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Résumeé

Au niveau mondial, l'utilisation de combustibles fossiles pour le transport routier représente 12% des
émissions de gaz a effet de serre (GES). En Suisse, le transport routier représente 30 % des émissions GES,
avec une tendance a la baisse en raison de I'électrification progressive du secteur. Depuis 2020, la part des
véhicules électriques (VE) dans les nouvelles ventes est passée de 20 % a plus de 50 %. Cependant, la
nature stochastique de la recharge des VE et de la production d'énergie renouvelable a un impact sur
I'équilibre du réseau électrique a la fois pour les réseaux de transmission et de distribution. La
littérature récente a montré comment l'intégration proactive des véhicules électriques dans les systémes
électriques, alimentés par des sources de production renouvelables, peut améliorer le fonctionnement global
du réseau pour répondre aux besoins locaux et globaux. A cet égard, le projet vise a améliorer le
fonctionnement d'un réseau de distribution d'électricité hébergeant des ressources renouvelables
stochastiques (de puissance nominale de l'ordre des MW), des systémes de stockage d'énergie par
batterie(BESS - de puissance nominale de I'ordre des MW), et des bornes de recharge rapide de niveau 3
pour les véhicules électriques (EVCS), afin de répondre & de multiples objectifs opérationnels du réseau. A
cet égard, quatre groupes de questions de recherche ont été définis en relation avec : (a) le comportement
des utilisateurs de VE, (b) la controlabilité¢ des EVCS de niveau 3, (c) la capacité du réseau de distribution
d'électricité hébergeant une production renouvelable stochastique substantielle d'EVCS a étre dispatché et
contrbélé avec succés en temps réel, et (d) la fourniture de services auxiliaires multiples par les réseaux de
distribution d'électricité hébergeant des BESS et des EVCS contrdlables. Les principaux résultats du projet
sont les suivants : (i) la combinaison d'EVCS et de BESS controlables présente des avantages mesurables
pour le dispatching, I'exploitation et le contréle du réseau locale de distribution, (ii) le contréle des EVCS peut
réduire le besoin d'investissement dans les BESS (c'est-a-dire réduire la puissance et I'énergie nominales)
sans pour autant réduire de maniéere significative le niveau de satisfaction des utilisateurs de I'EVCS, (iii) le
déploiement de contrdles spécifiques des EVCS peut réduire de maniére significative leur impact négatif sur
le réseau électrique (i.e., congestions et réglage de tension), et encore plus lorsque ces EVCS sont associés
a la charge programmée de flottes d'EV commerciales, (iv) la rentabilité économique des BESS couplés aux
EVCS est spécifiqgue a chaque cas et, dans les conditions du marché actuelles et la configuration du projet,
les services systeme fréquence est le contrble qui offre le meilleur retour sur investissement.

Summary

The utilization of fossil fuels’ for the road transportation accounts for 12% of the global greenhouse gas
emissions (GHGSs). In Switzerland, the road transport account for 30% of Swiss GHGs emissions with a
decreasing trend due to the sector’s progressive electrification. Since 2020, the electric vehicles’ (EVs) share
in new sales has increased from 20% to over 50%. However, the stochastic nature of both EV’s charging and
renewables generation has an impact on the power grid for both transmission and distribution
networks. The recent literature has shown how the proactive EV integration in renewable-based power
systems can enhance the overall power system’s operation to satisfy local and bulk grid needs. In this respect,
the project aims to enhance the operation of a power distribution grid hosting stochastic MW-class renewable
resources, MW-class battery energy storage systems (BESSs), and level-3 EV fast charging stations (EVCSSs),
to serve multiple grid operational objectives. In this respect, four sets of research questions were defined in
relation to: (a) the EV users’ behavior, (b) the controllability of level-3 EVCSs, (c) the ability of the power
distribution grid hosting substantial stochastic renewable generation and EVCSs to be successfully dispatched
and controlled in real-time, and (d) the provision of multiple ancillary services to the power transmission grid
by power distribution grids hosting controllable BESSs and EVCSs. The main project outcomes are the
following: (i) combining controllable EVCSs and BESSs has measurable benefits for grid dispatching, operation
and control, (ii) the control of EVCSs can reduce the need for BESS investment (i.e., reduce both power and
energy ratings) without significantly affecting EVCS users’ satisfaction, (iii) the deployment of specific controls
of EVCSs can significantly lower their negative impact on the power grid, and even more when these EVCS
are associated with scheduled charging of EV commercial fleets, and (iv) the economical profitability of BESSs
coupled with EVCSs is case-specific and, under the current market conditions and the projects’ setting, the
frequency containment reserve (FCR or primary frequency regulation reserve) is the control with the best return
on investment.
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Dispatch Plan

Distribution System Operator
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EV Chargers

Ev Charging Stations
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Forecasting Error

Global Horizontal Irradiance

Global Irradiance and Temperature
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Maximum Absolute BESS Injections
Maximum Absolute Error
Maximum BESS Usage

Minimum EV User Satisfaction
Model Predictive Control

Maximum PCC Power

Multi-Service Battery Controller
Operation and Maintenance
Optimization Problem

Public Fast Charging Station

Point of Common Coupling
Pearson's Linear Correlation. Coefficient
Phasor Measurement Units

Peak Power Shaving

Sensitivity Coefficients

State of Charge

TSO Transmission System Operator
UEE Uncovered Energy Error
VSC Voltage Source Control
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1. Introduction

1.1 Background information and current situation

The worldwide utilisation of fossil fuels’ as primary source of energy accounts for most global greenhouse
gas emissions (GHGS). International efforts, such as the Paris agreement [1], aim to address this issue,
requiring countries to develop national GHGs emissions targets and associated actions for their achievement.
Switzerland has already undertaken several steps in this direction. On January 1!, 2018, the Swiss Energy
Strategy 2050 came into force, and on 27 January 2021, the Federal Council adopted the climate strategy for
Switzerland, aiming for a net zero emissions target by 2050 [2]. Since energy usage represents 75% of the
national GHG emissions [3], fossil fuels need to be replaced by renewable energy resources for the
achievement of this strategy. This would require the electrification of several sectors (e.g., private heating and
mobility along with several industry processes) and the massive integration of distributed renewable energy
resources into the power grid.

Regarding the road transport, it accounts for 30% of Swiss CO2 emissions [4]. In recent years, significant
progress has been achieved in the electrification of this sector, via the massive rollout of low-emission vehicles,
including electric vehicles (EVs)* (Figure 1) [5]. Itis indicative that, since the beginning of the MESH4U project,
in 2019, the EVs’ share in new sales has increased from 20% to over 50%.

55
M Essence-électrique: hybride normal

50 Figure 1: Trend of the new sales of
5 M Essence-électrique: hybride rechargeable low- or zero-emission vehicles in
0 Diesel-électrique: hybride normal Switzerland
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30 m Electrique
25 .
20 —
15
10 -

5 ] .

]
, W W W
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The transport sector electrification entails several challenges for the power grid. Indeed, this transition should
be paired with the massive integration of renewable energy resources to positively affect the GHGs of the
sector. However, the stochasticity of both EV’s charging and renewables generation both have an impact on
the power grid equilibrium. In this respect, proactive EV integration in renewable-based power systems can
serve as grid-connected small-scale distributed battery systems capable to enhance the overall system’s
operation. As a matter of fact, EVs can adapt their charging patterns to provide ancillary services to both
transmission and distribution grid operators such as: dispatchability of the aggregated local resources,
frequency containment and restoration reserves, as well as support to voltage control and line congestion
management of the local distribution grid. They can further facilitate the integration of renewable energy
resources, especially if coupled with stationary battery energy storage systems (BESSSs).

1.2 Purpose of the project

The synergy between EVs and renewables allows for a reduction of fossil-fuel dependency in both the
electricity generation and transportation sectors. The deployment of smart grid solutions, including EV charging
strategies, along with the optimal coordination of distributed energy resources, requires a multi-disciplinary
approach and the solution of complex control problems of stochastic nature. Furthermore, a suitable validation

1 By EVs, we refer to vehicles with a full electric power train and an on-board battery energy storage system (BESS).
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in realistic scale pilot and demonstration sites can be made possible via close collaboration between academia
and industry.

The MESH4U project capitalizes on the existing infrastructure in two demo sites: one in Aigle developed in the
frame of the SFOE P&D REeL project, and another one represented by the smart grid demonstrator on the
EPFL campus. For the purpose of the project, these sites have been expanded by adding to the EPFL smart
grid platform a high-power EV fast charging station and establishing in Aigle links with various energy actors,
notably the local distribution system operator (DSO), Romande Energie, and the local municipality of the city
of Aigle. This setup is ideal to develop specific and advanced control frameworks aiming at: (i) optimizing the
EV integration in renewable-supplied power grids, (ii) analyzing the performance of the developed tools in a
real environment, while (iii) considering insights and feedback from the DSO’s and the society’s perspectives.
In view of the above, the aim of this project is to enhance the operation of a power distribution grid hosting
stochastic MW-class renewable resources, MW-class BESSs, and EV fast chargers, in order to maximize
multiple grid operational objectives and by leveraging the controllable power electronics converters of the
considered resources.

1.3 Objectives

For the achievement of the above-mentioned project’s multiple aims, the research activities focused on the
development of advanced control algorithms for optimal resources control. These algorithms have been
developed and validated in different settings, namely: (a) off-line simulations, (b) experiments on the EPFL
smart grid platform, and (c) simulations based on the real-scale experimental setup in Aigle.

The developed control algorithms interact with the controllable resources’ power electronic units to enable the
provision of power system ancillary services, even in the presence of large stochastic EV charging. A
centralized master-level controller is designed for the coordination of the controllable resources for the optimal
provision of these services, while respecting the single units’ and grid operational constraints. For example,
when controlling the EV fast-charging station, the EV batteries’ wear and tear associated with a variable power
charging process are minimized with the objective of maximizing the users’ energy demand while respecting
all operational constraints of EVs and their batteries. The inputs of the main controller are: (i) the actual status
of the available controllable resources (such as the information on the equivalent virtual battery of the
aggregated available EVs given the users’ needs and the real-time status of the controllable BESS) and (ii)
the real-time power grid conditions, e.g., system frequency, nodal voltages and loading levels of
lines/transformers. These last are made available via a cutting-edge sensing infrastructure based on advanced
phasor measurement units (PMUs) specifically developed for power distribution grids. These devices have
already been installed in both experiment sites at the EPFL campus and Aigle demo (see Section 2).

Since the existing literature has largely proven that the uncontrollable EV charging can severely and negatively
impact the power-grid, we envisage that through the joint control of BESSs and EVCSs, our proposed control
algorithms are capable to guarantee the provision of the above-listed power system services even in the
presence of a large stochastic EV charging patterns.

More specifically, the elements of the proposed control methodology are the following:

e Type of measurements: nodal voltages, branch currents, active/reactive powers, resource-specific data.

e Method of measurements: measurements at the BESS, PV and EVCS grid connection points and for the
electrical grid by means of a PMU infrastructure. Further resource-specific data are also be pulled in order
to create databases that can be used for forecasting purposes.

e Objective of the measurement: input and validation of control approaches for real time congestion, load
profile management and voltage control of MV power distribution grids.

e Duration of each measurement: during the entire activity.

e Frequency of measurements: minimum 1 Hz

e Planned evaluation of efficiency: ability to control the EVCSs according to the objectives set in all stages of
the control algorithm (see Section 3 where it is explained that the proposed framework includes both a day-
ahead and real-time phases).
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2. Description of facility

As mentioned in 1.3 Objectives, the control algorithms are validated through simulations both at the EPFL and
in Aigle as well as on a real hardware at the EPFL smart grid platform. This iterative process enables the
implementation and control's benchmarking first in a simulation setup and then in a real-scale experimental
environment before assessing, via simulations, its impact at the Aigle demo site. In this respect, both the demo
site in Aigle and the one at the EPFL possess similar assets, namely PV generation, a MW-class BESS and
PMUs for the real-time situational awareness of the local power distribution grid. Yet, the laboratory facilities
possess a wider variety of controllable elements such as supercapacitor bank, heat pump, and fuel cells,
allowing the development of a control framework applicable in a wide range of use cases. Furthermore, since
the infrastructure is connected to the EPFL power grid, there is more flexibility to study and validate future
business models that cannot be tested in a real-life grid. In what follows, details about the two experimental
set-ups are provided.

2.1. The EPFL smart grid platform at the EPFL Distributed Electrical Systems laboratory

(EPFL-DESL)

A dedicated hardware infrastructure has been developed at the EPFL-DESL with a similar structure to the
Aigle demo site (meaning REeL + MESH4U infrastructure). This enables the iterative process of validating and
improving the developed controls. This infrastructure includes the following elements (see Figure 2):

a) A low-voltage Cigré benchmark microgrid connected to a 21kV busbar through a 630 kVA 21kV/400V
transformer that hosts the following resources (non-exhaustive lists of the relevant resources that are
used in this project):

a. 40kW (peak) photovoltaic (PV) system, divided in three separated power plants supported by
measurement units of meteorological quantities (e.g., solar irradiance, environmental
temperature etc.);

b. 25 kW — 25 kWh BESS based on Lithium Titanate Oxide electrochemistry;

fast dynamic AC electronic load emulators up to an overall rated power of 30 kVA;

d. alevel-2 charging station combining two type 2 EV plugs (up to 22kW) and a bidirectional (up
to 10 kw) CHAdeMO-type charging station.

b) A GoFast EV fast charging station equipped with the same technology of the foreseen installation in
the Aigle site. It is connected to the same 21kV busbar of the microgrid through a 630 kVA 21kV/400V
transformer (see Figure 6 and Figure 7).

c) A 720kVA / 560 kWh Lithium Titanate Oxide BESS connected to the same 21kV busbar of the
microgrid through a 0.72 MVA 21kV/300V transformer (see Figure 3 and Table 1).

d) Two independent PMU-based real-time situational awareness systems capable of performing a low-
latency high-frequency state estimation of: (i) the 21kV grid and, (ii) the low-voltage microgrid.

o
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Figure 2: Configuration of the EPFL smart grid platform.

More details on some key pieces of infrastructure used for the project are presented below.

EV fast charging station

A GoFast fast-charging station infrastructure for private EV users is available on the EPFL smart grid platform.
Itis composed of an off-board Combined Charging System (CCS)/CHAdeMO EV chargers (EVC), with a power
rate of up to 150 kW. A single transformer is used to supply this charging station from the 21 kV MV utility grid
and from the same busbar where the BESS, as described below, is connected.

BESS

A 720 kW/560 kWh BESS connected to a 21 kV distribution feeder. It is based on the Lithium Titanate Oxide
technology, which can perform up to 20.000 complete charge-discharge cycles at 4C discharge rate. Table 1
presents the main parameters of the EPFL BESS.
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Figure 3: External view of the utility-scale BESS available at the EPFL smart grid platform and used for this project.

Table 1: Main parameters of the EPFL BESS

Parameter Value .
Inverter parameters
System parameters
Maximum AC-power 720 kVA
Nominal Energy Capacity 560 kWh
. Rated AC-power 615 kVA
Maximum Power 720 kVA
X Rated grid voltage 300V, three-phase
Battery configuration 9p{15s{3p{20s}}}
o 3 Maximum AC-current 1385A
Communication protocols (cycle time) | Modbus (>100 ms), Ethercat (10 ms)
AC-current distortion (THD) 3%
Cell parameters
; N Nominal DC Voltage 750V
Nominal capacity 30 Ah
Nominal voltage 23V DC Voltage range 500-890 V
Voltage range 1.7-27V Bfficlency =975
Maximum current 120 A (4C) Transformer parameters
Impedance 2 mOhm Rated power 630 kVA
Expected cycle life 20000 full cycles High voltage 3x21kv
Expected calendar life 20 years Low voltage 3x300V
Weight 1100 g Group Dd5
Dimensions (LxWxT) 287x179x12 mm

PMU-based grid sensing infrastructure

A cutting-edge sensing infrastructure for modern electrical distribution systems is available on the Aigle
demonstrator site offering low-latency (<100ms) and high refresh rate (50 estimations per second) accurate
awareness of the grid state. In particular, it is a commercial power grid monitoring and automation system
based on time-and-phase aligned measurements of the grid voltage/current synchrophasors. Such a sensing
system provides operators, and the foreseen controllers, with the real-time knowledge of the grid status and
allows to locate and isolate faults enabling the restoration of power.

These devices provide measurements with a reporting rate of 50 frames-per-second (i.e., a reporting time 20
ms) and a total vector error in the order of 0.0X%?2. The measurements provided by these devices are used for
both the day-ahead dispatch plan construction (i.e., using historical data) as well as for the real-time control of
the system (see Figure 4).

2 The total vector error is the quantity used by the IEEE Standard C37.118 to quantify the accuracy of PMUs.
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Figure 4: Image of a PMU toolkit installed in both demonstration sites.

Solar irradiation measurement units

A Global Irradiance and Temperature (GIT) measurements box has been installed at the EPFL smart grid
platform in order to support a data-driven intra-day forecast of PV generation. The GIT box measures the
global horizontal irradiance (GHI) and the PV cell temperature. The GHI is measured using a pyranometer
Apogee SP-230 and the temperature using a Mouser 595-LMT87LP sensor. The acquisition system is based
on a ruggedized National Instrument (NI) cRIO 9063. Measurements are sent to a central server using a 4G
modem and saved at 1-second resolution in order to capture fast GHI dynamics (see Figure 5).

Figure 6: The EV fast charging station at the EPFL smart grid platform.
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Technical Specifications
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Figure 7: Technical specifications of the GoFast EV fast charging station at EPFL smart grid platform.

2.2. Demo site - Aigle

The demo site in Aigle is a field test facility already developed in the frame of the SFOE P&D REeL project
and maintained as a permanent research infrastructure. It is located in a rural area, hence it embeds all the
peculiarities of modern distribution networks: relatively long radial feeders, presence of distributed generators,
and relatively large, concentrated load (e.g., the under-development EV fast charging station). More
specifically, the feeder originates in Collombey (VS) and interfaces 68 independent producers (1790 kW, out
of which 815 kW from small hydro power stations) and a large PV installation of 1.6 MW at the Migros-Carports.
The power consumption reaches 4.3MW during the winter and 2.9MW during the summer. Therefore, it
represents a unique field test site to carry out research in the domain of control and coordination of renewables-
fed medium-voltage grids.

In the frame of the MESH4U project, this site was used for the assessment of the impact of the deployment of
fast EVCSs on the power grid. This was achieved through simulations that consider all the specifications of
the existing infrastructure and those of the EV fast charging station which is already foreseen to be developed
on this site. The controllability of the available units, i.e., an MW-class BESS connected to a 20kV grid hosting
the multi-MW PV and small hydropower plants, allows for the provision of several power system services, such
as system frequency regulation, local voltage control, and lines congestion management, considering the
actual status of the grid provided by an-already-deployed PMU-based situational awareness system. A
dedicated setup for the measurement of meteorological quantities is also installed in the vicinity of the PV
plants, to enable the accurate intra-day forecasting of the PV generation to support the formulation and
implementation of predictive controls.
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A schematic representation of the demonstration site is shown in Figure 8.
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Figure 8: Schematic representation of the field demonstration site in Aigle.

As already mentioned, the site includes devices that have been installed in the frame of the SFOE P&D REeL
project and were used in the frame of the MESH4U project too. Additional details about these devices are
given below.

MW-class battery energy storage system

The MW-class BESS installed at the Aigle demonstration site is characterized by rated power and energy
capacities of 1.6 MVA and 2.5 MWh, respectively. The BESS cells’ electrochemistry is Lithium, Graphite /
Nickel Manganese Cobalt. This specific type of cells’ electrochemistry allows up to 4,500 complete charge-
discharge cycles at 100% depth of discharge (DoD) at a 1C rate®. The BESS is equipped with a 1.6 MVA 4-
quadrant converter that can operate in current source control mode (CSC, or grid-feeding) or in voltage source
control mode (VSC, or grid-forming) with a seamless transition between the two operating modes.
Furthermore, the BESS and its converter are characterized by a power ramping rate of several tens of MW/s
(therefore, suitable to provide frequency containment reserve).

A 3-phase step-up transformer with a nominal power of 1.6 MVA connects the LV AC side of the BESS
converter to the external medium voltage utility grid. The high-voltage side of the transformer has a delta
connection with phase-to-phase rated voltage of 21 kV.

To achieve maximum flexibility and fast controllability of the system, a custom-made energy management
system (EMS) is available to interact independently with the BESS power converter controller and the master
string controller of the BESS cells. Such a design enables to send commands to the power converter via
Ethercat with fast and low-latency communication (i.e., latency and refresh rate below 10 ms).

The technical parameters of the MW-class BESS, along with some insights on its controllability, are included
in the Table 2.

3 The C-rate is the unit to measure the speed at which a battery is fully charged or discharged. More specifically, the 1C
rate of a battery cell represents the level of constant current charge or discharge that the cell can sustain for one hour of
time.
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Table 2: Technical parameters of the available MW-class BESS

Parameter Value
BESS energy capacity 2.5 MWh
4.500 full cycles (100% DoD @ 1 C discharging
rate). Remaining end of life capacity: 80%

Expected battery cycle life

Maximum AC apparent power 1.6 MVA
Rated AC grid voltage 21 kV
Rated grid frequency 50 Hz
DC voltage range 620 - 840 V
AC converter voltage 380V +10%
Operation on 4 AC P/Q quadrants Capable

Distortion factor (THD) at the HV

. <3%
connection of the step-up transformer

Efficiency > 90% for all the operating conditions
Type of cooling forced air convention

CSC operation mode Capable

Refresh rate of CSC operation mode 10 ms

VSC operation mode Capable

Refresh rate of VSC operation mode 10 ms

Level 3 EVCS

Initially, 4 EVCS, identical to the one installed on the EPFL smart grid platform, were foreseen to be installed
at the Aigle demo site. Given the evolution of the EV market (see 1.1 Background information and current
situation), the foreseen power rate of each of them was in the meantime increased to 300 kW for each of them.
Since the authorization for their installation was postponed after the end of the project, simulations were
undertaken based on the characteristics of the foreseen EVCS and data from other sites.

GIT meteo-boxes

Four Global Irradiance and Temperature (GIT) measurement boxes have been installed at the demo site in
Aigle. These boxes are identical to the one installed at EPFL smart grid platform (see description above).

PMU measurements units

20 PMUs have been installed at the Aigle demo sites. These units present similar characteristics with those
described above.

3. Procedures and methodology

To achieve the targets of this demonstration project, a set of activities have been defined. First, the project
covers a series of simulation studies for the design and performance assessment of control solutions for
optimal management of resources in converter-dominated modern power distribution grids. The simulation
studies are based on realistic models of both Aigle the EPFL test facilities. Both models include insights of the
resource’s actual communication features (e.g., time latencies) and technical constraints (e.g., capability
curves of the controllable converters). Then, a set of tests is undertaken on the real hardware available at the
EPFL-DESL laboratory test facilities, which iteratively enables the implementation on a reduced-scale
experimental environment before testing the proposed solutions on the larger experimental environment at the
EPFL smart grid platform. Finally, the validated methodology is used for the Aigle site to simulate the foreseen
integration of the EV fast charging station within the local power distribution grid. In particular, the same
hardware for the EV fast charging station foreseen in Aigle is used in the laboratory environment, making it
possible to test the control features of the available hardware as well as to enable real-time 2-way
communication with the backend of the off-board EV charger. Information flow from the EVS is necessary for
the centralized controller since it takes into consideration the status of the EV battery as well as the EV user’s
needs (e.g., desired departure time and desired EV State-of-Charge - SoC). This information is indeed used
by the centralized controller to define the optimal and fair scheduling of the EVs charging processes.

The following list discusses the specific activities with associated detailed descriptions.
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1. EV users behavior analysis

The first step is to grasp a behavioral assessment of EV users. In this respect, a survey was undertaken to
know how flexibility can be harvested from charging sessions with minimal impact on customer satisfaction.
The second step is to collect a large set of EV charging sessions data. This allows building statistical models
to generate reliable scenarios of EV charging sessions.

2. EV Charging station controllability

In practice, controlling EV charging sessions is a complex task. Each EV, each plug type and each charging
station have their own peculiarities, constraints, and capabilities and no one size fits all control frameworks in
the context of controlling EV charging. Hence, the objective of this part is to assess the controllability of
sessions in the context of a specific EV car, plugs and station.

3. Dispatch plan and real-time control

Providing day-ahead accurate prediction of the power profile of a whole subnetwork is a valuable information
for aggregators and distribution systems operators (and even more so as intermittent renewable generation
and stochastic EV charging consumption grows). Dispatching and real-time control to provide such service
has been extensively researched by EPFL and Gridsteer partners of the project. Here the goal is to include
highly stochastic, yet partially controllable EV charging stations, to the controllable assets of the targeted power
distribution grid.

4. Multi-service battery control

This activity aims at undertaking a market assessment of economic and technical interest of an extensive list
of services that BESSs can provide. Each service is listed in terms of economic interest but also
complementary with other services provision. Then, a control framework is developed to allow multi-service
provisioning from BESSs. Simulations and dedicated experimental campaign are performed in this respect.
These activities valorize the involvement into the project of a variety of energy stakeholders, namely the DSO,
local authorities and operators of EV charging stations.

4. Activities and results

4.1. EV user behavior analysis

4.1.1. Behavioral assessment

Context

Understanding the EV users’ behavior, and willingness to provide flexibility during a charge, is crucial to
developing a feasible EV charging station control scheme. A web-based system and a QR code have been
placed on the parking spots of the EV fast-charging station installed at EPFL since end of January 2022. Once
the customer scans the QR code, an on-line survey is made available. Although no reward scheme has been
set, over 89 valid submissions have been recorded until April 2023. On top of these submissions, an additional
42 surveys have been given in person during experiments. A total of 131 participations have then been used
for this analysis.

The goal of this survey is two-fold:

1. understand the willingness of the customers to participate in providing flexibility in their EV charge;
2. quantify the accuracy of the user to estimate their EV charge duration and energy needs.

Questions

The questions of the survey have been defined to be easy and fast to answer yet yield as much interesting
information as possible. To this date, the average time spent on the survey is less than 3 minutes. The set of
questions (from a mobile device) is reported in the screenshots here below.
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Results

With the submitted responses, the actual charging profile of each user has been compared to the (user’s)
predicted one. The set of questions and post-process analysis allowed to yield results on the following
behavioral features:

a) deviation of energy delivered vs expected;

b) deviation of stay duration vs expected;

c) end of session decision factor;

d) tolerance for flexible charge;

e) gamification readiness.
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Deviation of energy delivered vs expected

The energy delivered to the customer vs his prediction has been computed based on the customer’s inputs on
(a) the EV starting SoC; (b) the EV target SoC at the end of the session; and (c) the vehicle model (for retrieving
the battery capacity).

The post-process analysis determined whether the delivered energy is higher, lower, or similar to the customer
target. From 79 valid answers and charge profiles, it turns out that customers tend to charge in average about
4.3% more energy than the targeted value (see Figure 9) and that the spread of that deviation is quite large.

In general, users tend to leave with delivered energy close to their targeted one. Although not significant
enough for a statistically strong conclusion, it seems some users may receive slightly less energy and still
reach their target (and be satisfied by their charging session). Hence, some (limited) controllability could be
applied with minimized customer dissatisfaction.
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Figure 9: Energy delivered to customer vs his prediction.

Deviation of stay duration vs expected

Comparing the expected vs realized charge duration of 100 valid answers, we found that users tend to stay,
in average, 10% longer than anticipated (see Figure 10). The overall answers are also quite precise between
planned and actual stay duration. This is most probably due to the accurate prediction of the EV on-board
computer to reach the target SoC.
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Figure 10 : Stay duration of customer vs his prediction.
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End of session decision factor

Out of 101 valid answers, the decision factor to stop the charging session has been assessed. More than half
of the participants decide to stop their session based on the EV battery SoC. About a third of them leave when
their stay time is reached and, finally, 5% leave when a specific cost is reached (see Figure 11).

| usually stop my charging session when ...

msoc is reached
m Planned stay time reached
Planned session cost reached

Figure 11 : Distribution of the end-of-session decision factor.

Tolerance for flexible charge

To assess the customers’ readiness to allow for a slower charge if this helps the electrical grid, the following
guestion was posed:

“Would you agree to increase your charging time (a few minutes) to help the electric grid? “

More than two thirds of 101 participants would accept to provide flexibility and half of them would do it even
without a discount (see Figure 12). This shows a rejoicing number of customers ready to participate in grid
flexibility. It is however possible that these participants could be considered as early adopters in the EV sector
and as electric cars will gradually hit the common mass market, these results may change over time.

myes myes but only discount no

Figure 12 : EV customers tolerance for flexible charge.

Gamification readiness

Asking users to provide some information on their upcoming charge profile might be crucial to control their
charge without significantly impacting the user’s satisfaction. However, the user does not have any incentive
to answer honestly. A competition between users for the most accurate answers could serve as such incentive.
In this respect, the following question was formulated.
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“Would you participate in a competition where the 3 users of this charging station that have responded the
most accurately to the questions of this survey win free charges (you would be required to provide your email
address)?”

Out of 60 valid answers, it appears that the reluctance to share one’s email is still significant. 40% of users
would rather not participate and an additional 27% are unsure (see Figure 13).

myes mmaybe mno

Figure 13 : EV customers gamification readiness.

Conclusions

Results show that slightly controlling the EV charging profile for the benefit of the grid without significantly
changing their charging satisfaction, is a feasible control option. This conclusion can be derived in view of the
following considerations:

1. customers tend to receive, in average, more energy than targeted (4% more);

2. customers leave, in average, later than anticipated (10% later);

3. customers are ready to extend their charge duration (by few minutes) to help the grid (35% against a
discount and 32% even without a monetary discount).

Finally, it is worth observing that a control framework leveraging these flexibilities should consider that most
users (65%) plan their EV charge based on a target SoC than a target stay duration or cost.

4.1.2. EV user statistical modelling®

Since EVCSs are considered as controllable entities, i.e., the active (and reactive) power injections of EVCSs
are variables of the problem, there is the need to forecast EV users’ behavior. More specifically, for a given
EVCS, EV users behavior refer to: (i) the number of EV charging sessions per day, (ii) the EVs’ arrival and
departure times, (iii) the initial and final, i.e., target, SoCs of EVs’ batteries, (iv) the EVs’ battery capacities,
and (v) the minimum and maximum active power injections (defined as, respectively, the maximum and
minimum imposed by either the EVCSs’ converters limits or by the EV on-board controller).

In view of the large number of quantities that define EV user behavior, a data-agnostic tool was developed that
uses any amount of data with as many features as an input, and outputs the best Probability Density Functions
(PDFs) that would model the data. As the input data is multi-variate, the output PDFs can be anything from
several univariate distributions to a full Gaussian Mixture Model (GMM) that models all input variables (or
features) simultaneously. The algorithm’s idea is to fit the data with different functions then output the best-
performing-probabilistic-model. The flowchart of the developed toolbox is depicted in Figure 14. As can be
seen, the input data is first filtered then fitted to: (i) one multi-variate GMM (Multivariate GMM- approach, see
Figure 14), (ii) N-univariate GMMs (Univariate GMM-approach, see Figure 14), with N being the number of
input features, and (iii) a mix of multi- and uni-variate GMMs (Mixed GMM-approach, see Figure 14). Once all
three fittings converge, they are compared using accuracy, bias and correlation metrics. Finally, the fitting with

4 This section is adapted from the work presented in [14].
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the overall best metrics is selected as the best-performing-probabilistic- model, where from the latter, EV user
behaviors can be inferred based on the features —i.e., season and day-type — of the day we wish to forecast.

MATLAB Toolbox Flowchart

-

.‘"I Matrix of K
Matrix of historical Pre-selection of | selected [
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[ byny f
{ J
f I .
Multivariate Univariate Mixed
GMM-approach GMM-approach GMM-approach

Selection of best
model

L -
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Y
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Array of GMM Forecasting
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Figure 14: Flowchart of the data-agnostic EV user statistical modelling toolbox.

In the following, each sub-block of the flowchart in Figure 14 is explained.

Pre-selection of observations. The Z x N — where Z is the number of measurements and N is the number of
features or variables — input matrix of measurement is automatically filtered based on a set of control
parameters specified by the user. Namely the user chooses the season and the day-type (i.e., weekend or
weekday). Indeed, this enables the user to create EV user behavior models that pertain to a specific season
and day-type. The tool automatically provides the best model that statistically represents a subset of the
historical data where only the desired season and day-type are included. The block outputs a reduced
measurement matrix with a dimension of K xN, where Kmeas is the number of selected measurements.

Multi-variate GMM approach. In this block, the built-in MATLAB function £itgmdist is used together with K-
fold cross-validation [15] to compute an optimal GMM?® considering all filtered inputted variables
simultaneously. The fitgmdist function has multiple parameters that can alter the outputted model.
Therefore, in the proposed method, we loop over the number of components of the outputted GMM (from one
to a user- defined maximum GMM order). For each GMM order, cross-validation is used to avoid over- fitting
in cases where the GMM order gets too high (see Figure 16). Namely, for each GMM order, first, the filtered
dataset is randomly divided into T groups (or folds) of the same size. Then, for each fold, the training and
testing process is repeated T times. The training and testing process consists in fitting a GMM to the training
data using the order of the current iteration, then, regenerate data using the GMM model and compute the
mean absolute error between the newly generated data and the test set. Every fitted GMM-distribution is saved
during the iterations. The model with the least mean absolute error at the loop exit is, then, chosen. The general
scheme and details of the proposed method are shown in, respectively, Figure 15 and Figure 16.

5 A Gaussian Mixture Model is a weighted sum of multivariate normal distributions. More information about GMMs can be
found in [16].
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Figure 15: Flowchart of the multi-variate GMM approach block
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Figure 16: Flowchart of the mixed GMM-based process.
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Uni-variate GMM approach. In this block, in contrast to the Multi-variate GMM approach that implicitly considers
the input dataset variables or features to be correlated, the input data is modelled separately, i.e., each variable
(column of the filtered data matrix) is considered independent of the others and, therefore, is fitted with its own
GMM. Hence, the output of this block is a set of N GMMs. A schematic diagram of the block is shown in Figure

17.
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Mixed GMM approach. This block combines the functionalities of the two previous ones. Indeed, if the variables
of the input dataset are split into correlated and uncorrelated datasets, it is optimal to fit the correlated variables
with the multivariate-GMM approach. In contrast, the uncorrelated variables would be fit separately using the
univariate-GMM approach (see Figure 18). In this approach, the correlation analysis block uses Pearson's
Linear Correlation Coefficient (PLCC)®. The correlation tolerance is user-configurable, with a default value set

at0.5".

v

1GMM
distribution

Forecasting
error structure

Figure 17: Flowchart of the univariate GMM approach block.

6 The interested reader is referred to [17] for more information about the PLCC.

7 Recall that PLCC values range from -1 to +1, where -1 corresponds to negative correlation while +1 corresponds to

positive correlation.
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Figure 18: Flowchart of the mixed GMM approach block

Select best GMM approach. A set of metrics is used to select the best-fitted models between the three
approaches. The metrics aim at gvaluating the performance of each approach based on (i) accuracy (A), i.e., the
average discrepancy between individual pairs of observation and forecast, (ii) bias (B), i.e., the mean deviation
from average observation and average forecast, (iii) correlation (R), i.e., PLCC correlation of observation and
forecast vectors, and (iv) goodness-of-fit, i.e., the result of a P-value (two-sample Kolmogorov-Smirnow) test
on the null hypothesis of having the same underlying distribution for the observation and forecast datasets.
Table 3 enumerates all the metrics used to quantify accuracy (Table 3.a) and bias (Table 3.b), where ek =yk
- xk is the forecast error and Qk =y k/xk, with x and y being, respectively, the K-dimensional observation
and forecast vectors. The final selection relies on the global forecasting error defined as a weighted sum of
all the metrics. Formally, the forecasting error (FE) is defined as FE =w1 A + w2B +wsR, where w1, w2, w3
are user-defined weights, and A, B, R given by the following definitions.

N |MAPE,|+|sMAPE,| +|MSA,|

A 1
T N4 3
B lﬁ |MPER|+|SSPB,,|}
N = 2
1 N
R=—13 [100(1- Ry)|
NJ"I:]
1)

where each Rn corresponds to the PLCC correlation of the observation and forecast vectors for a given feature.
The other metrics are defined in Table 3. The weights need to be assigned by the user based on the application
requirement. In our case, based on the observed performance, it was observed that setting all the weights to 1
lead to the best results as the obtained models were not biased in favour of a specific metric. Note thatin (1), the
absolute value is used as the aim is not to evaluate the direction of the bias, i.e., under or over-estimation. Finally,
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the best-fit is chosen as the set of models of the approach that leads to: i) the smallest FE, and (ii) a two-sample
Kolmogorov-Smirnow test result that is lower than a user-defined critical value of 5% significance level®.

Table 3: Metrics to compare different approaches and choose the best-fit.

(a) Accuracy metrics

Metric Unit Formula
K
Mean absolute percentage error (MAPE) [%] R ’El &
K
Symmetric mean absolute percentage error (sSMAPE) | [%] % El 7&5{;: 70
Median symmetric accuracy (MSA) (%] | 100 (eMEPIAN(log, Qel) _ 1)
(b) Bias metrics
Metric | Unit | Formula
K
Mean percentage error (MPE) [%a] % ;51 ;_i
Median log accuracy ratio (MdLQ) different MEDIAN(log, Q)

Symmetric signed percentage bias (SSPB) (%] 100sign(Md1Q) (e/M4IQl 1)

4.2. EV charging station controllability

There are different types of EVs being sold worldwide. In terms of charging, EVs present different plug-types
based on their charging modes. Type-1 and type-2 charging plugs refer to single-phase and three-phase EV
plugs for charging. As the electric connection of these plugs is AC, this requires the EV to have an on-board
converter to convert AC to DC electricity supply. The IEC-61851 protocol used to communicate between a
type-1 or type 2 AC plugs and an EVCS. The protocol is based on an analog square wave signal that dictates
to an EV the maximum per phase RMS AC current it can absorb. DC charging plugs (e.g., CHAdeMO and
CCS) refer to EV plugs that have a DC power supply (i.e., the AC-to-DC converter is outside the EV and
installed into the EVCS). The 1ISO-15118 protocol used to communicate between the DC plug and the EVCS.
This protocol is based on an TCP/IP layer protocol, that, in practice, can dictates to an EV its maximum
allowable bidirectional active power exchange. In theory, the protocol also enables unidirectional (i.e., from the
EV to the grid) reactive power control. However, in reality, the off-board AC-to-DC inverters in DC EVCS do
not offer that possibility (this is also the case of the DC EVCS of this project).

Since different EV manufacturers produce vehicles with different components, EVCSs’ controllability becomes
dependent on both: (i) the EVCS (e.g., internal control mechanisms, different available plug types and front-
end communication protocol), and (ii) the EV management system, converter ramping time for on-board
chargers and charging limitations that are function of the battery SoC and its state (mainly temperature and
cells balance).

As previously detailed, in the scope of the MESH4U project, a commercial GoFast (EVTec) charger was
installed at the EPFL smart grid platform. As shown in Figure 7, the charger includes 6 plugs: 2 CCS, 1
CHAdeMO, 1 DC Tesla Plug, 1 AC Type 2 plug and 1 AC Type 2 socket. The idea of this section is to
experimentally test the controllability of the GoFast charger. The aim is to compute EV charging power set-
point at the centralized master multi-objective-controller level that will communicate, in real-time, with the single
distributed units. The backend of all the EVC is accessible through the custom EMS, which continuously
communicates with the external master controller. The EMS provides information about the connected EVs
(e.g., SoCs, expected departure times, and total energy [kWh] needed to be charged within the available times)
in order to offer an aggregated degree of flexibility that the main controller can consider and exploit in both the
day-ahead dispatching and the real-time tracking phases of the proposed overall optimization problem (OP)
(see Section 4.3 for more details). In the real-time phase, within the boundaries communicated by the EMS,
optimal EV charging set-points are computed to set the charging power rates to be satisfied at best by the EV

8 We refer the interested reader to [18] for more information about the Two-sample Kolmogorov-Smirnow test.
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users’ needs while satisfying the power grid constraints. With this IT configuration, only an external
communication link from the main centralized controller to the EMS has to be established.

The manufacturers of the charging station (i.e., EVTec) gave access to the specifications of their proprietary
communication protocol called DCMS. The DCMS protocol aims to exchange data packets containing: (i)
monitoring information (packet sent from charger to our controller) and (ii) active power setpoints (packet sent
from our controller to the charger). The protocol is based on a communication framework where setpoints can
only be sent when a monitoring packet is issued/sent®. EVTec developed two versions of the DCMS protocol:

1. v0.9 enables a bidirectional communication with the EVCS allowing to exchange aggregate
information. In other words, one can receive aggregate information (i.e., sum over all plugs) from the
charger and can send setpoints only at the charger level (i.e., cannot control separate plugs).

2. v2.0 that extends v0.9 by allowing a per-plug control and data polling.

Both versions of the protocol have been integrated into a dedicated LabView code. This code streams the
collected data to a dedicated database installed in a local server for logging purposes. A GUI of the logged
data has also been developed on Grafana (see Figure 19 for an example of some of the recorded data of an
uncontrolled EV charge).

Aggregate Power - 3ph [kW]

18:30 18:40 18:50 19:00
EVCSv09.Power Consumnption 3ph EVCSv09.Power Setpoint 3ph

.
18:30 18:40 18:50 19:00

EVCSv09.TotalBatteryCapacity EVCSv09.RemainingBatteryCapacity

(b) (Green) Battery capacity and (Yellow) Measured SoC
Figure 19: GUI based on Grafana for the DCMS logged data from the EVTec EVCS installed at the EPFL.

The controllability assessment experiment was performed on the EVTec GoFast EVCS at EPFL using a Tesla
Model S90D (the car was equipped with a dedicated adapter making it compatible with a CCS plug). The
experiment consists in sending to the car subsequent step-like power setpoints in order to measure its
response (i.e., ramp-up and ramp-down times) and the accuracy (i.e., error between the requested setpoint
and implementation in steady state). The durations of the steps are long enough for the implementation to
stably reach a steady state. Before and after the step-like setpoints requests, the requested power has been
kept to 20kW. The results are shown in Figure 20 and Table 4. The measured ramp-up and ramp-down times
are in the order of several seconds and are linearly increasing with the setpoint amplitude, meaning that the
power ramping is constant (we measured values in the range of 3 — 5 kW/s).

The implementation error is characterized by a quadratic trend where for low and high setpoints the errors are
the larger.

9 In practice, we observed that monitoring packets are issued by the charger in an event-based fashion.
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Figure 20: Results of GoFast station controllability experiment: Active power setpoint vs. implementation

Table 4: Results of GoFast station controllability experiment: rise times & implementation errors.

Descent Maximum Mean absolute
Setpoint [KW] Rise Time [s] . absolute steady | steady state
Time [s]
state error [W] | error [W]
100 17.6 7 2300 1366
80 11.95 6 600 270
60 9 3 997.5 1730
40 5 3 1412 4390
20 N/A N/A 1722 1980

Furthermore, tests were carried on the non-commercial EV charging stations at the microgrid. Power-to-current
lookup tables were characterized in order to enable explicit, active power control of Type-2 plugs?®. As a result,
power-to-current lookup tables were precomputed for every available Type-2-EV charging plug. The tables are
shown in graphical format in Figure 21. These lookup tables are obtained for two cars: Renault Zoe and Tesla
Model S 90D. From the plot for Renault Zoe, it can be observed that when the setpoint —i.e., per-phase current
maximum allowable current — is lower than 7A, the car does not consume any active power. This, in practice,
means that the EVCS controller could ask this car not to consume power while remaining plugged. This is not
the case for the Tesla Model S as it consumes power even when the setpoint is set to the IEC-61851 standard’s
minimum allowable setpoint of 6A. As a result, a plugged Tesla Model S will always consume around 3kW*,

10 Note that Type-2 plugs are controlled through an analog pulsed signal that dictates to the EV the RMS value of the
maximum per-phase current it can consume.

11 Note that, in practice, the Tesla Model S’s power could be reduced to zero if, as explained in the IEC-61851 standard,
the duty-cycle of the control pilot signal is set to a value higher than 95%. However, through testing, it was observed that
this created issues for the EV’s on-board controller as the car was constantly locking and unlocking its plug. As a result,
the look-up table was deliberately started from a minimum three-phase power of 3kW.
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Figure 21: Power-to-current setpoint lookup tables.

4.3. Day-ahead and real-time control*?

43.1. Introduction

As discussed in [9]: "Day-ahead and intra-day scheduling of heterogeneous DERs has been advocated in the
literature as a way to minimize the effect of uncertainties. It consists in determining an average power trajectory
(dispatch plan — DP) at a certain resolution before operations, that is then followed during real-time operation.".
Even though the presented algorithms in [9] are aimed to work for heterogeneous resources, EVCSs’ power
and energy demands were not explicitly accounted for in the proposed problem formulation. Therefore, with
adequate control, EVCS can be turned from given boundary conditions (i.e., demand) to controllable assets
for the control of ADNSs.

As a result, in the frame of the MESH4U project, the work in [9] was extended by accounting for EVCSs’ power
and energy demand flexibilities in both day-ahead and real-time stages. More specifically, in the scheduling
phase on the day before operations, the stochastic OP computing an aggregated DP at the Point-of-Common-
Coupling (PCC) is extended to account for EVCSs as controllable entities. We recall that the proposed day-
ahead OP in [9], accounts for: (i) demand/generation forecasting errors using scenarios, (i) resource

12 This section has been readapted from the work presented in [14].
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constraints, and (iii) grid operational constraints by leveraging the so-called grid sensitivity coefficients (SCs). In
the real-time phase, the grid-aware model predictive control (MPC)-based control algorithm proposed in [9] is
extended with an MPC-augmented-version of the EV-subproblem model presented in [19]. The real-time OP
of [9] aims to securely — i.e., while accounting for resource and grid operational constraints — compute active
and reactive power set-points for heterogeneous resources so that their aggregated contributions track the day-
ahead optimally computed DP.

In summary, this activity enhances previous work of the EPFL-DESL by: i) extending the day-ahead OP of [9] to
account for EVCSs as controllable entities by leveraging a developed EV user behavior forecasting tool, ii)
extending the real-time control-algorithm of [10] with a MPC-augmented version of the EVCS GULC in [19], iii)
numerically illustrating the merits of considering EVCSs as controllable entities in the day-ahead DP generation
stage, and iv) experimentally validating on the EPFL smart grid platform the proposed real-time extension by
safely tracking an optimally generated DP.

The rest of this section is organised as follows. In Sec. 4.3.2 the general assumptions, e.g., grid modelling, and
problem formulation are presented. In Sec. 4.3.3 the day-ahead problem extension is presented. The latter
also includes details on the developed EV user behaviour forecasting tool and illustrative numerical simulations
to showcase the advantages of controlling EVCSs in the day-ahead stage. In Sec. 4.3.4 the real-time problem
extension is presented. In Sec. 4.3.5 an experimental validation, performed on the EPFL-DESL microgrid, of
all contributions of this chapter is shown. Finally, Sec. 4.3.6 concludes this section.

4.3.2.  Problem Statement & Overview

The focus is on power grids whose states are evolving slowly enough such that they can be modelled by
phasors. Specifically, ADNs are considered where the admittance matrix is known and whose power
equilibrium is described by the standard AC power-flow equations. Furthermore, such grids shall contain
uncontrollable and controllable resources. Hereinafter, controllable resources are considered to be interfaced
through grid-following Controllable-Power-Converters (CPCs), that can receive active and reactive power
setpoints**. This chapter focuses on the ADNs’ dispatching at their PCC according to an optimally computed
DP through a two-stages process as shown in Figure 22.

Day-ahead (solved once every 24h) Real-time (solved every At € [30; 90] secs)

Next-day 24h

— — . Ressources
Historical L Forecast & Dispatch PCC active Reat-time e—{-/ Sensors ]
Scenario Generation plan 5 distributed control
data power profile »[ Actuators |

Figure 22: Schematic overview of the proposed two-stage ADN dispatch.

Day-ahead stage: in this stage, the operator computes a DP in the form of an active power profile to be
followed at the PCC during the next-day operation. The DP is generated by accounting for ADNs and
controllable resources operational constraints by leveraging proper forecasting of next-day grid status (i.e.,
injections of uncontrollable resources and EV user behaviours). As a result, this stage is split into two
processes, named as forecasting and DP in Figure 22. During the forecasting process, historical data is input
into statistical engines that output parametric probabilistic models. During the DP process, a security-
constrained scenario-based OP, leveraging the models created in the last process, is solved to generate a 24h
active power DP. Typically, the generated DPs are injection profiles with time resolutions of 30-600 seconds.
The DP is operational starting at 00:00 of the next day.

Real-time stage: as explained in [9], in this stage, the ADN resources are controlled in real-time to compensate
for power mismatches at the PCC between the optimal DP and actual realization. As in the day-ahead stage,
the control problem accounts for ADNs and controllable resources operational constraints. Unlike the day-
ahead stage, the resources’ states are assumed to be known through accurate sensing. The problem is
expressed by leveraging a MPC formulation to account for potential uncertainties along the optimization
horizon. This stage’s control algorithm starts and ends at, respectively, 00:00 and 23:59 of the day of operation.
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As a final note, it is important to remind that, given the large uncertainties accompanying forecasting next-day
grid statuses, the day-ahead stage considers ADNs to be balanced and, as a result, only the single-phase
direct sequence equivalent of the ADN is considered.

4.3.3. Day-ahead stage

As previously mentioned, the main goal of the day-ahead stage is to compute the DP. Indeed, when proper
forecasting tools are used, building a 24h active power profile at the PCC to be tracked by the next-day-real-
time controller promotes optimal next-day usage of controllable resources. For instance, as the OP leverages
a full-day MPC formulation, with proper next-day solar irradiance forecasting, the controller can anticipate the
charge/discharge of a controllable BESS. Furthermore, as explained in [9], the grid operator can practically
assume knowledge of the next-day PCC active power consumption since: (i) the DP is generated through
stochastic scenario-based security-constrained optimization and (ii) the real-time controller steers the
controllable resources to guarantee that the PCC injection realization matches the DP. As a result, the grid
operator will have fewer potential risks of operational and financial costs related to real-time balancing or
reserve activation needs [16].

This chapter’s contribution extends the developed algorithms in [9] by accounting for EV user needs and
considering EVCSs as controllable resources in both day-ahead and real-time stages. As EV user behaviours
(e.g., arrival/departure times and energy needs), and associated Charging Profiles (CPs), exhibit high
stochasticity, including EVCSs in the problem formulation increases the prediction and control complexities of
the day-ahead stage. However, by adequately anticipating the latter, the whole bulk power-grid would need
less secondary and tertiary power reserves.

In summary, the DP is the optimal result of a stochastic MPC-based OP. As in [9], the OP accounts for (i) next
day-stochasticity of non-EV injections through scenarios, (ii) grid operational constraints by leveraging SCs and
(i) controllable resources’ operational constraints (e.g., PQ capability and state-of-energy constraints). Unlike
in [9], the OP (i) further accounts for next day-stochasticity of EV user behavior through scenarios, and (ii) is
solved iteratively in order to alleviate the inaccuracies introduced by the linearization of the power-flow
equations. In the following, first the details of the forecasting block of Figure 22 —i.e., the scenario generation
block — are given, then the OP objective, constraints and solution algorithm are presented. Finally, the
advantages of considering EVCSs as controllable resources in the day-ahead stage are showcased through
numerical simulations.

Scenario Generation

Since the day-ahead OP is solved before the realizations of the next-day, proper forecasting is needed to
predict different next-day quantities. The idea of the forecasting tool is to generate scenarios that can be used
to formulate the OP of the day-ahead stage. In the following, first the techniques used to create probabilistic
models for different stochastic quantities are described. Then, the ways those models were combined to
generate scenarios are presented.

Non-EV injection models

For non-EV injections, a model can be in the form of a PDF created from historical data. Specifically, the PDFs
are created using historical data in the form of active and reactive nodal injection profiles for every resource
connected to a given node of the targeted ADN. For load resources, each of these profiles is first clustered into
4 seasons (i.e., winter, spring, summer and autumn), then, sub-clustered into day-type (i.e., working days,
weekend or vacation days), then, finally sub-sub-clustered into the fixed time resolution of the control algorithm.
For generation resources, assumed to be in the form of PV plants, each of these profiles is first clustered into
4 seasons (i.e., winter, spring, summer, and autumn), then, sub-clustered into sky-clearness (i.e., sunny,
cloudy, and overcast), then, finally sub-sub-clustered into the fixed time resolution of the control algorithm. In
both cases, for every sub-cluster, a Gaussian mixture model (i.e., a sum of multivariate Gaussian normal
distributions) is fitted to the data using MATLAB’s function fitgmdist. This is done to account for the time
correlation between the different time-steps for each specific sub-cluster. In the end, we obtain multivariate
PDFs (the random variables here are all the time-steps of a given day) for each nodal injection (i.e.,
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uncontrollable generation or load) pertaining to a season and day-type or sky clearness. From those models,
daily injection profiles can be inferred based on the features — i.e., season and day-type for loads and season
and sky-clearness for generation — of the day we wish to forecast.

EV injection models

Refer to Sec. 4.1.

Combining non-EV injections and EV user models into scenarios

Following the non-EV injections and EV user models presented above, it is natural to define a non-EV injection
scenario as a day-long power injection profile and, an EV user scenario as the set of all charging sessions for
a specific day, where each charging session is described by: (i) the EV’s arrival and departure times, (ii) initial
and desired EV battery SoCs, (iii) the EV’s battery capacity and (iv) minimum and maximum active power
injection limits. Each uncontrollable resource would, therefore, have at least two associated non-EV injection
scenarios (active and reactive power injections) and each EVCS would have one associated EV user scenario.
The total number of scenarios would be the total combinations of all generated scenarios for all uncontrollable
resources and EVCSs. This, clearly, can lead to a high complexity if the method of selecting the number of
scenarios, presented in Rem. 3 of [14], is used without any assumptions. Therefore, first, we conservatively
assume that the non-EV load and generation injection scenarios are all either at their 5 or 95% percentiles
when inverse-sampling from the constructed models. Namely, this would lead to the four non-EV injection
scenarios described in Table 5. With this assumption, the total number of scenarios would be four times the total
number of considered EV user scenarios.

Table 5: Considered non-EV injection scenarios

Scenario Percentile of all Percentile of all
number uncontrollable loads [%0] uncontrollable generation (P-V plants) [%]
1 5 5
2 5 95
3 95 5
4 95 95

Since that reduced number still led to an OP with high complexity, a step further was undertaken to reduce the
number of considered EV user scenarios. To do so, the k-meansclustering algorithm [20] was leveraged together
with the scenario number selection method explained in Rem. 3 of [14]*2. Namely, first the number of needed
scenarios to achieve statistically meaningful results is computed. Then, after generating the needed EV user
scenarios, the scenarios are partitioned and stored into a user-defined number of clusters (NUM_CLUSTERS)
using the k-means clustering algorithm. Then, the medoid, i.e., the original scenario with the lowest probability
distance from the centroid of a cluster, of each cluster is selected as a representative EV user scenario for the
ones stored in that cluster. The reason the medoid is selected rather than the centroid, i.e., cluster analytical
center, is that the centroid of a cluster is an artificial scenario that might not have any physical meaning. Finally,
the output is the representative EV user scenarios, i.e., the cluster medoids. Naturally, this means that the
reduced total number of considered EV user scenarios is equal to the user-defined number of desired clusters
for the k-means algorithm (i.e., NUM_CLUSTERS).

It is important to note that, in their natural form, EV user scenarios are not easy to input into the k-means
clustering algorithm. This is due to the complexity of their forecasting models, e.g., it is difficult to compare,
for instance, a scenario that has 2 morning charging sessions w.r.t a scenario that has 3 evening charging
sessions. As a result, extra-features needed to be defined to describe each EV user scenario. These features
are listed in Table 6 and were used as input to the k-means clustering algorithm.

13 For the interested reader, a similar yet more complex method of leveraging the k-means clustering algorithm to reduce
the number of needed scenarios in a stochastic OP can be found in [21].
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Table 6: Considered extra-features to describe an EV user scenario

Feature Description
number
1 Total number of charging sessions
2 Sum of all stay duration of all charging sessions
3 Sum of all energy demands of all charging sessions
4 Average maximum active power injection limits of all charging sessions
5 Occupancy rate* from 00:00 to 3:59
6 Occupancy rate* from 04:00 to 7:59
7 Occupancy rate* from 08:00 to 11:59
8 Occupancy rate* from 12:00 to 15:59
9 Occupancy rate* from 16:00 to 19:59
10 Occupancy rate* from 20:00 to 23:59

*For a given time interval, the occupancy rate is defined as the ratio of the number of control time-steps
where a plug is used, over the total number of control time-steps.

Optimization Problem

As previously explained, the second process of the day-ahead stage is to solve a stochastic scenario- based
security-constrained OP that outputs an optimal DP. Compared to the one in [9], the proposed OP (i) accounts
for EVCSs!* as controllable resources with specific objectives and constraints, (ii) does not include minimum
PCC power factor hard-constraints but a minimization of the absolute reactive power flow at the PCC in the
OP objective, and (iii) is solved iteratively in order to reduce potential power-flow linearization inaccuracies. In
the following, the OP objective is first presented. Then, the constraints are listed. Finally, the full OP formulation
is given together with its resolution algorithm.

Objective

The OP objective is threefold. The first aim consists in minimizing the deviation between the active power flow
atthe PCC for all scenarios d =1,...,D and the optimally computed DP P5*P%“" wheret=1,...,T is the timestep

and s €S isthe slack node index. Formally, this is given by,

d dlspatl:h
Ps i P

)

where the norm-1 operator was used instead of the Euclidean norm to avoid quadratic terms and,
consequently, decrease computation times. The second aim consists in minimizing the absolute reactive power
flow at the PCC for all scenarios and timesteps. Formally, this is given by,

ZZQH

dlf] (3)

lDT
DT 2 5

The third objective consists in minimizing all resource-specific cost functions that, as explained in [9], reflect the
controllable resources’ willingness to provide regulating power. Table 7 lists the different considered resources
with their respective cost functions. For a BESS, the cost function tries to simply minimize its usage, i.e.,
absolute injections (|Pl BESSt|) to prevent its ageing due to cycling. On the other hand, for EVCSs the cost

functions aim is twofold. First, they try to guarantee that each EV’s departure SoC*® (SoCLe‘“’e foraplug k €

14 1n the following, all types of three-phase EVCSs are considered, i.e., Type-2 AC plugs and DC plugs.
15 As explained in [14,15], K; is the total number of plugs of the EVCS connected to node i € C. Furthermore,
at each node i € C, there’s an EV aggregator that can send active and reactive power setpoints to all CSs

(or plugs).
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K;, node i € C and scenario d=1,...,D) is close to its desired SoC (SoC,:?Tgetd for a plug k € K;, node i € C
and scenario d=1,...,D). The max function is used to penalize EVs only until they reach their target SoC without
limiting extra charging/discharging when applicable (i.e., grid-secure). Second, they try to minimize EV battery
wearing by avoiding large deviations of EV injections (ng‘i for a plug k € K;, node i € C and scenario d=1,...,D
at timestep t=1,..T) between subsequent time-steps [22]. All the factors scaling all presented cost functions,
e.g., 3999 \where At is the DP time-resolution, are included in order to render all objective terms of the same

AtDK;
nature (i.e., here, powers). The final OP objective is a weighted sum of all presented cost functions.

Table 7: Cost functions of all considered controllable resources

Resource Objective
. 1
BESS connected at node i € A DT g ‘P: BESS, t| (4)
D K;
EVCS connected at node i € € ﬂ%}?{ Y Z {SOCT_a;gEt - SOC]Eet?“’ed, 0}+
fd=1 k:l ' '
d
10(T-1)DK; l)DKi d):lkzltz )Prkz Py 1k:) (5)

Constraints

The OP constraints are twofold. The first set of constraints are the ADN operational constraints. As the ADN is
assumed balanced in the day-ahead stage, the operational constraints are, formally, given by

= d = |d - 1d
|Er| € [Emin> Emax! |Iij,t| = Iij,maxr |Ss,r‘ = Ss,max
(6)
where, Emin and Emax are, again, the allowed extremes of the nodal voltage magnitudes, i j ,max , is the
vector of branch ampacity limits, Ss,max is the substation transformer apparent power limit and the superscript
d refers to a given scenario. |Et|, ITij t| and ISs tTare generically linearly approximated by,

- = or —1
d. vd|cd t 53(..d v d v
I'y = Iy (Sr] + d_Pr =4 [pr,Control ~ Pt,Control )
dI‘r 53 d v d v—1
d Q: 31 [qI,CDI’lIIOl ~ 4¢ control ]

7
Where, T' € {|E"t |, ITij el |§s,t | ), TA(59) is the electrical quantity resulting from the system-state obtained
from a LF computation with nodal injections Sztd =58 + §§fcantm,v_1, where §¢ are the sampled non-EV injection
scenarios and §contror’ = Plcontrol  +jGlcontrol = Stssse  +Sg.  are the optimal injections of all
controllable resources (i.e., Sfppss = Plsgsse +jQfppss, for a BESS connected to node i € K and Sty , =
P&, .+ jQfsy, . for a BESS connected to node i € C) at the previous resolution iteration v — 1. Finally, the
partial derivative (or SCs) in (7) represent the partial derivatives of the electrical quantity T with respect to
nodal active and reactive power injections, computed with the injections §;1 using the method presented in [23].
The second set of constraints are the controllable resources operational constraints. Table 8 lists the different
considered resources with their respective constraints. The BESS constraints consist in: (i) SoC energy bounds

(c.f. (8)), where E MaX js the BESS’s maximum energy capacity, and (ii) apparent power limits (c.f. (9)). The
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EVCS constraints consistin: (i) per EV SoC evolution constraints (c.f. (10)9), (ii) per EV SoC bounds (c.f. (11)),
(i) per EV definitions of the SoCs at departure SoCLe‘“’e (c.f. (12)'"), (iv) per plug maximum/minimum active!®
(c.f. (13)), reactive®® (c.f. (14)) and apparent (c.f. (15)) power constraints, and (v) constraints linking the per plug
variables to the per node aggregate EVCSs injections (c.f. (16)).

It should be pointed out that in the SoC constraints (i.e., (8) and (10)) the efficiency is assumed unitary.
However, since in practice this is not true for both BESSs and EVs, power losses are accounted by integrating
the latter’s equivalent series resistance into the network admittance matrix as explained in [9].

Table 8: Constraints of all considered controllable resources.

Resource Constraint
. P AL
BESS connected at node i € A& SoCimin < SUCE NPT ";;f,sax <S50Cimax (7.8)
Pt e (o "< St mar 9)
i BESS, i BESS,t| = Oi,max
d _
( SOCN i ifr= tﬂkx
EVCS connected at node i € € SOC?J;: = 4 " pd A (10)
lS oCe_ | ¢s — L otherwise
‘Eki
0= SoCt ki s (11
Sockeaved = Socfd L (12
Fiol
d d, min _, pd d d,max
_(Utkipd Ptkr _wtkspd (13)
mln max
_wtk Qi = thr, t,k,iQk,f (14)

(rk:]z [ths] (Sd'r-nax]z (15)
JEVt ZP”“'*']Q”“ (16)

Recap and Problem Resolution

The final OP of the day-ahead stage is given by (17). The variables of the OP are all the apparent power
injections of all controllable resources together with the optimal DP (PsdiSp““h). The different a- are user-tunable

weights. Finally, for clarity and completeness, Alg. 1 summarizes all the needed steps for both processes of
the day-ahead stage, where tp and tc are, respectively, maximum tolerances for control variable and cost
function variations between consecutive OP resolutions.

( |
di h .
P ispatch _ argmmi apisp(2) + app(3) + Z a; pess(d) + Z a; gv(d) }
€A ' €€
where BESS is connected
s.L. (17)

6),¥vd=1,...DV¥t=1,..,.T
8)-09),d=1,..,DVt=1,..., T,Vie #where a BESS is connected
(10) — (16),¥Vd=1,..,D,¥t=1,..,.T,)Yie € ,Yk=1,...,K(i)

16 As explained in [19], tg'k'i is the arrival time of an EV at plug k=1, ...,Kiand node i € C for scenariod = I,...,D. Also, E,‘f"{"“"
is the battery capacity of the EV connected to plug 4=/, ...,Ki and node i € C for scenariod = I,...,D. In the day-ahead stage,
both quantities are forecasted (i.e., are part of the EV user behaviour scenario).

17 As explained in [19], tfd_k,i is the departure time of an EV at plug k=1,...,Ki and node i € C for scenario d = /,...,D. In the
day-ahead stage, the latter quantity is forecasted (i.e., are part of the EV user behavior scenario).

18 As explained in [19], wg, ; is a known Boolean expressing whether, or not, an EV is connected to plug k=1, ...,Ki.

19 As previously mentioned, reactive power limits depend on the plug type. Namely, if the EV plugs are DC-Typed plugs,

the reactive power injections are non-null and are only limited by the plug’s apparent power bound, otherwise, they are
null.
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Algorithm 1 Day-ahead stage

1. Create forecasting models using historical data;
2. Generate next-day scenarios;

. i -1 with p4 0 — o
3 Do: starting from v = 1, with P} Control =0;
3.a Solve (17);

3.b Store p?COmrolv and Final objective = Objective of (7.17);

— 4
- qt,Control

-1
' Final objective”—Final objective"~!

Final objective’™!

d vV oad
pr.Comml pi‘.Comml
d v—1I
p t,Control

Until: max{ } <1 and ma_x{

}src;

4. Store final iteration optimal DP [PsdiSpatCh).

4.3.4. Numerical Simulations

To showcase the advantages of considering EVCSs as controllable resources in the day-ahead stage, two sets
of numerical simulations are performed. All simulations were performed on MATLAB using the same electrical
grid that contains one BESS and two EVCSs aggregators. The main difference between the two sets of
simulations is that the second set of simulations performs a sensitivity analysis w.r.t. to the BESS’s energy and
apparent power capacities. In the following, first the simulation setup is described, then, both sets of
simulations are presented. Note that, in the appendix the reader can find further simulations that were
performed on the EPFL-DESL microgrid.

Simulation setup: the EPFL smart grid platform

All simulations were performed using a virtual twin (single-phase equivalent) of the low-voltage electrical-grid
of the EPFL smatrt grid platform. A schematic of the grid is depicted in Figure 2 where the greyed-out resources
were not used for the simulations and node B01 corresponds to the unique slack node. EVCS2 corresponds to
the CS described in Table 9. EVCSL1 is the commercial GoFast EV fast-charger whose photographic depiction
and technical specifications can be found in Figure 6 and Figure 7. B1 is a commercial utility-scale BESS whose
external view and technical specifications can be found in Figure 3 and Table 1. Table 10, Table 11 and Table
12 give, respectively, the branch, nodes, and transformers parameters of the network. The latter parameters
were used as is in all the simulations of this section. Table 13 lists the used resource parameters. Table 14
lay-out the used simulation parameters. Finally, Table 15 describes the origin of the historical data used for
every resource in the forecast & scenario generation block of Figure 22.
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Table 9: EV Charging station protocols, protection and rating

Plug1 - Type-2 Plug 2 - Type-2 Plug 3 - CHAdeMO
Protocol | IEC-61851 IEC-61851 DEMS - proprietary pro-
tocol of EvTec
* Based on an analog * Based on an analog
pulsed control pilot pulsed control pilot
signal signal
* Logic imple- * Logic imple- * Based on a TCP/IP-
mented Using NI mented Using NI based websockets
CompactRio and CompactRio and communication
Protocol AI/AO Modules AL/AO Modules
Notes * Explicit active
* The maximum per- ¢ The maximum per- power  setpoint
phase current that phase current that control
the car can con- the car can con-
sume is set by mod- sume is set by mod-
ulating the control ulating the control
pilot’s duty cycle pilot’s duty cycle
¢ Circuit breaker - e Circuit breaker - * Circuit breaker -
A9F84432 - 32A A9F84432 - 32A A9F84432 - 32A
Protection  Differential breaker « Differential breaker * Differential breaker
with earth-leakage with earth-leakage with earth-leakage
Type B protection - Type B protection - Type B protection -
A9761440 A9761440 A9761440
* |EC-61851 protocol * 1EC-61851 protocol
limited 80A per limited 80A per
phase phase
* EPFL-DESL Micro- ¢ EPFL-DESL Micro-
Rating 10kVA

grid branch amapc-
ity is 82A

A9F84432  circuit
breaker trips at 32A

grid branch amapc-
ity is 82A

A9F84432  circuit
breaker trips at 32A
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Table 10: Day-ahead numerical simulation: branch parameters.

(a) Branches parameters: line data

From | To | Length [km] | Configuration | Ampacity (from-to) [A] | Ampacity (to-from) [A]
Bo1 B02 1.000 10 17.32 866.03
BO1 B03 1.000 9 17.32 866.03
BO1 Bo4 1.000 8 17.32 1212.44
B02 | BO5 0.037 6 300.00 300.00
B03 | B06 0.037 7 250.00 250.00
B06 | B0O7 0.070 5 207.00 207.00
B07 | B0O8 0.030 1 44.00 44,00
B07 | B09 0.035 5 207.00 207.00
B09 | B10 0.030 3 108.00 108.00
B09 | Bl1 0.105 2 82.00 82.00
B11 B12 0.030 2 82.00 82.00
B09 | B13 0.070 4 135.00 135.00
B13 | B14 0.030 5 207.00 207.00
B13 | B15 0.105 2 82.00 82.00
B15 B16 0.030 1 44.00 44.00
B15 | B17 0.035 2 82.00 82.00
B17 | B18 0.030 2 82.00 82.00
B12 B19 0.038 3 108.00 108.00
B02 | B20 0.010 6 300.00 300.00
B03 | B21 0.010 7 250.00 250.00

Configuration

Longitudinal
impedance

(b) Branches parameters: configurations

admittance (from-to)

Shunt Shunt admittance

admittance (to-from)

[Q/ km]

[uS/km]

[uS/km]

© 0~ O U W =

—
(=]

3.300+ j0.141
1.210+ j0.132
0.780 + j0.126

0.000 + j23.562
0.000 + j36.128
0.000 + j32.987

0.554 + j0.123 0.000 + j40.841
0.272+ j0.119 0.000 + j50.266
0.225+ j0.070 0.000 + j27.332
0.146+ j0.070 0.000 + j27.332
7.944 + j43.877 3.923 + j5.884
5.027 + j40.358 1.383 + j1.445

5.004 + j40.290

1.365+ j1.652

0.000 + j23.562
0.000 + j36.128
0.000 + j32.987
0.000 + j40.841
0.000 + j50.266
0.000 + j27.332
0.000 + j27.332
0.000 + j0.000
0.000+ j0.000
0.000 + j0.000



Table 11: Day-ahead numerical simulation: node parameters.

Node

Base Voltage [V]

Base Power [MVA]

Bo1
Bo2
Bo3
Bo4
Bo5
Boe
Bo7
B08
Bo9
B10
B11
Bi2
B13
B14
B15
B16
B17
B18
B19
B20
B20

Table 12: Day-ahead numerical simulation: transformer parameters.

21000
420
420
300
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420

b b b bl bt b b b bl b bd b b bl b b b b b b

Transformer A | Transformer B | Transformer BESS
MV rated Voltage [kV] 21 21 21

LV rated Voltage [V] 420 420 300

Rated power [kVA] 630 630 630

Short-circuit voltage [% of MV rated voltage] 5.8 5.81 6.37
Winding losses [W] 4504 4524 7150
Core losses [W] 602 610 1730
Zero-load current [% of MV nominal current] 0.15 0.14 0.495

Table 13: Day-ahead numerical simulation: controllable resources parameters.

Name Parameters

Bl | Samax=200KkVA, SoCq min = 0.1, S0Cs max = 0.9, E}"®* = 200kWh
EVCS1 K5 =6 (2 AC-Type-2 and 4 DC [unidirectional])
EVCS2 K3 =3 (2 AC-Type-2 and 1 DC [bidirectional])
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Table 14: Day-ahead numerical simulation: simulation parameters.

Parameter ‘ Value ‘ Unit
Obijective weights:
ADisp 100 -
apF 1 -
(¢4, BESS 0.01 -
Qs EV 1 -
@19 EV 1 -
Timing:
At ‘ 5 ‘ minutes
Scenarios:

Number of EV scenarios 20 -
Total number of scenarios D 80 -
ADN tolerances:

Enin 0.9 p.u.
Emax 1.1 p-u.
Ss,max 1 p-u.
Alg. 7 tolerances:
ty 1 %
e 1 %

Table 15: Day-ahead numerical simulation: inputted historical data.

Resource Description

PV1 & PV2 Same as data used in [6].

L1-ELLA Measured data coming from PMU 11 of Fig. 7.7.
EVCS1 & EVCS2 | Combination of measured and public data coming from
(i) Local back-end logger of EVCS1, and
(ii) a confidential dataset provided by GoFAST [119]
that contains information about many EV plugs situated
in different parts of Switzerland.

Simulation 1: EVCSs as the only day-ahead controllable entities

The first set of simulations considers the case where the BESS is not connected to the grid of Figure 2 (i.e.,
B1). Namely, the only controllable entities in the day-ahead stage are EVCS1 and EVCS2. Using the same
scenarios, the idea of these simulations is to compare the obtained DPs when (i) EVCSs are not controlled
and plugged EVs simply charge at their maximum rated power, and (ii) EVCSs are considered controllable.
Since there are no controllable entities in the latter case (i), the resulting DP is nothing more than the average of
all scenarios of the active power injections at the PCC. In order to compare DPs, a set of metrics is defined

that are given in Table 16. As defined in [25], the UEE* and UEE™ represent the cumulative worst-case,
respectively upper- and lower- bound of the energy discrepancy needed to merge all PCC nodal active power
into the unique DP (i.e., for the PCC active power injections for all scenarios to be equal to the DP). The MAE
quantifies the maximum absolute error, in terms of power, between the DP and the PCC active power injection
realizations. The MPP is equal to the maximum absolute PCC active power injection realizations. The MEVUS
metric represents the worst ratio, over all charging sessions of all scenarios, of received over best feasible
energies, where the best feasible energy is the minimum between what the EV user requested, i.e., the
forecasted quantity given by
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And the maximum energy an EV can receive if it was charging at its maximum power — i.e., no control — for
its whole plugged duration, i.e., the forecasted quantity given by

Ebest d

_ pd,max
- Pk,i (tf ki

o, k;] (17b)

Table 16: Metrics used to quantify the performance of the result of Alg. 1.

Metric

Uncovered Energy Error (UEE") [kWh]
Uncovered Energy Error (UEE™) [kWh]

Maximum Absolute Error (MAE) [kW]
Maximum PCC Power (MPP) [kW]

Minimum EV User Satisfaction (MEVUS) [%]

Formula
i
UEE+ ({) — ‘;%TTU Z lll;l‘{ {])rl } Pdlspltch
T=1 @
t
UEE_( = 3%3;) Z nz}n {P(l } Pdlspu(h
l [

MAE = max {’P‘““"““" - P4,
MPP = max |P5,ll|
d,t -

j

s . rru cived d
MEVUS = 100 min {. m(rh«md e nln(ld)}

k,i,d

The results of the simulations are depicted in Figure 23, Figure 24 and Table 17. Figure 23 a and b show,
respectively, the active and reactive nodal power injections at the PCC. Figure 24 shows the time evolution of
the UEE.

Energy [kWh]

Active power [p.u.] Active power [p.u.]

-

Without EVCS control

03—
0.2 t!npu!rh
0.1 H= " Fa
0
0.1 ! . . !
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=
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Figure 23: PCC nodal power injections.
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Figure 24: UEE time evolution.
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Table 17: Simulation 1 — results

Metric without control | with EVCSs control
UEE* (t=T) [kWh] 1280.93 860.32
UEE~(t=T) [kWh] -316.10 -284.26
MAE [kW] 214.09 188.59
MPP [kW] 240.64 208.94
MEVUS [%] 100 100

All results lead to the same conclusion: controlling EVCSs in the day-ahead stage (i) improves the merger of
all PCC active power scenario realizations into a unique DP, (ii) reduces the untracked energy error and (iii)
shaves the peak PCC injections, without penalizing EV users’ satisfaction. However, in practice, having only
EVCSs as controllable entities in the day-ahead stage is not enough to fully merge the PCC active power
realizations into the DP as they do not have enough bidirectional energy storage capabilities?. Finally, note
that no voltage, branch current, or slack power plots are shown as there were no grid operational constraint
violations for any scenario in both simulations, i.e., with and without EVCSs control. Indeed, as the grid awareness
of the developed method was already showcased in [9], our goal was not to stress-test Alg. 1 by tightening the
grid operational constraints tolerances, but to illustrate how EVCS can help merge the PCC active power
realizations into a unique DP.

Simulation 2: EVCSs and BESSs as day-ahead controllable entities

In the second set of simulations, the BESS is considered connected to the grid of Figure 2 (i.e., B1). Namely,
the controllable entities in the day-ahead stage are the BESS, EVCS1 and EVCS2. As in the previous
simulations, the same scenarios are used and the idea is to compare the obtained DPs when (i) neither EVCSs
nor the BESS are controlled, (ii) only the EVCSs are controlled and (iii) both EVCSs and the BESS are
controlled. The novelty, w.r.t Simulation 1, is that the comparison is done for different sizes — in terms of
maximum apparent power and energy capacity — of the BESS. All simulations assume that for all scenarios
the BESS’s beginning of day SoC is 0.5. Since the BESS is considered, two extra metrics are introduced: the
maximum BESS usage (MBU) and the Maximum absolute BESS injections (MABI). The MBU is defined as the
ratio of (i) the largest energy usage of the BESS over all scenarios, and, (ii) the total usable capacity of the BESS.
It is given by:

max{ max SoC’,’4 —min SoC;’4 }
' ’ ’

100—f———
(50C4,mux_SOCIl.min)Eflnll'\ (17¢)

The MABI is defined as the absolute maximum BESS active power injections over all scenarios and timesteps.
The results of all simulations are summarized in Table 18 and Table 19. In terms of merging the PCC active power
realizations into a unique DP, Table 18 a, b & c confirm that (i) the BESS decreases the UEE more than EVCSs,
(ii) increasing the BESS size decreases the UEE, (iii) controlling EVCSs always further decreases the UEE, and
(iv) the PCC active power realizations are only perfectly merged when the BESS is sufficiently large and the
EVCSs are controlled. As in the previous simulation, there were no grid operational constraints’ violations. As
a result, all simulations lead to perfect EV user satisfaction (c.f. Table 19a). Table 19b shows the BESS’s MBU
for different BESS sizes and simulation configurations. Increasing the BESS’s apparent power limit had little-
to-no influence as the maximum active power injections were practically all equal. This behavior is due to: (i) the
scenarios used for the simulations that did not require extra BESS injections, and (ii) the lack of ADN operational
constraints violations. Finally, Table 18c proves again the advantages of controlling EVCSs as it always led to
less utilization of the BESS for the same EV user satisfaction (c.f. Table 19a).

20 Indeed, this could change in the future with the potential penetration of large quantities of bidirectional public chargers
which would render the aggregate usable storage of plugged EVs comparable to BESSs used in grid-applications.
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Table 18: Simulation 2 — results

(a) UEE™(¢=T) - kWh

S4,max [kVA] &
max
Ey [kWh] 200 & 200 | 300 & 300 | 500 & 500 | 1000 & 1000
Controllable
Entities
None -316.10 -316.10 -316.10 -316.10
EVCSs -284.26 -284.26 -284.26 -284.26
BESS -178.93 -145.35 -74.37 -5.73
EVCSs+BESS -136.48 -97.51 -20.95 -0.02
(b) UEE*(t=T) - kWh
S4,max [kVA] &
EMaX [kWh
ra ] 200 & 200 | 300 & 300 | 500 & 500 | 1000 & 1000
Controllable
Entities
None 1280.93 1280.93 1280.93 1280.93
EVCSs 860.32 860.32 860.32 860.32
BESS 222.46 154.00 66.88 13.92
EVCSs+BESS 165.45 110.77 14.12 0.03
(c) MAE - KW
S4,max [KVA] &
EMa  kWh
a | ] 200 & 200 | 300 & 300 | 500 & 500 | 1000 & 1000
Controllable
Entities
None 214.09 214.09 214.09 214.09
EVCSs 188.59 188.59 188.59 188.59
BESS 58.13 48.19 38.71 38.62
EVCSs+BESS 8.39 5.09 0.93 0.02
(d) MPP - kW
S4,max [KVA] &
EmaX [kWh
. ] 200 & 200 | 300 & 300 | 500 & 500 | 1000 & 1000
Controllable
Entities
None 240.64 240.64 240.64 240.64
EVCSs 208.94 208.94 208.94 208.94
BESS 117.27 119.12 115.55 109.64
EVCSs+BESS 57.24 50.83 48.59 50.26
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Table 19: Simulation 2 — results — continued.

(a) MEVUS - %

S4,max [kVA] &
max
E,~ [kwh] 200 & 200 | 300 & 300 | 500 & 500 | 1000 & 1000
Controllable
Entities
None 100 100 100 100
EVCSs 100 100 100 100
BESS 100 100 100 100
EVCSs+BESS 100 100 100 100
(b) MBU - %
S4,max [kVA] &
EMmax [t
o ) 200 & 200 | 300& 300 | 500 & 500 | 1000 & 1000
Controllable
Entities
None N/A N/A N/A N/A
EVCSs N/A N/A N/A N/A
BESS 100 99.60 92.71 67.57
EVCSs+BESS 98.73 76.22 84.06 43.69
(c) MABI - kW
S4,max [KVA] &
EMax [ Wi
o ) 200 & 200 | 300& 300 | 500 & 500 | 1000 & 1000
Controllable
Entities
None N/A N/A N/A N/A
EVCSs N/A N/A N/A N/A
BESS 178.72 178.07 172.45 164.05
EVCSs+BESS 198.88 206.42 197.50 198.14

Simulation setup: the Aigle demo site

Although the installation of the four charging stations on the Aigle demo site have been delayed beyond the
scope of the project, the simulation of a dispatch plan with the existing infrastructure with the anticipated
stations has been performed.

Grid topology

As shown in Figure 25, the grid topology features a similar number of nodes than the EPFL setup. However,
the complexity and global prosumption of the network are significantly larger. At the PCC, the power fluctuates
between -2MW and +1MW whereas on EPFL setup, it fluctuates between 0 and 200kW. The Aigle demo site
thus has a PCC overall amplitude variation fifteen times larger than the one of the EPFL setup. It is planned to
install four charging stations similar to the one installed on the EPFL smart grid platform (described in Figure
7), however with 300kW peak power each instead of 150kW. The BESS has a rated apparent power of 1.6MVA
and a rated capacity of 2.5MWh. More technical specifications can be found in Section 2.
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Figure 25 : Figure from source [31] - (a) Topology with locations of the PMUs, PV plants, hydro-power plants, (b) Location of the substations and
lines on the map, and (c) BESS and PV infrastructure: (1) Satellite view of the centralized PV plant of capacity 1.8 MWp, (2) battery container and

(3) interior of the battery.

Results
Simulation 1: four charging stations

20 scenarios of prosumption on every node has been generated based on historical data. For each scenario
an additional anticipated scenario for the four EVCS has been added. The PCC power for each scenario is
shown in blue in Figure 26. We notice how the dispatching squeezes the profiles thanks to the control of both
the battery and four charging stations. The profiles don’t overlap perfectly because the variance is too high
with respect to the size of the battery and charging stations.

PCC active power for all scenarios

Without control

1 i
0 B oA _ _i,‘,zh,,,.f,-:,
-1
-2 | ] . .
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Time [h]
With BESS+EVCS control
1 I)J'

Jdispat ch
L

0 = 10 Uty 20
Time [h]

Active power [MW/Active power [MW]

Figure 26 - PCC active power for all scenarios (4 EVCS)

The uncovered energy error reduced from 16.39MWh without control down to 6.88MWh with BESS+EVCS
control as shown in Figure 27.
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Figure 27 - Uncovered energy error (4 EVCS)

Using the metrics presented in Table 16, we notice the strong contribution of controlling the battery. Adding
the four charging stations control does improve the metrics yet only in a small manner as the flexibility provided
is very small with respect to the PCC volatility.

Table 20: Aigle simulations metrics (4 EVCS)

Metric | no control | BESS control ‘ BESS + EVCS control
UEET [MWHh] 7.52 2.39 2.26
UEE™ [MWh] -8.87 -4.61 -4.62
MAE [MW] 1.05 0.37 0.34
MPP [MW] 2,12 2.06 2.06
MEVUS [%] 100 100 100

Simulation 2: forty charging stations

GoFast anticipates increasing the number of charging stations at this location as demand increases. Let’s
suppose that not four but forty charging stations are installed. The total uncovered energy error without control
rises from 16.39MWh up to 17.5MWh brought by the additional stochasticity of the stations. However, as they
are controllable, they bring additional flexibility to the whole system reducing the uncovered energy error with
control from 6.88MWh down to 4.81MWh. This shows that adding new highly stochastic charging stations can
have a positive impact on the overall consumption predictability if they are adequately controlled. And this
without significantly impacting the customer satisfaction as seen in the MEVUS metric.

PCC active power for all scenarios

Without control

0 ) 10 15 20
Time [h]
With BESS+EVCS control

Active power [MW|Active power [MW)]
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Figure 28 - PCC active power for all scenarios (40 EVCS)
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Figure 29 - Uncovered energy error (40 EVCS)
Table 21: Aigle simulation metrics (40EVCS)

Metric no control | BESS control | BESS + EVCS control
UEE™T [MWHh] 8.65 2.32 1.8
UEE~ [MWHh] -8.85 3.71 -3.01

MAE [M\\"] 1.04 0.18 0.14
MPP [MW] 2.09 2.03 2.05
MEVUS [‘/] 100 100 98.9

Discussion

The comparison between simulation 1 (4 stations) and simulation 2 (40 stations) highlights a key takeaway
message for planners. It is ubiquitous that adding fast charging stations is inevitable to promote the transition
towards electric mobility. It is also known that their deployments are viewed as a risk for the grid from the
added stochasticity and peak power demands. However, with an adequate control of the stations, not only
lower their impact on the grid can be lowered but they can also provide grid support by increasing the overall
day-ahead predictability. Public fast charging stations can therefore help the electric mobility transition while
providing grid flexibility under the condition that they are both controllable and controlled. It is thus important
to consider this aspect in the selection process of future charging station providers.

Simulation setup: the EPFL case with commercial fleet versus public fast charging station (international
cooperation within the MES4U project)

Context

As EPFL, the group of Prof. Mulone at the University of Rome Tor Vergata, Italy, is a partner of the MESH4U
consortium. Prof. Mulone’s group has worked extensively on optimal sizing and scheduling of commercial fleet
charging stations specifically for grid support. More information on results can be found in [32]. On the EPFL
side, the dispatch plan and real-time control has the objective of providing a reliable day-ahead prediction of
power profiles to also enhance grid support. Within the MESH4U project, this dispatching has been extended
to include public fast charging stations reflecting the physical setup on the EPFL smart grid platform and,
eventually, in Aigle. However, the larger control and flexibility of a commercial fleet charging station is an
interesting topic to include in our optimization problem. The collaboration with Prof. Mulone’s group has
enabled the consideration of such commercial fleets. Data generated by his group allowed the comparison of
the dispatchability performance between public fast charging stations (PFCS) with respect to a commercial
fleet charging station (CFCS).
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Model and objective

Providing a perfectly predictable power profile at the PCC with the inclusion of loads, solar power and charging
stations is not achievable with the control of the charging stations alone. An adequately sized battery is
necessary. The size of the battery grows with the stochasticity of the power generated/absorbed by the non-
controllable resources. A larger battery is required for PFCSs compared to CFCS as costumers’ arrival and
departure time is not scheduled and the charging power delivered must remain high to ensure customer
satisfaction. The objective is to assess the battery size difference in both cases.

The grid topology considered in this assessment is the same presented in section 4.3.4 Numerical Simulations.
For the case of CFCS, the GoFast EVCS has been replaced by a station with ten 22kW slots, one per vehicle.
The shift schedule and energy demand per vehicle for each day of the week is given by the optimization
problem of the University of Rome Tor Vergata. For our comparative analysis we will use the scheduling of the
first working day of a generic week (i.e. Monday), as show in Table 22.

Table 22: Monday optimal shift schedule and energy demand

EV id | Shift start | Shift end | Energy demand [kWh)]
1 7h 14h18 22.3
2 7h 13h54 23.1
3 7h 14h42 23.6
4 7h 14h12 22.4
5 7h 14h30 23.1
6 7h 15h54 25.7
i 7h 15h06 23.6
8 7hl5 13h24 21.5
9 7h 15h06 23.3
10 8h30 15h48 22.5

This data input is then slightly different to the data generated by the forecasting method presented in section
4.1.2 EV user statistical modelling. For PFCSs, several scenarios are generated including session start and
end time as well as the energy demand. The optimization problem for the commercial fleet must then be
readjusted.

Hypotheses:

1. Each commercial vehicle is assigned to a plug.

2. Each commercial vehicle is constantly plugged except during its shift.
3. The real-time demand is equivalent to the scheduled scenario.
4

For each day, all the sessions start at midnight and last 24h. A single session is considered per
vehicle with an interruption of charge during the shift.

Cost function modifications:

The same cost function as in section Objective in 4.3.3 Day-ahead stage is used with the additional objective
of reaching the SoC target upon start of shift. The additional piecewise cost element is shown in blue.
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Constraints modifications:

The same constraints as in section Constraints in 4.3.3 Day-ahead stage are used with a few modifications.
The first is that SoC dynamics need to account for the energy consumption during the shift. The second is a
limitation on the overall active power consumption as the grid topology is not dimensioned for ten EVs charging
at 22kW at the same time. Only up to a total of 150kW is possible without exceeding the ampacity limit of the
line following the charging station node. Third, all power limits are only in active power as we cannot control
the reactive power on type-2 AC chargers. Finally, the node index i has been removed as all the plugs are
supposed to be on the same charging station node. Note that even if we have a single scheduled scenario for
the EVs, we have several scenarios to reflect the uncertainty of load consumption and solar production. Hence
the charging behavior will differ from one scenario to the next even if they all share the same schedule.
Changes in the constraints are shown in blue.

Adglitional cm}srraints: i
d e H __ 4
SoCy, = So ok if t =15

[_)dl‘ Al — ff shift
t

N od 2Lt :r 3 _ 4d.shift end
SoC tk — SU( t—1.k d,max ift = tl‘«'
EI
d
.l d PfAAt .
SoCY{, = SoCY_,, - — otherwise
\ Ek. a
0 < SoCy .
1,1
S Cf eave — S()(‘l,d IA'
hift start
SC””" v —5)C{tlmtn,‘k
d,min o d,max
“’fﬂp pf..l.<“'fﬂp

! max,plug
0< P <P}

K
d d,max,node
2. Pl <P
k=1

for timestep ¢=1,...,T, plug k=1,...,K and scenario d = 1,...,D. As explained in [19], wﬁk'i is a known Boolean expressing
whether, or not and EV is plugged.

Results

The physical battery on EPFL smart grid platform is large enough to remove all the uncovered energy errors
in both public fast charging and industrial fleet. However, even if the daily energy throughput is the same for
both CFCS and PFCS, the BESS energy throughput and maximum active power is approximately ten times
larger to remove the UEE for PFCSs with respect to industrial fleet. These results can be seen in the three last
rows of Table 23. Two reasons account for this significant difference.

The main is that the battery needs to compensate for the high uncertainty of arrival, departure, and energy
demand of PFCS customers. Figure 30 (a) shows the PCC power volatility between scenarios. In Figure 30
(b) the differences between scenarios are only due to the load and PV uncertainties which with a good forecast
can be fairly small. Indeed, the scheduling of the fleet EVs allows a perfect knowledge of arrival, departure,
and energy demand which the battery doesn’t need to compensate for.

The second reason is that the EV fleet are plugged in much longer and have no rush to differ their charge
whereas public fast charging stations have a high demand and small flexibility. The last point can also be
grasped by focusing on the contribution of EVCS control. The BESS throughput is reduced by about 20% for
the PFCS and 50% for the CFCS when EVCS control is applied.

Figure 30 (b) also displays the effect of the following piecewise cost element:
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The goal of this cost function is to minimize the EVCS battery damage by gradually changing the power
setpoint. With EVCS control, the charging profiles are less abrupt.

Table 23: Dispatching public and fleet charging stations

No control BESS control | BESS + EVCS control
Metric Public | Fleet | Public | Fleet | Public Fleet
UEET [MWHh] 1762.4 105 1.8 0.1 1:2 0.1
UEE~ [MWHh] -587.5 | -105 -1.3 -0.1 -0.9 -0.1
MAE [MW] 219.5 11:3 0.3 0.01 0.3 0.03
MPP [MW] 264 224.9 98 218.3 95.7 210.6
MEVUS [%)] 100 100 100 100 100 100
CS throughput [kWh] 454.9 | 554.2 | 454.9 | 554.2 391 403.4
BESS throughput [kWh] - - 561.9 | 83.3 | 450.2 42.4
BESS Pax kW] - - 219.5 11.4 173.8 114
PCC active power for all scenarios PCC active power for all scenarios
= Without control = Without control
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Figure 30 - PCC active power for all scenarios with and without control for (a) a public fast charging station and (b) an industrial fleet charging
station

Discussion

The key takeaway of this collaboration is that, for the same charging station energy demand, the required
battery size to track the dispatch plan is ten times smaller for a CFCS.

In terms of required infrastructure and investments, one can achieve more grid predictability and flexibility with
lower investments by implementing dispatch plans on nodes encapsulating schedulable and controllable
commercial fleet charging stations. Due to the significantly higher stationary battery investment costs, when
truly necessary for the grid, tracking a PCC node encapsulating highly stochastic PFCSs can be achieved.

The qualitative plot below shows the grid support versus cost analysis between different levels of
prediction/scheduling and control for both PFCS and CFCS:
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Figure 31 - CFCS vs PFCS measures analysis in grid stability and cost.

4.3.5. Real-time stage

As previously mentioned, the main goal of the real-time stage is to track the optimal DP determined by the
day-ahead stage. To do so the same problem formulation is used and distributed solution method described
in [9]. However, since we consider EVCSs as controllable entities, extra objectives and constraints are added to
the centralized OPF (11) of [9]. Indeed, we leverage the EV-subproblem objectives and constraints presented
in [19]. However, as the OP in [9] is expressed as an MPC problem, the latter are expanded for a given time
horizon (denoted by tH as in [9]). Furthermore, as the real-time controller developed in [9] assumes balanced
operation for the ADN, the unbalanced constraints are here omitted. This leads to the objectives and constraints
described in Table 24. As previously explained, the objective is twofold. The first one tries to reach the target EVs
SoCs as soon as possible (c.f. (18)). The second minimizes the EV battery wearing by penalizing large setpoint
variations (c.f. (19)). All objectives are weighted?! in a way to favor plugged EVs with shorter remaining
connection times and higher remaining energy demands. In terms of constraints, the first set of constraints
guarantees that an EVs’ SoCs do not surpass users requested target (c.f. (20)). The second set of constraints
guarantees that the computed setpoints are within the EVCS and plugged EVs operational constraints (c.f.
(21)). Additionally, the maximum and minimum EV power limitations are considered as time-dependent and
known at time t. Finally, the last set of constraints (c.f. (22)) was added to guarantee the knowledge of the
inputted data at time t over the MPC time horizon (i.e., fromt to tH). Indeed, as the problemis formulated using
MPC, proper forecasting is required to predict the evolution of the inputted EV user behavior, e.g. the Boolean
wt kI expressing whether, or not, an EV is plugged to plugk = 1,..., Ki of node i €C at timestep t. As a result,
the constraints impose persistent forecast of the latter over the considered horizon. This is acceptable as the
horizon is usually selected to be in the order of minutes and the EV user behavior usually does not drastically
change during these timescales.

21 The details of how the weights are defined can be found in [19].
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Table 24: Real-time stage objectives and constraints of an EVCS aggregator connected to node i € C.

(a) Objectives

Description Equation
ty Kf
Reach Target SoC ZHZ Kok (Socrf‘k,f,k,i —S0C; ki + %) (18)
T=tk=1 A
ty Kf A
Minimize EV battery wearing Y ¥ ArkiKeki |PT ri—Pr_1k ,-\ Fm%x (19)
2o TRk, .k, k.| T

(b) Constraints

Description Equation
SoC Limitations SoCq ki — % =80Cs kYT =1L, I (20)
{RQ Op i =1
2
N P2+ Q% < (s,
Power Limitations (Prjk,;, erk_,-] € ' NTt=t o, g (21)

—pmin = pz - pral

T,ki ™~ T,k,i

{(0,0)} Wy ki =0

Wy ki = Wr-1,k,i

K ki=Kr-1ki

Persistent Forecasting $ Argi=Ariki VT=1+1,.,1g (22)
max _ pmax
P’r,k,f - P’rfl,k,i
min _ pmin
Pr,k.f - Pr—l,k,i

4.3.6. Experimental validation

This section presents an experimental validation of both the day-ahead and real-time stages. First an optimal
day-ahead DP is calculated and then, the real-time controller is used in order to track the DP while accounting
for ADN and resources operational constraints. The goal of the experiment is twofold. First, we show that the
integration of EVCSs in both the day-ahead and real time stages improves the tracking of an optimally computed
DP. Second, we experimentally prove the aptness of the proposed real-time EVCS controller to best satisfy EV
user demands. In the following, first the experimental setup is described. Then, some notes on the experiment
are given. Finally, the results of the experiment are shown.

Experimental setup: the EPFL low voltage microgrid

The experimental validation of the proposed algorithms is performed on the EPFL smart grid platform as shown
in Figure 7. The experiment uses: (i) the IT infrastructure described in [26], (ii) the branch and node parameters
listed, respectively, in Table 10 and Table 11, and (iii) the PMU-aided monitoring infrastructure shown in Figure
25. While the grid interfaces several resources, for the purpose of this experiment, only a subset is considered,
namely the three uncontrollable PV plants (PV1 (Perun), PV2 (Solarmax) and PV3 (Solis-Facade), controllable
EVCS (EVCS1 and EVCS2) and a battery (BESS1). The loads at nodes B20, B21 are assumed to be
uncontrollable. The resource parameters are summarized in Table 25.
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Table 25: Specification of resources for the real-time experiment.

Resources Nominal Rating Units
PV1 (Perun)
Rate power of PV cells 13 kWp
Apparent power 13 kVA
Controllability Uncontrollable -
PV2 (Solarmax)
Rated power of PV cells 16 kWp
Apparent Power 16 kVA
Controllability Uncontrollable -
PV3 (Solis-Facade)
Rated power of PV cells 15 kWp
Apparent Power 15 kVA

Controllability

Uncontrollable

BESS1
Ratings See Figure 23
Controllability Active and reactive power controllable
EVCS1
Ratings See Table 12
Controllability Active power controllable
EVCS2

Ratings
Controllability

See Table 12
Active power controllable

Experimental notes: As the goal of the experiment was not to stress test the algorithms in terms of ADN and
resources operational constraints, all resources were used at full capacity and the ADN operational limits were
set to the values in the EN-50160 standard. However, for the battery available at the microgrid, the maximum
and minimum allowable SoCs for the BESS are limited to 0.9 and 0.2, respectively.

Figure 37 shows the sequence of the operations and communications flows during the real-time operation. At
00.00 local time, the real-time operation starts. It takes as input the dispatch plan computed at the day ahead-
stage based on the forecasts of the uncontrollable injection and flexibility offered by the controllable resources.
The real-time controller runs every 30 seconds with updated short-term forecasts of the load, generation, and
EVCS demand. It computes the active and reactive power setpoints and sends them to the resources for
actuation. This cycle is repeated each 30 second till the day's end.
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Start at 0.00

—)[ Update short-term forecasts of the uncontrollable resources ]

v
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Read status and state of the controllable resources (e.g. state-
of-charge of the batteries, car connected at the EVCSs, etc.)

v

Read the current grid state (to compute the sensitivity
coefficients for linearized grid model)

v

p
Solve real-time MPC problem to obtain power setpoint for the
controllable resources

v

f Actuate the controllable resources (Batteries BESS1, BESS2
and EVCS1 and EVCS2)

—[ Wait for next 30 second interval ]

End at 23.59.30

Figure 32: Sequence of operations during real-time control

-

.

Results

The experimental validation was performed for several days, exhibiting different day types and irradiance
conditions. For the sake of brevity, the results of two distinct days are presented. Day 1 is a weekday and a
cloudy day, whereas day 2 is a weekend day and rainy. Results for multiday experiments are shown,
demonstrating that the dispatching framework can run successfully for multiple contiguous days. The
experimental results are described below.

Day 1 (17-April-2023)

It corresponds to a weekday (Wednesday) and is characterized by a day with cloudy irradiance patterns. The
source of uncertainty is the generation from the photovoltaic plants and the EVCS power demand.
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Figure 33: Dispatch plan, and power at the GCP with and without control.
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Figure 34: Active power regulation from the BESS1, and lower panel: minimum and maximum state-of-charge (SoC).
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Figure 36: Upper: Active power consumption by EVCS2, and lower: EV SoC during the day along with the SoC target.
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Figure 39: Cumulative distribution function (CDF) of Dispatch error with and without control.
Figure 33-39 shows the experimental results obtained on day 1.
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Figure 33 shows the dispatch plan in shaded green and realized power at the GCP with and without control is
shown in black and red color, respectively. Since each experiment day is unique with respect to the solar
irradiance, number and energy demand of EV charging sessions, it is impossible to redo the same experiments
in “without control” mode. Therefore, we obtain the plot “without control” by removing the contribution of the

BESS and re-running the AC load flow with the rest of the injections.

Figure 34 shows the power injections and the SoC from the controllable battery BESS1. Figure 35 and Figure
36 show the EV demand (with control) and the EV SoC of the connected cars at the EVCS1 and EVCS2,
respectively. In these figures, the target SoC is shown in red, and the SoC is shown in black. Figure 37 and
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Figure 38 show the uncontrollable demand (at nodes B20 and B21) and PV generation (at nodes B14 and
B16). Figure 39 shows the cumulative distribution function (CDF) of the error in power (averaged over the
dispatch period of 5 minutes) with and without real-time control.
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Figure 33), thanks to the power injected from the controllable BESS and curtailments actions from EVCS(s).
From the plot, it can also be observed that the variation in the generation at the PV plants is well compensated
by the battery storage. In Figure 34, the BESS SoC is respected within the imposed constraint of 20 to 90 %.
Figure 35-Figure 36 shows the target SoC of the EVs, and in most of cases, EV users meet their target SoC.

Table 26 shows different metrics to quantify the dispatch error with and without control. It shows the RMSE
error, max absolute error (MAE), and Absolute Energy Error (AEE) of the dispatch over the day. AEE is
absolute sum of the dispatch tracking error over the whole day. From the comparison, it is pointed out that the
RT control manages to track with high accuracy exhibiting low RMSE and MAE. The real-time control manages
to reduce error metrics by more than tenfold.

Table 26: Performance Metrics for Real-time Operation

Metrics Day 1 Day 2
Without Control | With Control | Without Control | With Control
RMSE (kW) 28.7 0.7 19.1 0.5
MAE (kW) 137.9 5.9 91.9 2.9
Absolute Energy Error (kWh) 441.7 8.5 327.4 15

Day 2 (15-April-2023)

It corresponds to a weekend (Saturday) and is characterized by a rainy day, so it exhibits low irradiance day
leading to low PV generation and relatively low demand compared to the weekday.

Again, we show the active power realization at the GCP with and without control. It is shown in Figure 40; it
can be observed that the dispatch plan is again tracked well, thanks to the power regulation provided by the
controllable batteries, as shown in the Figure 41 and curtailment action of EVCS1 as shown in Figure 42.

As this day corresponds to a rainy day, the peak power of the dispatch plan is higher than in the case of day
1. On this day, there are no sessions on the EVCS2, as it belongs to the office's private space, which is turned
off during the weekend. There are many sessions on the EVCS1, of which all of them met their targets. Thanks
to the good quality forecasting of the EV charging profiles accounted in the day ahead stage, there are not any
curtailments in EV demand leading to 100% satisfaction of the EV consumers. Also, the batteries' SoC is within
the designated range of 20 to 90% SoC.

Figure 45 shows the histogram of the dispatch error with and without control and it can be concluded that the
real-time control achieves a very good accuracy in the dispatch tracking. The same can be observed by the
metrics shown in Table 26.
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Figure 40: Dispatch plan, and power at the GCP with and without control.
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Figure 42: Upper: Controlled active power consumption by EVCS1, lower: EV SoC during the day along with the SoC target.
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Figure 43: Demand (ELLA and ELLB) at nodes B20, and B21.
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Figure 45: Cumulative distribution function (CDF) of Dispatch error with and without control.

Multiday (14-18 Apr 2023)

To demonstrate the effectiveness of the dispatching scheme, we ran the control of the BESS for four
contiguous days. Figure 46 shows the dispatch plan and the measured GCP power with and without the control
scheme. In Figure 47, we show the SoC evolution of BESS1 during the 4-days. The power at the GCP follows
the dispatch plan and keeps the BESS SoC within a comfortable SOC so that dispatching is continued the
next day.
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Figure 46: Dispatch plan, and power at the GCP with and without control.
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Figure 47: Active power regulation from the BESS1, and lower panel: minimum and maximum state-of-charge (SoC).

4.4. Multi-service battery control

4.4.1. Services analysis

One of the key objectives of the project is to assess market opportunities arising from flexibility provision of a
setup combining fast EV charging stations and a stationary battery. Although guaranteeing dispatchability at
the PCC seems to be interesting for grid operators, it is a value proposition which is currently not marketable.
Therefore, GridSteer assessed alternative market opportunities of the Aigle setup via interviews with numerous
companies and researchers as well as online market research. With respect to assets integrating BESSs and
EV fast charging stations, the services which are the most interesting economically are peak power shaving
(PPS), participation to the frequency containment reserve (FCR), backup energy storage provision, as well as
reactive power management.

Peak power shaving (PPS)

In Switzerland, DSOs usually include a power price in the electricity tariff for end-users consuming more than
100 MWhlyear. The billing scheme is either based on the 15 min peak power consumption of each month or
on the 15 min peak consumption of the year, depending on the DSO. In that sense, to perform PPS with a
limited energy reservoir such as a BESS, the controller must anticipate its peak shaving objective month/year-
ahead: the smaller the shaving objective, the smaller the power bill. Note that some DSOs specify in the
contract that a minimum power is billed even if the consumer does not reach it.

As an example, it is not unusual for consumers consuming a few GWh per year to have an annual power bill
around 1 MIO CHF.

Frequency containment reserve (FCR)

FCR (or primary frequency regulation reserve) is a fast response mechanism of the power grid to match supply
and demand. Any resource with enough flexibility can apply for a Swissgrid prequalification and participate in
the FCR market. Bids are advertised day-ahead in steps of 1 MW and must be made available for slots of 4
hours (i.e., 6 slots a day). Even though the steps are of 1 MW, flexibility can be pooled. One can thus consider
smaller granularity per unit if the aggregated resources in the pool allow for it. Since the bids need to be placed
at least one day before activation, a day-ahead forecast of the site’s prosumption (BESS excluded) is needed.

Backup energy reserve

The concerns regarding energy shortages in Switzerland are rising. More and more companies are looking
into backup energy solutions such as diesel generators or BESSs. By establishing beforehand the amount of
energy needed for backup, one can guarantee that amount to always be stored in the BESS and perform other
services on top of it. As load shedding is often planned, a company can also reserve the battery for backup
only for a specific moment while performing other services the rest of the time. This turns the backup energy
resource into a revenue generating asset contributing to the energy transition.

58/82



O

Reactive power management

DSOs usually bill reactive power to the end-consumer if the power factor (cos@) is smaller than a given value,
often 0.9 or 0.95, but this number can significantly vary with some DSOs even settingitto 0.7. It is worth noting
that even though reactive power is not what the customer pays for, it contributes to grid usage and to grid
congestion just as much as active power?? .

4.4.2. Control framework

In view of the above, GridSteer has developed a dedicated EMS for BESS to provide the identified services
behind the customer meter. In this document, it is also referred to as multi-service battery controller (MSBC).
Its objectives are to plan the services that the BESS performs every day and to ensure a safe operation of the
BESS according to the plan. The software can be run in a physical system or in simulation mode, in which an
ESR model of the battery and historical data of the load to simulate are used to assess the performance of the
software on a given site. Its structure is presented in Figure 48:
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Figure 48: MSBC simplified control framework.

Communication interface

The communication interface handles all communication aspects of the system: it reads the state of the BESS,
the state of the managed grid (i.e., PCC measurements, load consumption, etc), transfers them to the
controller, then reads and sends the setpoints computed by the controller to the battery. It also sends data to
a database to be stored and visualized.

Controller

The controller’s tasks are to safely operate the BESS and maximize the revenues it generates. To do so, the
controller is divided in two elements: the real-time controller and the planner.

Real-time controller

At every control cycle, the real-time controller computes the setpoints to send to the battery according to
what was planned by the planner. The process is as follows:

1. Recover the latest measurements.
a. BESS state.
b. P, Q load consumption.
c. P,Qatthe PCC.
2. Recover the latest service schedule.
3. Check what service is scheduled for the current cycle.
4. Update the shave target, if needed (if the target value is exceeded).

22 A transformer or a line rated for 1 MVA supplying a load with a 0.7 cos¢ would not be able to distribute more
than 0.7 MW, while it would be able to distribute up to 0.95 MW to a load with a cos¢ of 0.95
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5. Compute the setpoint.
6. Send the setpoint to the communication interface.

To compute the setpoint, the process is as follows:

1. If the current service is peak shaving.
a. If shaving is needed, apply a proportional integral (Pl) control to shave the PCC
consumption.
b. If shaving is not needed, reset the integral error of the PI control, and steer the BESS
towards the maximum operating SoC.
2. If the current service is FCR.
a. |If the current cycle is the beginning of a new hour, compute the BESS charge management
power (discussed in the following subsection).
b. If the frequency deviation is smaller than 0.2Hz, compute the setpoint according to the droop
control and add the charge management power.
c. Ifthe frequency deviation is bigger, or equal, to 0.2 Hz provide full bid power.
d. If the SoC of the battery is not between bounds, stop performing FCR and charge or
discharge the BESS to bring its SoC back between bounds.

BESS charge management

For limited energy reservoirs (LER) to participate in FCR, the asset operator must ensure that the asset can
always provide the bidding power for 15 min (consumption and production). To do so, the operator can change
the reference power of the asset (e.g., every hour) to maintain its SoC between the wanted limits (coined as
charge management). The charge management must however not be noticed at the balance group level. This
can only be done if another flexible asset within the same balance group as the BESS provides this charge
management.

To compute the BESS charge management power, the MSBC forecasts (via an auto-regressive integral
moving average — ARIMA — model) the average frequency deviation for the coming hour and compensates it.
The frequency forecasting method is based on this method [27] co-authored by the EPFL-DESL laboratory.
The current deviation with the target SoC is also compensated for.

Phase = _a(f_ 50) + CrateaASoC (23)
Where

- aisthe droop coefficient used for FCR in [W/Hz].
- Tfis the average estimated frequency for the coming hour.
- Crateq rated is the rated capacity of the battery in [Wh].

Planner
The planning process is as follows:

1. Monthlylyearly:
a. Compute a peak-shaving objective for the coming period, considering estimated FCR and
PPS revenues.
2. Daily
a. Forecast the load for the coming day.
b. Based on the load forecast, decide in which slots of the coming day the BESS is going to
perform PPS and in which slots it is going to perform FCR.

In the experimental validation of the MSBC, the forecasting part of the algorithm is not the point of focus. A
seasonal ARIMA (SARIMAX) model is used for the day-ahead load forecasting. Once the forecastis computed,
the service planning software computes the available margin for each slot in the day: if the margin is smaller
(bigger) than zero, PPS (FCR) will be performed during that slot. The following figure illustrates this concept.
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Figure 49: lllustration of FCR and PPS service planning

A commercial enhanced version of the EMS with better forecasting, increased reliability, inclusion of more
services, inclusion of aggregating algorithm, is under development.

4.4.3. Simulations

The goal of the simulations is to test the performance of the MSBC and of the service planning process. To
evaluate the interest of a multi-service BESS control solution, the forecasting part of the service planning
algorithm is not tackled, and “perfect forecasts” are used (i.e., the realization of the coming day is used as day-
ahead forecast). This allows to assess the best performance of the control framework that has been developed.

Simulation 1 - Current context

Setup
The MSBC in the context of Aigle is simulated with the following parameters.

1. Electrical network (see Figure 50):
a. 1x1.6 MW rated transformer at the grid connection point
b. 1x1.6 MW/2.5 MWh BESS
c. 4 x300 kW EVC of GoFast

B

1.6MwW
20kv/400V

"l‘ 300kW

>
oc|™ K . Charger
I
el
\..ﬂ

-

2.5MWh BESS

Figure 50: Simulation 1 grid schematic.

2. Tariffs of Romande Energie (2023) for a low voltage “DUP faible®” user located in Canton Vaud:

22 DUP (GoFast) = Durée dutilisation de la puissance = Annual kWh / Monthly Pmax15min
DUP faible if DUP < 3000h (this means that the prosumer has a profile with spikes)
DUP haute if DUP > 3000h (this means that the prosumer has a smooth profile)

More details on tariffs here: https://GoFast.romande-energie.ch/images/files/prix-electricite/2023_prix-electricite_bve.pdf
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a. 5.63CHF / kW / month as power price component
b. 27.31 cts / kWh peak energy tariff
c. 18.97 cts / kWh off peak energy tariff
d. 18.3 cts/ kWh feed-in tariff
3. Average primary control bid price in 2022 (100 CHF/MW/4h bid)

Since the EVCSs in Aigle have not deployed, data is lacking to run a simulation. For that reason, the data of a
charging station site with a similar configuration is used.

Dataset
The simulation dataset starts on January 15 of 2022 at 00h00 and ends on May the 315t of 2022 at 00h0O.

The following figure shows the average hourly consumption of the site depending on the day of the week and
the hour of the day. It details how the consumption of the site is distributed over a week. Every day around 12
a.m., the site is strongly active, while it is almost inactive during night-time. It also shows that the site is overall

more active from Friday to Sunday than in the rest of the week.
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Figure 51: Simulation 1 weekly consumption of the EVCS in Aigle inferred from other GoFast EVCS with similar characteristics.
Similarly, Figure 52 shows the activity of the site for each slot where primary control can be performed.
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Figure 52: simulation 1 - load in 4h slot clusters

Intuitively, the service planner is expected to generally instruct the battery to perform FCR at full capacity
between 8 p.m. and 8 a.m. and to reduce the FCR bids or perform peak shaving the rest of the day. It is
however interesting to note that the extreme values are significant at every 4h slot, which implies that high
forecasting errors are likely for any 4h slot. This will need to be accounted for when implementing the
forecasting part of the service planning.

Service panel

The multi-service controller runs its planning algorithms with the following services:
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1. Primary control regulation.

a. It is assumed that the battery is aggregated in a pool containing a considerable number of
resources. Therefore, the granularity in the primary bids that the battery can advertise to the
pool aggregator has been set to 10 kW, although the market granularity is 1 MW (i.e., the
aggregator ensures that the pool bids have a 1 MW granularity).

2. Peak-shaving.
3. 750 kWh back-up energy reserve guarantee (> 10 EV charges).

Simulation parameters
e The BESS can be safely operated between 10% and 90% of SoC.
Simulation results

Since the service planning algorithms schedules the services for the following day, the first day of the
simulation is not relevant and is thus not shown in the following plots.

Power profiles

Figure 53 shows the results for a simulated period of 6 months. The service planning software decides to only
perform FCR, while it sometimes needs to lower the bid power to never exceed the PPS target (which changes
monthly).
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Figure 53: Simulation 1 power profiles.

To better illustrate the changes in bid power, Figure 54 shows zooms in on the simulation results for the 19t
of February: between 1 and 3 p.m., the load increases and the bid power needs to be smaller to not exceed
the PPS target of the month.
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Figure 54: Simulation 1 power profiles for a single day.
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BESS SoC

For a limited energy reservoir to participate in FCR, it is crucial to ensure that its SoC stays within the bounds
specified by the transmission system operator. The following figure illustrates this.

BESS state of charge

1.0
0.8 1
0.6 1
O
o
(3]
0.4 4
0.2 1
SoC (%)
FCR SoC bounds
Energy reserve
0.0 T T T T T T
2022-01  2022-02 2022-03  2022-04 2022-05 2022-06

Figure 55: Simulation 1 BESS SoC.

The orange band represents the provision of 750 kWh of energy reserve. In the simulation, the battery never
went below 53 % SoC (i.e., 1.325MWh of usable energy is always available in case of black-out).

The orange area shows the area in which the SoC must stay during FCR service (as per Swissgrid rules on
LER participating in FCR). To ensure that the SoC stays in such bounds, the LER performs charge
management: every hour, it can change its steady state operating power (i.e., the power it draws or outputs
when there is no frequency deviation). Focusing on a single day, Figure 56 illustrates the BESS power profile
as it performs FCR vs the hourly charge management requests.
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Figure 56: Simulation 1 BESS charge management.

Economics

This section shows the economical results of the simulation. On the customer side (the owner of the battery),
the economics of the simulation are summarized in Table 27.

Table 27: Economics of simulation 1.

Investment cost

1625 kCHF

operation and maintenance (O&M) costs

545 KCHF/year

Yearly profits
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Payback time 15.7 Years (without accounting the
reserve and current BESS)
10 Years (without accounting the
reserve and downsizing the BESS)

Table 28 shows the detailed cost and revenues of the system.

Table 28: Detailed cost and revenues of the system.

In thousand CHF per year

Revenues
Primary control 204
Costs
Electricity bill increase 28.6
O&M costs 54.5

The yearly profits are computed as follows: (204 — 28.6) = (1 — 10%) — 54.5 = 103 kCHF/year.

It should be mentioned that in the above equation, the BESS operator takes a 10% commission on the
revenues generated by the services that the battery performs. The O&M cost is an average of all yearly
recurring costs including service planning, operation, monitoring, maintenance, interventions, and insurances
for a battery of this dimension.

For the BESS operator, the yearly revenues are as presented in Table 29.

Table 29: Yearly revenues for the BESS operator.

In thousand CHF per year

Commission on services 17.5
Maintenance 50.4
Total 67.9

Discussion on economics

Today, the investment cost for a 2.5 MWh/1.6 MW battery is in the order of 1.6 MIO CHF. This number is
based on the average cost per kWh (over the manufacturers that have been contacted) of utility-scale batteries.
Additionally, operating costs include BESS operator fees, maintenance interventions, and insurances. The
payback time is approximately 16 years. Note that, in this simulation, the system guarantees a backup energy
reserve. It was supposed that the customer requests for a 750 kWh backup energy reserve to be resilient to
shortages and the BESS operator minimizes the cost of the backup energy system. However, the value of the
backup energy reserve is case specific, depending on the price that each customer is willing to pay for this
reserve. Without the energy reserve, and therefore a smaller battery (around 1.75 MWh/1.6MW) that can
provide only FCR, the payback time would be approximately 10 years.

It is worth noting that the system never plans to perform PPS because FCR generates significantly more
income. To assess the economic feasibility of a battery performing mostly PPS, an experiment in which FCR
is not in the service panel has been performed.
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Simulation 2 - Without primary control

Simulation setup

This simulation is identical to the previous one except for the service panela as the BESS participation to FCR
has been removed. The results of this simulation are compared with the results of the previous one.

Service panel
The service panel is identical as the previous simulation yet without FCR as a service.
Simulation parameters
e The BESS can be safely operated between 10% and 90% of SoC.
Simulation results

Figure 57 shows the results for the 6 months simulation. One can observe that the PPS targets are respected.
Each month, the controller computes a PPS target for the coming month.

Simulation power profiles
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Figure 57: Simulation 2 BESS power profiles.

To better illustrate how the BESS is controlled during PPS, Figure 58 shows the BESS power profile, the load
consumption profile, and the shave target on the 19" of February. One can see that the BESS compensates
the load peaks when needed and charges when it can, without exceeding the PPS target.
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Figure 58 : Simulation 2 BESS power profiles in a single day.
BESS SoC

The SoC of the BESS stays in the specified boundaries and the backup energy reserve is always available. In
fact, the lowest SoC reached during the simulation is 57.6% (i.e., 1.44 MWh are always stored in the BESS for
this simulation). Figure 59 shows the evolution of the SoC over the simulation period.
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Figure 59: Simulation 2 BESS SoC.

Economics

This section shows the economical results of the simulation. On the customer side (the owner of the battery),

the economics of the simulation are summarized in the following table.

For the BESS operator, the yearly revenues are as follows:

Table 30: Yearly revenues in simulation 2

Investment cost 1625 kCHF
O&M cost 54.5 KkCHFlyear
Yearly profits -38.9 kCHF/year
Payback time © Years

30 Years (assuming no O&M cost)?

Table 31 shows the detailed cost and revenues of the system

Table 31: Detailed cost and revenues for simulation 2.

In thousand CHF per year

Revenues

Electricity bill decrease 17
Costs

O&M cost 54.5

The yearly profits are computed as follows: (15.3) * (1 — 10%) — 54.5 = —40.7 KCHF/year.

Note that in the above equation it is estimated that the BESS operator would take a 10% commission on the

revenues generated by the services that the battery performs.

For the battery operator, the yearly revenues are as follows.

24 For comparison purposes.
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Table 32: Yearly revenues.

In thousand CHF per year

Commission on services 1.7
Maintenance 50.4
Total 51.9

Discussion on economics

For basic services of the BESS, it would not be viable to outsource the handling of this asset’s operation.
Indeed, BESS manufacturers often propose an EMS with simple functionalities such as PPS.

Note, however, even if the maintenance costs were fully removed (which is unrealistically optimistic) the
payback time for a BESS operating in this way would be approximately 30 years, which is twice as much as
the payback time obtained with the first simulation.

Discussion on current context

The current context makes a combination of PPS and FCR highly unlikely. Since the consumption peak power
is much smaller than the rated powers of the BESS and of the transformer, even performing a very small
amount of PPS leads to significant lost opportunities to perform FCR.

Moreover, the BESS is oversized for the current context. While this can enable substantial amounts of backup
energy storage, most of the revenues that the BESS generates could be generated with an asset that has half
the rated energy, which would reduce the payback time to less than 10 years.

In the medium term, the EV charging station operator aims at deploying more and more charging stations on
the site. The next simulation shows the performance of the multi-service BESS controller in that situation.

Simulation 3 — Increased number of EV charging stations

Simulation setup

The medium-term objective of GoFast is to deploy other fast charging slots on the site. Such configuration
would put the Aigle subnetwork under more stress and the multi-service BESS control might be used more
extensively. This simulation evaluates the performance of the multi-service BESS control in the Aigle context
but with 40x 300 kw DC EVC. To do so, a consumption profile of such a charging park has been generated
using the EV charging session model discussed in section 4.2 EV user statistical modelling.

Dataset

From the heatmap representation of the dataset (Figure 60), one can see that the model distinguishes
weekdays from weekends. Overall, in weekdays, most of the charges are generated between 7 a.m. and 8
p.m. In weekends, most charges are between 10 a.m. and 7 p.m.
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Figure 60: Simulation 3 weekly EV consumption heatmap.
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Figure 61: Simulation 3 load in 4h clustered slots.

In the boxplot representation of the model-generated data (Figure 61), the trend mentioned above is confirmed.
Also, spikes going up to 2.1 MW can be identified. Note that this is larger than the transformer’s rated power,
meaning that either the BESS will shave such peaks, or such demand will not be satisfied by the EV charging
station operator.

Power profiles

Figure 62 shows the power profiles during the simulation. One can see that the shave target is approximately
set at the transformer limit (1.6 MW). The controller was able to shave the power at the point of coupling. One
can see that the FCR service is performed most of the time, with bids that change to ensure that the shave
target and transformer limit are always respected.
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Figure 62: Simulation 3 power profiles.

Figure 63 shows a zoom on the 9™ of July 2022. Here, one can observe the service stacking: between midnight
and 4 p.m., the service planning algorithms decide to perform FCR with different bids. Between 4 and 8 p.m.,
PPS is performed (this can be seen by comparing the load and PCC consumption, also, the bid power is set
to zero). Between 8 p.m. and midnight, the planer choses FCR again.
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Figure 63: Simulation 3 power profiles in a single day.

BESS SoC

Figure 64 shows the evolution of the SoC of the BESS over time. The green area shows the BESS limits when
performing FCR with a maximal bid (i.e., it shows the most restrictive area for the SoC). In 4 occurrences this
band enlarges as the planner changes the service of the BESS towards PPS. When the BESS switches to the
PPS service provision, it charges to 90% SoC to be able to perform as much PPS service as possible.

The energy reserve is satisfied since the battery never goes below 58.7% of SoC (1.467 MWh of energy is
always available).
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Figure 64: Simulation 3 BESS SoC.
Economics

On the customer side (the owner of the BESS), the economics of the simulation are summarized in Table 33.

Table 33: Economics of simulation 3.

Investment cost 1625 kCHF

Maintenance cost 54.5 KkCHF/year

Yearly profits 70.5 KkCHF/year

Payback time 23 Years (without accounting the

reserve and current the BESS)

Years (without accounting the

16 reserve and downsizing the BESS)

Table 34 shows the detailed cost and revenues of the system

Table 34: Detailed cost and revenues in simulation 3.

In thousand CHF per year

Revenues
Primary regulation 136.6
Electricity bill decrease 2.3
Costs
Maintenance + insurance cost 54.5

The yearly profits are computed as follows: (136.6 + 2.3) * (1 — 10%) — 54.5 = 70.5 KCHF/year.

71/82



O

Note that in the above equation it is estimated that the BESS operator would take a 10% commission on the
revenues generated by the services that the battery performs.

For the BESS operator, the yearly revenues are as follows:

Table 35: Yearly revenues for simulation 3

In thousand CHF per year

Commission on services 13.9
Maintenance 50.4
Total 64.3

Discussion on the economics

One must note that some cost savings that the system allows have not been considered above. For instance,
the customer would typically have to pay to have a backup energy system (e.g., a diesel generator set). Also,
if the customer wanted to consume the power profile without having the BESS, he would need to upgrade its
transformer size and increase its grid connection rating (which would result in some costs).

The transformer size that would be needed to supply the consumer load would be at least 2.1 MVA (0.5 MVA
increase compared to the current transformer). By estimating the cost of an MV/LV transformer to 200
CHF/kVA [28] and supposing that the current 1.6 MVA transformer can be sold at the same price, the charging
station operator would need to invest 100 KCHF to supply such a load.

Increasing the grid connection rating would cost about 100 CHF/kW and thus increase the investment by 50
kCHF.

Without the energy reserve, and therefore a smaller battery (around 1.75 MWh/1.6MW) that can provide only
FCR, the payback time would be approximately 16 years.?®

While both PPS and FCR are performed in this simulation, this happens only because of the transformer limit.
This means that if the customer were to choose which service to perform on economics only and did not have
a limiting transformer limit, he would only perform FCR (i.e., the incentive to perform PPS is not enough to not
perform FCR with the BESS).

Ultimately, DSOs might want to incentivize EV charging station operators to perform PPS to avoid upcoming
grid congestions and infrastructure reinforcements. To do so, they would need to increase the cost of power
with respect to the revenues of FCR. Hence, a power cost sensitivity analysis is presented below to show the
impact of higher peak power prices on the service planning.

%5 An alternative way of estimating the return of investment for the BESS without downsizing it, it would be to
consider the value of the reserve. While this is case specific, a simplified consideration is based on the cost of
alternative technologies that can provide this reserve. Considering backup storage with 8h runtime, a
comparable system would be a 100 kW diesel generator (750 kWh are ensured to be stored in the BESS which
means ~100 kW can be provided during 8 h). Typically, diesel generators cost around 800 CHF/kW which
would lead to an 80 kCHF investment [29] (ignoring the rare occasions of diesel consumption costs). Taking
this investment avoidance factor, the payback time would be approximately 20 years.
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Simulation 4 - Peak power cost sensitivity analysis

Until now the peak power price has been fixed at 5.63chf/lkW/month as discussed above. Below are the results
of a peak power price set at 13 CHF/kW/month. Note that several operators in Switzerland already apply these
tariffs to certain customers.

Power profiles results

Figure 65 shows the power profiles for the simulation with a 13 CHF/kW/month peak power price. One can
see that the PPS target is re-computed every month and is 1.5 MW at maximum. As the transformer limit is
1.6 MW, we can conclude that PPS was performed.
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Figure 65: Simulation 4 power profiles.

Zooming on the 22™ of July better shows the PPS service being performed, with a PPS target of less than
1.5 MW (Figure 66).
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Figure 66: Simulation 4 power profiles in a single day

BESS SoC

As shown in Figure 67, the previously considered 750 kWh energy reserve limit is guaranteed. The lowest SoC
reached during the simulation is 58% (i.e., 1.45 MWh always stored in the battery). It can be observed that
more occurrences of PPS have been applied in order to remain within transformer limits.
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Figure 67: Simulation 4 BESS SoC.
Economics

On the customer side (the owner of the BESS), the economics of the simulation are summarized in Table 36.

Table 36: Economics of the simulation 4.

Investment cost 1625 kCHF

Maintenance cost 54,5 KkCHF/year

Yearly profits 87.3 KkCHF/year

Payback time 18.6 Years (Without accounting energy

reserve and current BESS)

16 Years (accounting energy reserve
revenue and grid upgrade costs)

13 Years (without accounting the
reserve and downsizing the BESS)

Table 37 shows the detailed cost and revenues of the system.

Table 37: Detailed cost and revenues.

In thousand CHF per year

Revenues
Primary regulation 136.4
Electricity bill decrease 21
Costs
Maintenance + insurance cost 54.5

The yearly profits are computed as follows:(136.4 + 21) = (1 — 10%) — 54.5 = 87.3 KCHF/year.
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For the BESS operator, the yearly revenues are as follows:

Table 38: Yearly revenues in simulation 4.

In thousand CHF per year

Commission on services 13.9
Maintenance 50.4
Total 64.3

If the energy reserve cost and grid upgrade costs are considered, the payback time is approx. 16 years.
Price sensitivity discussion

Further increasing the peak power price would increase the amount of PPS shaving performed and decrease
the payback time for the battery. For example, running the experiment with a 20 CHF/kW/month leads to a
payback time of 13 years.

To make BESS coupled with EV charging stations performing PPS, the distribution grid operator should
increase the price of the power component: the energy component can be reduced so that the overall bill of a
charging station operator (without the use of batteries) does not change.

In some specific cases, BESSs can be economical even with the current prices. For example, in remote places,
where upgrading the infrastructure to supply the rated power of the charging stations would lead to huge
investment costs, batteries can be deployed to take care of the consumption peaks.

Conclusion

In Table 39 the first simulation shows a BESS that has a break-even at about the same time than its lifetime
without accounting for the economic benefit of 750kWh reserve. This means that the constant reserve of
750kWh can be considered as cost-free.

In the second simulation, it can be concluded that a battery in this context cannot be profitable without FCR as
a service.

The third simulation, a tenfold increase of EVC shows lower profitability of the BESS. The reason is that with
an increased load, a fixed transformer size limits the possibilities of FCR patrticipation from the BESS.

Finally, the last simulation indicates that only if the power price triples its current value, then EV charging
station operators would consider performing PPS instead of only FCR. This indicates a suggested pricing
scheme for grid operators to incentivise PPS when grid congestions will arise. It is important to note that EV
charging station operators may be forced to perform PPS despite any peak power price if it avoids costly grid
connection reinforcement requirements.

All in all, BESS profitability alongside a charging station is possible yet not a given. To reach an attractive
break-even cost, a careful dimensioning of the BESS must consider numerous parameters which also vary
during its lifetime. These parameters include market prices, number of EVCs, transformer size and others.

75/82



O

Table 39: Cost and revenues for all 4 simulations

40 EVC 40 EVC
4EVC 4 EVC Services: Services:
. . Services: .
Simulation ervices Services: FCR +PPS + FCR +PPS +
Reserve Reserve
FCR +PPS + PPS + Reserve
Reserve Power price: Power price:
5.6¢chf/kW/month  13chf/kW/month
Investment -1625 -1625 -1625 -1625 kCHF
-54.5 -54.5 -54.5 -54.5 kCHFly
O&M ear
Primary control 204 0 136.6 136.4 kCHFly
revenues ear
Electricity bill -28.6 17 2.3 21 kCHFly
savings ear
. 103 -38.9 70.5 87.3 kCHF/
Yearly profits* y
ear
Payback time 1* 15.7 0 23 18.6 years
Payback time 2** 10 30*** 16 13 years

*Without considering the economic benefits of constant 750kWh reserve nor avoidance of transformer upgrade
**Considering a smaller BESS which does not provide an energy reserve except for ***

*** Assuming no O&M cost for comparison purposes

444, Experiment
Replicated setup

To experimentally validate the multi-service battery controller of Gridsteer, it was decided to replicate the setup
of “Simulation 3 - With additional charging stations” and a power price increase at 13chf/lkW/month.

Experimental setup

Since the Aigle setup is not ready for such experiment, it was replicated at EPFL by scaling down the ratings
of the hardware in Aigle by a factor of 62.5. This limitation is due to the rated power of the controllable load

being 30kVA. That is to say:

1. the replicated charging station load reaches 24.5 kW at maximum. In Aigle, it would reach 1.53 MW.

2. The scale-down replica of the Aigle BESS has a 40 kWh / 25.6 kW rating. The EPFL BESS SoC range
is limited by the software to match these ratings (i.e., the usable SoC range is [17.7 %, 82.2%]). The
power rating is replicated by setting a virtual limit in the software.

3. The transformer limit is replicated by setting a virtual limit at 25.6 kW.

4. The PPS target and FCR bids are scaled down accordingly.

The following hardware was used:

1. 1 string of a 9 string 740 kVA/560 kWh BESS, resulting in an 80 kVA/62 kWh battery virtually capped

at [17.7 %, 82.2%].

2. 1 controllable electronic load (30 kVA).

Note that other nodes are also part of this network but have been ignored for the experiment.
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Figure 68: Experiment grid schematic

Results

The BESS performed FCR at all times except from 4pm to 8pm for PPS as planned. This respects the
scheduled services and the profile curves match the simulation well as shown in Figure 69.
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Figure 69: Simulation vs experiment power profiles.

An example of adequate FCR support for the slot of 0-4am is shown in Figure 70. The BESS power follows
the frequency with a pre-defined scaled-down droop coefficient of 0.1MW/Hz (which changes for every 4h
slot). Additionally, the charge management is applied to keep the BESS within a tight SoC range as shown in
Figure 71.
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Figure 70: Experiment of BESS FCR provision.
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Figure 71: Experiment BESS SoC and charge management during FCR provision.

In between 4pm and 8pm, PPS operated as expected to keep the PCC power within transformer limits (see
Figure 72).
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Figure 72: Experiment BESS power profiles during PPS.

The SoC during the experiment was well kept between 60 and 65% during FCR and up to 90% during PPS
as show in Figure 73.
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Figure 73: BESS SoC during experiment.

All in all, the results show that the scaled down battery operated in the same way as in the simulation which
displays the physical feasibility of the MSBC control framework.
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5. Conclusion and outlook

The key takeaway messages of this project are the given here below.

A.

EVs charging profiles can be controlled for the benefit of the grid without significantly changing users
satisfaction. The control framework should consider that: (i) customers tend to receive more energy than
targeted (4% more); (ii) customers leave later than anticipated (10% later); (iii) customers are ready to
extend their charge duration (by a few minutes) to help the grid (32% against a discount and 35% even
without a monetary discount), and (iv) most users (65%) plan their EV charge based on SoC rather than a
target stay duration or cost.

Controlling EV fast charging stations is not suitable for sub-second control frameworks and their dynamic
needs to be accounted for in sub-minute control frameworks. By testing the GoFAST EVTEC charging
station with a Tesla Model S90D, one can observe response times varying between the second to minute
range depending on the amplitude of the setpoint power variation. Moreover, one can observe that the
implementation error follows a quadratic trend, where the error is largest for low and high setpoints.
However, the car model might contribute to these characteristics, thus implying that other car models might
lead to significantly different results.

Combining a controllable EVCS and a BESS has measurable benefits for grid management and control.
The control of EVCS alone in the day-ahead stage already provides several measurable benefits in terms
of reduction of the untracked energy error, and shaving the peak PCC injections, without penalizing EV
users’ satisfaction. However, it does not guarantee that the flexibility will be available when it is needed
since it is uncertain when the EV(s) will be present at the charger. Therefore, the installation of a BESS is
required. Even more, when EVCS and BESS are controlled in real-time, notably by the control framework
developed in the MESH4U project, all error metrics are reduced by more than tenfold compared to a
without-control scenario.

The control of EVCS can reduce the need for BESS investment without affecting EVCS user’s satisfaction.
At the same time, the increase of the BESS’s energy and apparent power capacity has a limited impact on
the dispatching cumulative energy uncertainty (at least in our case study).

The adoption of controlled EVCS can lower their impact to the grid. It is ubiquitous that adding fast EVCS
is inevitable to promote the transition towards electric mobility. It is also known that their deployments are
viewed as a risk for the grid from the added stochasticity and peak power demands. However, with
adequate control of the stations, one can not only lower their impact on the grid but also provide useful grid
support (e.g., day-ahead dispatching). Public fast charging stations can therefore not only help the electric
mobility transition but also provide grid flexibility to the condition that they are both controllable and
controlled. It is thus important to consider this aspect in the selection process of future charging station
providers.

Commercial fleet charging stations (CFCS) can support the electrification of the mobility sector in a more
cost-efficient way than the public fleet charging stations (PFCS). For the same CS energy demand, the
required battery size to track the dispatch plan is ten times smaller for a CFCS. In terms of required
infrastructure and investments, one can achieve more grid predictability and flexibility with lower
investments by implementing dispatch plans on nodes encapsulating schedulable and controllable
commercial fleet charging stations. Due to the significantly higher stationary battery investment costs, when
truly necessary for the grid, tracking a PCC node encapsulating highly stochastic PFCSs can be achieved.
Figure 74 qualitatively shows the grid support versus cost analysis between different levels of
prediction/scheduling and control for both PFCS and CFCS:
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Figure 74: CFCS vs PFCS measures analysis in grid stability and cost.

G. The profitability of an investment in BESS coupled with EVCS is case specific. To make BESS coupled with
EVCS economically worth performing peak power shaving (PPS), the distribution grid operator should
increase the price of the power component. Note that the energy component can be reduced so that the
overall bill of a charging station operator (without the use of batteries) does not change. While for the case
of the Aigle setup, using the battery to perform PPS is not economical, in some specific cases, BESSs can
be economically worth even with the existing prices. For example, in remote places, where upgrading the
infrastructure to supply the rated power of the charging stations would lead to huge investment costs,
batteries can be deployed to take care of the consumption peaks. Other locations with significant PV
production and low feed-in tariffs can also make BESS profitable as self-consumption would be added to
the panel of services. To reach an attractive break-even cost, a careful dimensioning of the BESS must
consider numerous parameters which vary during its lifetime. These parameters include market prices,
number of EVCs, transformer size, the load evolution and others.

6. National and international cooperation

This project was undertaken under the international collaboration framework ERA-Net Smart Energy Systems’
focus initiatives Smart Grid Plus and Integrated, Regional Energy Systems. The ERA-Net project, entitled Multi
Energy Storage Hub For reliable and commercial systems Utilization (MESH4U), aimed to develop, and test
multi energy storage hub solutions for flexibility operation from end customers in the local grids, via
SMEs/Industry up to the Energy/Distribution System Operator. The objective was to enhance the reliability and
economic advantage of energy supply as well as to offer more flexibility and cost efficiency to the modern
distribution power grids. The MESH4U solutions was implemented in 4 demonstrators in different countries,
namely Germany, Italy, Poland and Switzerland, in order to test several use cases and applications of multi
energy storage hubs within different infrastructures, size of the systems, regulatory and market conditions.

EPFL-DESL was leading the WP2 on the Development of methodologies and algorithms for optimal planning
and operation of Flexibility Hub and provided contributions to WP1 and WP4 while ensuring the transfer of
information and knowledge among Swiss and European partners. WP1 was on the analysis and modeling of
different storage technologies and their dependencies in multi-storage system, while WP4 on the
implementation and operation of Mesh4U in demonstrators PL, DE, CH, IT.

Concrete research activities were also undertaken notably with the MESH4U project partners of the University
of Rome Tor Vergata (see section 4.3.4).
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