to quantify the dispatch error with and without control. It shows the RMSE 

error, max absolute error (MAE), and Absolute Energy Error (AEE) of the dispatch over the day. AEE is 

absolute sum of the dispatch tracking error over the whole day. From the comparison, it is pointed out that the 

RT control manages to track with high accuracy exhibiting low RMSE and MAE. The real-time control manages 

to reduce error metrics by more than tenfold. 

Table 26: Performance Metrics for Real-time Operation 

Metrics Day 1 Day 2 

 Without Control With Control Without Control With Control 

RMSE (kW) 28.7 0.7 19.1 0.5 

MAE (kW) 137.9 5.9 91.9 2.9 

Absolute Energy Error (kWh) 441.7 8.5 327.4 1.5 

 

Day 2 (15-April-2023) 

It corresponds to a weekend (Saturday) and is characterized by a rainy day, so it exhibits low irradiance day 

leading to low PV generation and relatively low demand compared to the weekday.  

Again, we show the active power realization at the GCP with and without control. It is shown in Figure 40; it 

can be observed that the dispatch plan is again tracked well, thanks to the power regulation provided by the 

controllable batteries, as shown in the Figure 41 and curtailment action of EVCS1 as shown in Figure 42. 

As this day corresponds to a rainy day, the peak power of the dispatch plan is higher than in the case of day 

1. On this day, there are no sessions on the EVCS2, as it belongs to the office's private space, which is turned 

off during the weekend. There are many sessions on the EVCS1, of which all of them met their targets. Thanks 

to the good quality forecasting of the EV charging profiles accounted in the day ahead stage, there are not any 

curtailments in EV demand leading to 100% satisfaction of the EV consumers. Also, the batteries' SoC is within 

the designated range of 20 to 90% SoC.  

Figure 45 shows the histogram of the dispatch error with and without control and it can be concluded that the 

real-time control achieves a very good accuracy in the dispatch tracking. The same can be observed by the 

metrics shown in Table 26. 



 

 

56/82 

 

 
Figure 40: Dispatch plan, and power at the GCP with and without control. 

 

Figure 41: Active power regulation from the BESS1, and lower panel: minimum and maximum state-of-charge (SoC). 

 

Figure 42: Upper: Controlled active power consumption by EVCS1, lower: EV SoC during the day along with the SoC target. 

 

Figure 43: Demand (ELLA and ELLB) at nodes B20, and B21. 
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Figure 44: PV generation at nodes B14 and B16. 

 

 

Figure 45: Cumulative distribution function (CDF) of Dispatch error with and without control. 

 

Multiday (14-18 Apr 2023) 

To demonstrate the effectiveness of the dispatching scheme, we ran the control of the BESS for four 

contiguous days. Figure 46 shows the dispatch plan and the measured GCP power with and without the control 

scheme. In Figure 47, we show the SoC evolution of BESS1 during the 4-days. The power at the GCP follows 

the dispatch plan and keeps the BESS SoC within a comfortable SOC so that dispatching is continued the 

next day.  

 

Figure 46: Dispatch plan, and power at the GCP with and without control. 
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Figure 47: Active power regulation from the BESS1, and lower panel: minimum and maximum state-of-charge (SoC). 

4.4. Multi-service battery control 

4.4.1. Services analysis 

One of the key objectives of the project is to assess market opportunities arising from flexibility provision of a 

setup combining fast EV charging stations and a stationary battery. Although guaranteeing dispatchability at 

the PCC seems to be interesting for grid operators, it is a value proposition which is currently not marketable. 

Therefore, GridSteer assessed alternative market opportunities of the Aigle setup via interviews with numerous 

companies and researchers as well as online market research. With respect to assets integrating BESSs and 

EV fast charging stations, the services which are the most interesting economically are peak power shaving 

(PPS), participation to the frequency containment reserve (FCR), backup energy storage provision, as well as 

reactive power management.   

Peak power shaving (PPS) 

In Switzerland, DSOs usually include a power price in the electricity tariff for end-users consuming more than 

100 MWh/year. The billing scheme is either based on the 15 min peak power consumption of each month or 

on the 15 min peak consumption of the year, depending on the DSO. In that sense, to perform PPS with a 

limited energy reservoir such as a BESS, the controller must anticipate its peak shaving objective month/year-

ahead: the smaller the shaving objective, the smaller the power bill. Note that some DSOs specify in the 

contract that a minimum power is billed even if the consumer does not reach it. 

As an example, it is not unusual for consumers consuming a few GWh per year to have an annual power bill 

around 1 MIO CHF. 

Frequency containment reserve (FCR) 

FCR (or primary frequency regulation reserve) is a fast response mechanism of the power grid to match supply 

and demand. Any resource with enough flexibility can apply for a Swissgrid prequalification and participate in 

the FCR market. Bids are advertised day-ahead in steps of 1 MW and must be made available for slots of 4 

hours (i.e., 6 slots a day). Even though the steps are of 1 MW, flexibility can be pooled. One can thus consider 

smaller granularity per unit if the aggregated resources in the pool allow for it. Since the bids need to be placed 

at least one day before activation, a day-ahead forecast of the site’s prosumption (BESS excluded) is needed.  

Backup energy reserve 

The concerns regarding energy shortages in Switzerland are rising. More and more companies are looking 

into backup energy solutions such as diesel generators or BESSs. By establishing beforehand the amount of 

energy needed for backup, one can guarantee that amount to always be stored in the BESS and perform other 

services on top of it. As load shedding is often planned, a company can also reserve the battery for backup 

only for a specific moment while performing other services the rest of the time. This turns the backup energy 

resource into a revenue generating asset contributing to the energy transition.  
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Reactive power management 

DSOs usually bill reactive power to the end-consumer if the power factor (cosφ) is smaller than a given value, 

often 0.9 or 0.95, but this number can significantly vary with some DSOs even setting it to 0.7. It is worth noting 

that even though reactive power is not what the customer pays for, it contributes to grid usage and to grid 

congestion just as much as active power22 . 

4.4.2. Control framework 
In view of the above, GridSteer has developed a dedicated EMS for BESS to provide the identified services 

behind the customer meter. In this document, it is also referred to as multi-service battery controller (MSBC). 

Its objectives are to plan the services that the BESS performs every day and to ensure a safe operation of the 

BESS according to the plan. The software can be run in a physical system or in simulation mode, in which an 

ESR model of the battery and historical data of the load to simulate are used to assess the performance of the 

software on a given site. Its structure is presented in Figure 48: 

 

Figure 48:  MSBC simplified control framework. 

Communication interface 

The communication interface handles all communication aspects of the system: it reads the state of the BESS, 

the state of the managed grid (i.e., PCC measurements, load consumption, etc), transfers them to the 

controller, then reads and sends the setpoints computed by the controller to the battery. It also sends data to 

a database to be stored and visualized.  

Controller 

The controller’s tasks are to safely operate the BESS and maximize the revenues it generates. To do so, the 

controller is divided in two elements: the real-time controller and the planner.  

Real-time controller 

At every control cycle, the real-time controller computes the setpoints to send to the battery according to 

what was planned by the planner. The process is as follows: 

1. Recover the latest measurements. 

a. BESS state. 

b. P, Q load consumption. 

c. P, Q at the PCC. 

2. Recover the latest service schedule. 

3. Check what service is scheduled for the current cycle. 

4. Update the shave target, if needed (if the target value is exceeded). 

 
22 A transformer or a line rated for 1 MVA supplying a load with a 0.7 cosφ would not be able to distribute more 

than 0.7 MW, while it would be able to distribute up to 0.95 MW to a load with a cosφ of 0.95 
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5. Compute the setpoint. 

6. Send the setpoint to the communication interface. 

To compute the setpoint, the process is as follows: 

1. If the current service is peak shaving. 

a. If shaving is needed, apply a proportional integral (PI) control to shave the PCC 

consumption. 

b. If shaving is not needed, reset the integral error of the PI control, and steer the BESS 

towards the maximum operating SoC. 

2. If the current service is FCR. 

a. If the current cycle is the beginning of a new hour, compute the BESS charge management 

power (discussed in the following subsection). 

b. If the frequency deviation is smaller than 0.2Hz, compute the setpoint according to the droop 

control and add the charge management power. 

c. If the frequency deviation is bigger, or equal, to 0.2 Hz provide full bid power. 

d. If the SoC of the battery is not between bounds, stop performing FCR and charge or 

discharge the BESS to bring its SoC back between bounds. 

BESS charge management 

For limited energy reservoirs (LER) to participate in FCR, the asset operator must ensure that the asset can 

always provide the bidding power for 15 min (consumption and production). To do so, the operator can change 

the reference power of the asset (e.g., every hour) to maintain its SoC between the wanted limits (coined as 

charge management). The charge management must however not be noticed at the balance group level. This 

can only be done if another flexible asset within the same balance group as the BESS provides this charge 

management. 

To compute the BESS charge management power, the MSBC forecasts (via an auto-regressive integral 

moving average – ARIMA – model) the average frequency deviation for the coming hour and compensates it. 

The frequency forecasting method is based on this method [27] co-authored by the EPFL-DESL laboratory. 

The current deviation with the target SoC is also compensated for. 

𝑃𝑏𝑎𝑠𝑒 = −𝛼(f̂ − 50) + 𝐶𝑟𝑎𝑡𝑒𝑑Δ𝑆𝑜𝐶 (23) 

Where  

- 𝛼 is the droop coefficient used for FCR in [W/Hz]. 

- f̂ is the average estimated frequency for the coming hour. 

- 𝐶𝑟𝑎𝑡𝑒𝑑 rated is the rated capacity of the battery in [Wh]. 

Planner 

The planning process is as follows: 

1. Monthly/yearly: 

a. Compute a peak-shaving objective for the coming period, considering estimated FCR and 

PPS revenues. 

2. Daily 

a. Forecast the load for the coming day. 

b. Based on the load forecast, decide in which slots of the coming day the BESS is going to 

perform PPS and in which slots it is going to perform FCR. 

In the experimental validation of the MSBC, the forecasting part of the algorithm is not the point of focus. A 

seasonal ARIMA (SARIMAX) model is used for the day-ahead load forecasting. Once the forecast is computed, 

the service planning software computes the available margin for each slot in the day: if the margin is smaller 

(bigger) than zero, PPS (FCR) will be performed during that slot. The following figure illustrates this concept.  
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Figure 49:  Illustration of FCR and PPS service planning 

 

A commercial enhanced version of the EMS with better forecasting, increased reliability, inclusion of more 

services, inclusion of aggregating algorithm, is under development. 

4.4.3. Simulations 
The goal of the simulations is to test the performance of the MSBC and of the service planning process. To 

evaluate the interest of a multi-service BESS control solution, the forecasting part of the service planning 

algorithm is not tackled, and “perfect forecasts” are used (i.e., the realization of the coming day is used as day-

ahead forecast). This allows to assess the best performance of the control framework that has been developed.  

Simulation 1 - Current context 

Setup 

The MSBC in the context of Aigle is simulated with the following parameters. 

1. Electrical network (see Figure 50): 

a. 1 x 1.6 MW rated transformer at the grid connection point 

b. 1 x 1.6 MW/2.5 MWh BESS 

c. 4 x 300 kW EVC of GoFast 

 

2. Tariffs of Romande Energie (2023) for a low voltage “DUP faible23” user located in Canton Vaud:  

 
23 DUP (GoFast) = Durée d’utilisation de la puissance = Annual kWh / Monthly Pmax,15min 
DUP faible if DUP < 3000h (this means that the prosumer has a profile with spikes)  
DUP haute if DUP > 3000h (this means that the prosumer has a smooth profile) 
More details on tariffs here: https://GoFast.romande-energie.ch/images/files/prix-electricite/2023_prix-electricite_bve.pdf 

Figure 50: Simulation 1 grid schematic. 
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a. 5.63CHF / kW / month as power price component 

b. 27.31 cts / kWh peak energy tariff 

c. 18.97 cts / kWh off peak energy tariff 

d. 18.3 cts/ kWh feed-in tariff 

3. Average primary control bid price in 2022 (100 CHF/MW/4h bid) 

Since the EVCSs in Aigle have not deployed, data is lacking to run a simulation. For that reason, the data of a 

charging station site with a similar configuration is used.  

Dataset 

The simulation dataset starts on January 1st of 2022 at 00h00 and ends on May the 31st of 2022 at 00h00.  

The following figure shows the average hourly consumption of the site depending on the day of the week and 

the hour of the day. It details how the consumption of the site is distributed over a week. Every day around 12 

a.m., the site is strongly active, while it is almost inactive during night-time. It also shows that the site is overall 

more active from Friday to Sunday than in the rest of the week. 

 

Figure 51:  Simulation 1 weekly consumption of the EVCS in Aigle inferred from other GoFast EVCS with similar characteristics. 

Similarly, Figure 52 shows the activity of the site for each slot where primary control can be performed.  

 

Figure 52:  simulation 1 - load in 4h slot clusters 

Intuitively, the service planner is expected to generally instruct the battery to perform FCR at full capacity 

between 8 p.m. and 8 a.m. and to reduce the FCR bids or perform peak shaving the rest of the day. It is 

however interesting to note that the extreme values are significant at every 4h slot, which implies that high 

forecasting errors are likely for any 4h slot. This will need to be accounted for when implementing the 

forecasting part of the service planning. 

Service panel 

The multi-service controller runs its planning algorithms with the following services: 
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1. Primary control regulation. 

a. It is assumed that the battery is aggregated in a pool containing a considerable number of 

resources. Therefore, the granularity in the primary bids that the battery can advertise to the 

pool aggregator has been set to 10 kW, although the market granularity is 1 MW (i.e., the 

aggregator ensures that the pool bids have a 1 MW granularity).  

2. Peak-shaving. 

3. 750 kWh back-up energy reserve guarantee (> 10 EV charges). 

Simulation parameters 

• The BESS can be safely operated between 10% and 90% of SoC. 

Simulation results 

Since the service planning algorithms schedules the services for the following day, the first day of the 

simulation is not relevant and is thus not shown in the following plots. 

Power profiles 

Figure 53 shows the results for a simulated period of 6 months. The service planning software decides to only 

perform FCR, while it sometimes needs to lower the bid power to never exceed the PPS target (which changes 

monthly). 

 

Figure 53: Simulation 1 power profiles. 

To better illustrate the changes in bid power, Figure 54 shows zooms in on the simulation results for the 19th 

of February: between 1 and 3 p.m., the load increases and the bid power needs to be smaller to not exceed 

the PPS target of the month.  

 

Figure 54: Simulation 1 power profiles for a single day. 
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BESS SoC  

For a limited energy reservoir to participate in FCR, it is crucial to ensure that its SoC stays within the bounds 

specified by the transmission system operator. The following figure illustrates this.  

 

Figure 55: Simulation 1 BESS SoC. 

The orange band represents the provision of 750 kWh of energy reserve. In the simulation, the battery never 

went below 53 % SoC (i.e., 1.325MWh of usable energy is always available in case of black-out).  

The orange area shows the area in which the SoC must stay during FCR service (as per Swissgrid rules on 

LER participating in FCR). To ensure that the SoC stays in such bounds, the LER performs charge 

management: every hour, it can change its steady state operating power (i.e., the power it draws or outputs 

when there is no frequency deviation). Focusing on a single day, Figure 56 illustrates the BESS power profile 

as it performs FCR vs the hourly charge management requests.  

 

Figure 56: Simulation 1 BESS charge management. 

Economics 

This section shows the economical results of the simulation. On the customer side (the owner of the battery), 

the economics of the simulation are summarized in Table 27. 

Table 27: Economics of simulation 1. 

Investment cost 1625 kCHF 

operation and maintenance (O&M) costs  54.5 kCHF/year 

Yearly profits  103 kCHF/year 
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Payback time 15.7 Years (without accounting the 

reserve and current BESS) 

10 Years (without accounting the 

reserve and downsizing the BESS) 

 

Table 28 shows the detailed cost and revenues of the system. 

Table 28: Detailed cost and revenues of the system. 

In thousand CHF per year  

Revenues  

 Primary control 204 

Costs  

 Electricity bill increase 28.6 

 O&M costs 54.5 

 

The yearly profits are computed as follows: (204 − 28.6) ∗ (1 − 10%) − 54.5 ≅  𝟏𝟎𝟑 kCHF/year. 

It should be mentioned that in the above equation, the BESS operator takes a 10% commission on the 

revenues generated by the services that the battery performs. The O&M cost is an average of all yearly 

recurring costs including service planning, operation, monitoring, maintenance, interventions, and insurances 

for a battery of this dimension.  

For the BESS operator, the yearly revenues are as presented in Table 29. 

Table 29: Yearly revenues for the BESS operator. 

In thousand CHF per year  

Commission on services 17.5 

Maintenance 50.4 

Total 67.9 

 

Discussion on economics 

Today, the investment cost for a 2.5 MWh/1.6 MW battery is in the order of 1.6 MIO CHF. This number is 

based on the average cost per kWh (over the manufacturers that have been contacted) of utility-scale batteries. 

Additionally, operating costs include BESS operator fees, maintenance interventions, and insurances. The 

payback time is approximately 16 years. Note that, in this simulation, the system guarantees a backup energy 

reserve. It was supposed that the customer requests for a 750 kWh backup energy reserve to be resilient to 

shortages and the BESS operator minimizes the cost of the backup energy system. However, the value of the 

backup energy reserve is case specific, depending on the price that each customer is willing to pay for this 

reserve. Without the energy reserve, and therefore a smaller battery (around 1.75 MWh/1.6MW) that can 

provide only FCR, the payback time would be approximately 10 years. 

It is worth noting that the system never plans to perform PPS because FCR generates significantly more 

income. To assess the economic feasibility of a battery performing mostly PPS, an experiment in which FCR 

is not in the service panel has been performed. 
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Simulation 2 - Without primary control 

Simulation setup 

This simulation is identical to the previous one except for the service panela as the BESS participation to FCR 

has been removed. The results of this simulation are compared with the results of the previous one. 

Service panel 

The service panel is identical as the previous simulation yet without FCR as a service.  

Simulation parameters 

• The BESS can be safely operated between 10% and 90% of SoC. 

Simulation results 

Figure 57 shows the results for the 6 months simulation. One can observe that the PPS targets are respected. 

Each month, the controller computes a PPS target for the coming month. 

To better illustrate how the BESS is controlled during PPS, Figure 58 shows the BESS power profile, the load 

consumption profile, and the shave target on the 19th of February. One can see that the BESS compensates 

the load peaks when needed and charges when it can, without exceeding the PPS target. 

 

Figure 58 : Simulation 2 BESS power profiles in a single day. 

BESS SoC  

The SoC of the BESS stays in the specified boundaries and the backup energy reserve is always available. In 

fact, the lowest SoC reached during the simulation is 57.6% (i.e., 1.44 MWh are always stored in the BESS for 

this simulation). Figure 59 shows the evolution of the SoC over the simulation period. 

Figure 57:  Simulation 2 BESS power profiles. 
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Figure 59:  Simulation 2 BESS SoC. 

Economics 

This section shows the economical results of the simulation. On the customer side (the owner of the battery), 

the economics of the simulation are summarized in the following table. 

For the BESS operator, the yearly revenues are as follows: 

Table 30: Yearly revenues in simulation 2 

Investment cost 1625 kCHF 

O&M cost  54.5 kCHF/year 

Yearly profits  -38.9 kCHF/year 

Payback time ∞ 

30 

Years  

Years (assuming no O&M cost)24 

 

Table 31 shows the detailed cost and revenues of the system 

Table 31: Detailed cost and revenues for simulation 2. 

In thousand CHF per year  

Revenues  

 Electricity bill decrease 17 

Costs  

 O&M cost 54.5 

 

The yearly profits are computed as follows: (15.3) ∗ (1 − 10%) − 54.5 ≅  −𝟒𝟎. 𝟕 kCHF/year. 

Note that in the above equation it is estimated that the BESS operator would take a 10% commission on the 

revenues generated by the services that the battery performs. 

For the battery operator, the yearly revenues are as follows. 

 
24 For comparison purposes. 
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Table 32: Yearly revenues. 

In thousand CHF per year  

Commission on services 1.7 

Maintenance 50.4 

Total 51.9 

Discussion on economics 

For basic services of the BESS, it would not be viable to outsource the handling of this asset’s operation. 

Indeed, BESS manufacturers often propose an EMS with simple functionalities such as PPS.  

Note, however, even if the maintenance costs were fully removed (which is unrealistically optimistic) the 

payback time for a BESS operating in this way would be approximately 30 years, which is twice as much as 

the payback time obtained with the first simulation. 

Discussion on current context 

The current context makes a combination of PPS and FCR highly unlikely. Since the consumption peak power 

is much smaller than the rated powers of the BESS and of the transformer, even performing a very small 

amount of PPS leads to significant lost opportunities to perform FCR.  

Moreover, the BESS is oversized for the current context. While this can enable substantial amounts of backup 

energy storage, most of the revenues that the BESS generates could be generated with an asset that has half 

the rated energy, which would reduce the payback time to less than 10 years. 

In the medium term, the EV charging station operator aims at deploying more and more charging stations on 

the site. The next simulation shows the performance of the multi-service BESS controller in that situation. 

Simulation 3 – Increased number of EV charging stations 

Simulation setup 

The medium-term objective of GoFast is to deploy other fast charging slots on the site. Such configuration 

would put the Aigle subnetwork under more stress and the multi-service BESS control might be used more 

extensively. This simulation evaluates the performance of the multi-service BESS control in the Aigle context 

but with 40x 300 kW DC EVC. To do so, a consumption profile of such a charging park has been generated 

using the EV charging session model discussed in section 4.2 EV user statistical modelling. 

Dataset 

From the heatmap representation of the dataset (Figure 60), one can see that the model distinguishes 

weekdays from weekends. Overall, in weekdays, most of the charges are generated between 7 a.m. and 8 

p.m. In weekends, most charges are between 10 a.m. and 7 p.m.  
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Figure 60:  Simulation 3 weekly EV consumption heatmap. 

 

Figure 61: Simulation 3 load in 4h clustered slots. 

In the boxplot representation of the model-generated data (Figure 61), the trend mentioned above is confirmed. 

Also, spikes going up to 2.1 MW can be identified. Note that this is larger than the transformer’s rated power, 

meaning that either the BESS will shave such peaks, or such demand will not be satisfied by the EV charging 

station operator. 

Power profiles 

Figure 62 shows the power profiles during the simulation. One can see that the shave target is approximately 

set at the transformer limit (1.6 MW). The controller was able to shave the power at the point of coupling. One 

can see that the FCR service is performed most of the time, with bids that change to ensure that the shave 

target and transformer limit are always respected.  
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Figure 62: Simulation 3 power profiles. 

Figure 63 shows a zoom on the 9th of July 2022. Here, one can observe the service stacking: between midnight 

and 4 p.m., the service planning algorithms decide to perform FCR with different bids. Between 4 and 8 p.m., 

PPS is performed (this can be seen by comparing the load and PCC consumption, also, the bid power is set 

to zero). Between 8 p.m. and midnight, the planer choses FCR again.  

 

Figure 63: Simulation 3 power profiles in a single day. 

BESS SoC 

Figure 64 shows the evolution of the SoC of the BESS over time. The green area shows the BESS limits when 

performing FCR with a maximal bid (i.e., it shows the most restrictive area for the SoC). In 4 occurrences this 

band enlarges as the planner changes the service of the BESS towards PPS. When the BESS switches to the 

PPS service provision, it charges to 90% SoC to be able to perform as much PPS service as possible.  

The energy reserve is satisfied since the battery never goes below 58.7% of SoC (1.467 MWh of energy is 

always available).  
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Figure 64: Simulation 3 BESS SoC. 

Economics 

On the customer side (the owner of the BESS), the economics of the simulation are summarized in Table 33. 

Table 33: Economics of simulation 3. 

Investment cost 1625 kCHF 

Maintenance cost  54.5 kCHF/year 

Yearly profits  70.5 kCHF/year 

Payback time 23 

 

16 

Years (without accounting the 

reserve and current the BESS) 

Years (without accounting the 

reserve and downsizing the BESS) 

 

Table 34 shows the detailed cost and revenues of the system 

Table 34: Detailed cost and revenues in simulation 3. 

In thousand CHF per year  

Revenues  

 Primary regulation 136.6 

 Electricity bill decrease 2.3 

Costs  

 Maintenance + insurance cost 54.5 

 

The yearly profits are computed as follows: (136.6 + 2.3) ∗ (1 − 10%) − 54.5 ≅  70.5 kCHF/year. 
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Note that in the above equation it is estimated that the BESS operator would take a 10% commission on the 

revenues generated by the services that the battery performs. 

For the BESS operator, the yearly revenues are as follows: 

Table 35: Yearly revenues for simulation 3 

In thousand CHF per year  

Commission on services 13.9 

Maintenance 50.4 

Total 64.3 

Discussion on the economics 

One must note that some cost savings that the system allows have not been considered above. For instance, 

the customer would typically have to pay to have a backup energy system (e.g., a diesel generator set). Also, 

if the customer wanted to consume the power profile without having the BESS, he would need to upgrade its 

transformer size and increase its grid connection rating (which would result in some costs).  

The transformer size that would be needed to supply the consumer load would be at least 2.1 MVA (0.5 MVA 

increase compared to the current transformer). By estimating the cost of an MV/LV transformer to 200 

CHF/kVA [28] and supposing that the current 1.6 MVA transformer can be sold at the same price, the charging 

station operator would need to invest 100 kCHF to supply such a load. 

Increasing the grid connection rating would cost about 100 CHF/kW and thus increase the investment by 50 

kCHF. 

Without the energy reserve, and therefore a smaller battery (around 1.75 MWh/1.6MW) that can provide only 

FCR, the payback time would be approximately 16 years.25 

While both PPS and FCR are performed in this simulation, this happens only because of the transformer limit. 

This means that if the customer were to choose which service to perform on economics only and did not have 

a limiting transformer limit, he would only perform FCR (i.e., the incentive to perform PPS is not enough to not 

perform FCR with the BESS).  

Ultimately, DSOs might want to incentivize EV charging station operators to perform PPS to avoid upcoming 

grid congestions and infrastructure reinforcements. To do so, they would need to increase the cost of power 

with respect to the revenues of FCR. Hence, a power cost sensitivity analysis is presented below to show the 

impact of higher peak power prices on the service planning.  

 
25 An alternative way of estimating the return of investment for the BESS without downsizing it, it would be to 

consider the value of the reserve. While this is case specific, a simplified consideration is based on the cost of 

alternative technologies that can provide this reserve. Considering backup storage with 8h runtime, a 

comparable system would be a 100 kW diesel generator (750 kWh are ensured to be stored in the BESS which 

means ~100 kW can be provided during 8 h). Typically, diesel generators cost around 800 CHF/kW which 

would lead to an 80 kCHF investment [29] (ignoring the rare occasions of diesel consumption costs). Taking 

this investment avoidance factor, the payback time would be approximately 20 years.  
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Simulation 4 - Peak power cost sensitivity analysis 

Until now the peak power price has been fixed at 5.63chf/kW/month as discussed above. Below are the results 

of a peak power price set at 13 CHF/kW/month. Note that several operators in Switzerland already apply these 

tariffs to certain customers.  

Power profiles results 

Figure 65 shows the power profiles for the simulation with a 13 CHF/kW/month peak power price. One can 

see that the PPS target is re-computed every month and is 1.5 MW at maximum. As the transformer limit is 

1.6 MW, we can conclude that PPS was performed.  

 

Figure 65: Simulation 4 power profiles. 

Zooming on the 22nd of July better shows the PPS service being performed, with a PPS target of less than 

1.5 MW (Figure 66). 

 

Figure 66: Simulation 4 power profiles in a single day 

BESS SoC 

As shown in Figure 67, the previously considered 750 kWh energy reserve limit is guaranteed. The lowest SoC 

reached during the simulation is 58% (i.e., 1.45 MWh always stored in the battery). It can be observed that 

more occurrences of PPS have been applied in order to remain within transformer limits.  
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Figure 67: Simulation 4 BESS SoC. 

Economics 

On the customer side (the owner of the BESS), the economics of the simulation are summarized in Table 36. 

Table 36: Economics of the simulation 4. 

Investment cost 1625 kCHF 

Maintenance cost  54.5 kCHF/year 

Yearly profits  87.3 kCHF/year 

Payback time 18.6 

 

16  

 

13 

Years (Without accounting energy 

reserve and current BESS) 

Years (accounting energy reserve 

revenue and grid upgrade costs) 

Years (without accounting the 

reserve and downsizing the BESS) 

Table 37 shows the detailed cost and revenues of the system. 

Table 37: Detailed cost and revenues. 

In thousand CHF per year  

Revenues  

 Primary regulation 136.4 

 Electricity bill decrease 21 

Costs  

 Maintenance + insurance cost 54.5 

 

The yearly profits are computed as follows:(136.4 + 21) ∗ (1 − 10%) − 54.5 ≅  87.3 kCHF/year. 
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For the BESS operator, the yearly revenues are as follows: 

Table 38: Yearly revenues in simulation 4. 

In thousand CHF per year  

Commission on services 13.9 

Maintenance 50.4 

Total 64.3 

If the energy reserve cost and grid upgrade costs are considered, the payback time is approx. 16 years. 

Price sensitivity discussion 

Further increasing the peak power price would increase the amount of PPS shaving performed and decrease 

the payback time for the battery. For example, running the experiment with a 20 CHF/kW/month leads to a 

payback time of 13 years. 

To make BESS coupled with EV charging stations performing PPS, the distribution grid operator should 

increase the price of the power component: the energy component can be reduced so that the overall bill of a 

charging station operator (without the use of batteries) does not change. 

In some specific cases, BESSs can be economical even with the current prices. For example, in remote places, 

where upgrading the infrastructure to supply the rated power of the charging stations would lead to huge 

investment costs, batteries can be deployed to take care of the consumption peaks.  

 

Conclusion 

In Table 39 the first simulation shows a BESS that has a break-even at about the same time than its lifetime 

without accounting for the economic benefit of 750kWh reserve. This means that the constant reserve of 

750kWh can be considered as cost-free. 

In the second simulation, it can be concluded that a battery in this context cannot be profitable without FCR as 

a service.  

The third simulation, a tenfold increase of EVC shows lower profitability of the BESS. The reason is that with 

an increased load, a fixed transformer size limits the possibilities of FCR participation from the BESS.  

Finally, the last simulation indicates that only if the power price triples its current value, then EV charging 

station operators would consider performing PPS instead of only FCR. This indicates a suggested pricing 

scheme for grid operators to incentivise PPS when grid congestions will arise. It is important to note that EV 

charging station operators may be forced to perform PPS despite any peak power price if it avoids costly grid 

connection reinforcement requirements.  

All in all, BESS profitability alongside a charging station is possible yet not a given. To reach an attractive 

break-even cost, a careful dimensioning of the BESS must consider numerous parameters which also vary 

during its lifetime. These parameters include market prices, number of EVCs, transformer size and others.  
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Table 39: Cost and revenues for all 4 simulations 

Simulation 

4 EVC 

Services: 

FCR + PPS + 

Reserve 

4 EVC 

Services: 

PPS + Reserve 

40 EVC 

Services: 

FCR + PPS + 

Reserve 

Power price: 

5.6chf/kW/month 

40 EVC 

Services: 

FCR + PPS + 

Reserve 

Power price: 

13chf/kW/month 

 

Investment -1625 -1625 -1625 -1625 kCHF 

O&M 
-54.5 -54.5 -54.5 -54.5 kCHF/y

ear 

Primary control 

revenues 

204 0 136.6 136.4 kCHF/y

ear 

Electricity bill 

savings 

-28.6 17 2.3 21 kCHF/y

ear 

Yearly profits* 
103 -38.9 70.5 87.3 kCHF/y

ear 

Payback time 1* 15.7 ∞ 23 18.6 years 

Payback time 2** 10 30*** 16 13 years 

*Without considering the economic benefits of constant 750kWh reserve nor avoidance of transformer upgrade 

**Considering a smaller BESS which does not provide an energy reserve except for *** 

*** Assuming no O&M cost for comparison purposes 

 

4.4.4. Experiment 
Replicated setup 

To experimentally validate the multi-service battery controller of Gridsteer, it was decided to replicate the setup 

of “Simulation 3 - With additional charging stations” and a power price increase at 13chf/kW/month. 

Experimental setup 

Since the Aigle setup is not ready for such experiment, it was replicated at EPFL by scaling down the ratings 

of the hardware in Aigle by a factor of 62.5. This limitation is due to the rated power of the controllable load 

being 30kVA. That is to say: 

1. the replicated charging station load reaches 24.5 kW at maximum. In Aigle, it would reach 1.53 MW. 

2. The scale-down replica of the Aigle BESS has a 40 kWh / 25.6 kW rating. The EPFL BESS SoC range 

is limited by the software to match these ratings (i.e., the usable SoC range is [17.7 %, 82.2%]). The 

power rating is replicated by setting a virtual limit in the software. 

3. The transformer limit is replicated by setting a virtual limit at 25.6 kW. 

4. The PPS target and FCR bids are scaled down accordingly. 

The following hardware was used: 

1. 1 string of a 9 string 740 kVA/560 kWh BESS, resulting in an 80 kVA/62 kWh battery virtually capped 

at [17.7 %, 82.2%]. 

2. 1 controllable electronic load (30 kVA). 

Note that other nodes are also part of this network but have been ignored for the experiment. 
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Figure 68: Experiment grid schematic 

Results 

The BESS performed FCR at all times except from 4pm to 8pm for PPS as planned. This respects the 

scheduled services and the profile curves match the simulation well as shown in Figure 69.   

 

 

Figure 69: Simulation vs experiment power profiles. 

An example of adequate FCR support for the slot of 0-4am is shown in Figure 70. The BESS power follows 

the frequency with a pre-defined scaled-down droop coefficient of 0.1MW/Hz (which changes for every 4h 

slot). Additionally, the charge management is applied to keep the BESS within a tight SoC range as shown in 

Figure 71.  

 

Figure 70: Experiment of BESS FCR provision. 
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Figure 71: Experiment BESS SoC and charge management during FCR provision. 

In between 4pm and 8pm, PPS operated as expected to keep the PCC power within transformer limits (see 

Figure 72). 

 

Figure 72: Experiment BESS power profiles during PPS. 

The SoC during the experiment was well kept between 60 and 65% during FCR and up to 90% during PPS 

as show in Figure 73.  

 

 

Figure 73: BESS SoC during experiment. 

All in all, the results show that the scaled down battery operated in the same way as in the simulation which 

displays the physical feasibility of the MSBC control framework.  
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5. Conclusion and outlook 
The key takeaway messages of this project are the given here below. 

A. EVs charging profiles can be controlled for the benefit of the grid without significantly changing users 

satisfaction. The control framework should consider that: (i) customers tend to receive more energy than 

targeted (4% more); (ii) customers leave later than anticipated (10% later); (iii) customers are ready to 

extend their charge duration (by a few minutes) to help the grid (32% against a discount and 35% even 

without a monetary discount), and (iv) most users (65%) plan their EV charge based on SoC rather than a 

target stay duration or cost.  

B. Controlling EV fast charging stations is not suitable for sub-second control frameworks and their dynamic 

needs to be accounted for in sub-minute control frameworks. By testing the GoFAST EVTEC charging 

station with a Tesla Model S90D, one can observe response times varying between the second to minute 

range depending on the amplitude of the setpoint power variation. Moreover, one can observe that the 

implementation error follows a quadratic trend, where the error is largest for low and high setpoints. 

However, the car model might contribute to these characteristics, thus implying that other car models might 

lead to significantly different results.  

C. Combining a controllable EVCS and a BESS has measurable benefits for grid management and control. 

The control of EVCS alone in the day-ahead stage already provides several measurable benefits in terms 

of reduction of the untracked energy error, and shaving the peak PCC injections, without penalizing EV 

users’ satisfaction. However, it does not guarantee that the flexibility will be available when it is needed 

since it is uncertain when the EV(s) will be present at the charger. Therefore, the installation of a BESS is 

required. Even more, when EVCS and BESS are controlled in real-time, notably by the control framework 

developed in the MESH4U project, all error metrics are reduced by more than tenfold compared to a 

without-control scenario. 

D. The control of EVCS can reduce the need for BESS investment without affecting EVCS user’s satisfaction. 

At the same time, the increase of the BESS’s energy and apparent power capacity has a limited impact on 

the dispatching cumulative energy uncertainty (at least in our case study). 

E. The adoption of controlled EVCS can lower their impact to the grid. It is ubiquitous that adding fast EVCS 

is inevitable to promote the transition towards electric mobility. It is also known that their deployments are 

viewed as a risk for the grid from the added stochasticity and peak power demands. However, with 

adequate control of the stations, one can not only lower their impact on the grid but also provide useful grid 

support (e.g., day-ahead dispatching). Public fast charging stations can therefore not only help the electric 

mobility transition but also provide grid flexibility to the condition that they are both controllable and 

controlled. It is thus important to consider this aspect in the selection process of future charging station 

providers.  

F. Commercial fleet charging stations (CFCS) can support the electrification of the mobility sector in a more 

cost-efficient way than the public fleet charging stations (PFCS). For the same CS energy demand, the 

required battery size to track the dispatch plan is ten times smaller for a CFCS. In terms of required 

infrastructure and investments, one can achieve more grid predictability and flexibility with lower 

investments by implementing dispatch plans on nodes encapsulating schedulable and controllable 

commercial fleet charging stations. Due to the significantly higher stationary battery investment costs, when 

truly necessary for the grid, tracking a PCC node encapsulating highly stochastic PFCSs can be achieved. 

Figure 74 qualitatively shows the grid support versus cost analysis between different levels of 

prediction/scheduling and control for both PFCS and CFCS:  



 

 

80/82 

 

Figure 74: CFCS vs PFCS measures analysis in grid stability and cost. 

 

G. The profitability of an investment in BESS coupled with EVCS is case specific. To make BESS coupled with 

EVCS economically worth performing peak power shaving (PPS), the distribution grid operator should 

increase the price of the power component. Note that the energy component can be reduced so that the 

overall bill of a charging station operator (without the use of batteries) does not change. While for the case 

of the Aigle setup, using the battery to perform PPS is not economical, in some specific cases, BESSs can 

be economically worth even with the existing prices. For example, in remote places, where upgrading the 

infrastructure to supply the rated power of the charging stations would lead to huge investment costs, 

batteries can be deployed to take care of the consumption peaks. Other locations with significant PV 

production and low feed-in tariffs can also make BESS profitable as self-consumption would be added to 

the panel of services. To reach an attractive break-even cost, a careful dimensioning of the BESS must 

consider numerous parameters which vary during its lifetime. These parameters include market prices, 

number of EVCs, transformer size, the load evolution and others. 

6. National and international cooperation 
This project was undertaken under the international collaboration framework ERA-Net Smart Energy Systems’ 

focus initiatives Smart Grid Plus and Integrated, Regional Energy Systems. The ERA-Net project, entitled Multi 

Energy Storage Hub For reliable and commercial systems Utilization (MESH4U), aimed to develop, and test 

multi energy storage hub solutions for flexibility operation from end customers in the local grids, via 

SMEs/Industry up to the Energy/Distribution System Operator. The objective was to enhance the reliability and 

economic advantage of energy supply as well as to offer more flexibility and cost efficiency to the modern 

distribution power grids. The MESH4U solutions was implemented in 4 demonstrators in different countries, 

namely Germany, Italy, Poland and Switzerland, in order to test several use cases and applications of multi 

energy storage hubs within different infrastructures, size of the systems, regulatory and market conditions. 

EPFL-DESL was leading the WP2 on the Development of methodologies and algorithms for optimal planning 

and operation of Flexibility Hub and provided contributions to WP1 and WP4 while ensuring the transfer of 

information and knowledge among Swiss and European partners. WP1 was on the analysis and modeling of 

different storage technologies and their dependencies in multi-storage system, while WP4 on the 

implementation and operation of Mesh4U in demonstrators PL, DE, CH, IT. 

Concrete research activities were also undertaken notably with the MESH4U project partners of the University 

of Rome Tor Vergata (see section 4.3.4).  
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