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Zusammenfassung
Der steigende Einsatz dezentraler erneuerbarer Energiequellen sowie die Elektrifizierung des Transport-
und Wärmesektors stellen grosse Anforderungen an das Verteilnetz. Zur Bewältigung der entstehenden
Herausforderungen untersucht das Pilotprojekt OrtsNetz den Einsatz von zeitabhängigen Netznutzungs-
tarifen, welche helfen sollen, Leistungsspitzen im Niederspannungsnetz zu vermeiden und dezentrale
Quellen zu integrieren. In diesem Kontext ermittelt und vergleicht das Projekt (i) Verhaltensänderungen
von Kundinnen und Kunden durch Tarifsignale, (ii) eine automatisierte lokale Laststeuerung wichtiger
Verbraucher (Boiler, Wärmepumpen und Elektrofahrzeuge) und (iii) eine direkte Ansteuerung flexibler
Lasten durch den Verteilnetzbetreiber, die auf einer zentralen Optimierung basiert.

Das Projekt ist in vier Arbeitspakete unterteilt. Das erste Arbeitspaket befasst sich mit der Kundeninter-
aktion sowie mit dem Tarif- und Studiendesign. In den Arbeitspaketen 2 und 3 werden die Algorithmen
zur Ermittlung der genauen Tarifwerte und der Schaltbefehle entwickelt. Der Fokus des vierten Arbeits-
pakets liegt auf dem Systemdesign und den Komponenten, die für eine erfolgreiche Implementierung
während der Pilotphase benötigt werden.

In Arbeitspaket 1 wurde das Tarifdesign finalisiert. Basierend auf historischen Energiemessungen aus
dem Projektgebiet wurde ein Time-of-Use Tarifprofil evaluiert und auf Kostenneutralität skaliert. Diese
Skalierung bestimmt auch die Spanne eines Echtzeittarifs. Die verschiedenen Studiengruppen des Pro-
jekts wurden definiert und den insgesamt 630 Teilnehmenden zugeordnet. Erste Ergebnisse zeigen eine
Opt-out-Rate von unter 4%.

Das Arbeitspaket 2 analysiert die Wechselwirkung zwischen den Tarifwerten und dem Verbrauchsver-
halten unter idealisierten Bedingungen. Sowohl die Perspektive des Verteilnetzbetreibers als auch die
der Kundinnen und Kunden wurden modelliert, und ihre hierarchische Interaktion wurde als Bilevel-
Optimierungsproblem formuliert. Die Lösung des Problems hat wertvolle Erkenntnisse für den Time-
of-Use Tarif geliefert. Aufgrund des hohen Rechenaufwands bei der Betrachtung eines dynamischen
Tarifs wurden alternative Methoden angewandt, welche in Arbeitspaket 3 beschrieben sind.

In Arbeitspaket 3 werden Unsicherheiten und begrenzte Informationen, d.h. reale Bedingungen, berück-
sichtigt. Für die Bestimmung der Preise des Echtzeittarifs haben wir eine proportionale Preismethode
entwickelt und arbeiten an einem Reinforcement Learning basierten Ansatz. Darüber hinaus wurde das
automatische Lastmanagement auf Haushaltsebene mit Hilfe eines Reinforcement Learning Agenten
zur Steuerung von Boilern und Wärmepumpen sowie zur Optimierung der Steuerung des Ladevorgangs
von Elektrofahrzeugen fertiggestellt. Letztlich haben wir einen Algorithmus zur Berechnung der Schalt-
befehle für die direkte Laststeuerung entwickelt.

Im Arbeitspaket 4 wurde die Hardware und Infrastruktur für die Testphase entwickelt und fast vollständig
installiert. Dies beinhaltet die Entwicklung der bei den Kunden installierten Lastschaltgeräte, die Einrich-
tung der Cloud-Infrastruktur, die Installation der Kommunikationsinfrastruktur und die Entwicklung der
OrtsNetz-Plattform. Die Infrastruktur befindet sich noch nicht im Endzustand, aber die Steuerung der
Lasten von Kunden hat bereits begonnen.
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Summary
The increasing deployment of decentralized renewable energy sources and the electrification of the
transport and heating sectors place great demands on the distribution grid. Tomeet these challenges, the
OrtsNetz pilot project is investigating the use of time-dependent grid usage tariffs, which are intended to
help avoid power peaks in the low-voltage grid and ease the integration of decentralized sources. In this
context, the project is investigating and comparing (i) changes in customer behavior through tariff signals,
(ii) automated local load control of important consumers (boilers, heat pumps, and electric vehicles) and
(iii) direct control of flexible loads by the distribution grid operator based on central optimization.

The project is structured into four work packages. Work package 1 focuses on customer interaction,
as well as the tariff and experiment design. The algorithms to determine the exact tariff values and the
switching commands are developed in work packages 2 and 3. Work package 4 focuses on the system
design and the components that are needed for a successful pilot implementation.

In work package 1, the tariff design was finalized. Based on historic energy measurements from the
project area, a time-of-use tariff profile was evaluated and scaled for cost recovery. The same scaling
determines the range of a real-time tariff. The different study groups of the project were defined and
applied to a total of 630 participants. First results show an opt-out rate below 4%.

Work package 2 analyzes the interplay between tariff values and consumption behavior under idealized
conditions. Both the perspective of the distribution system operator and the customers have been mod-
eled, and their hierarchical interaction has been formulated as a bilevel programming problem. Solving
the problem gave relevant insights for the time-of-use tariff scheme. Due to the computational complexity
when considering a dynamic tariff, alternative methods were applied, as described in work package 3.

In work package 3, uncertainties and limited information, i.e., real-world conditions are considered. For
determining the real-time price values in the dynamic tariff scheme, we developed a proportional pricing
method and are working on a reinforcement learning-based approach. Furthermore, the automatic load
management at the household level has been finalized, using a reinforcement learning agent to control
electric water heaters and heat pumps, and optimization for controlling electric vehicle charging. Third,
we developed an algorithm to compute the switching commands in the direct load control setting.

Finally, in work package 4, the hardware and infrastructure for the test phase has been developed and
almost completely been installed. This includes the development of the load control devices installed
at the customers, setting up the cloud infrastructure, installing the infrastructure necessary for power
line communication and developing the OrtsNetz platform. The infrastructure is not in its final state but
control of customers’ loads has already started.

4/34



Contents
Contents.............................................................................................................................................. 5

Abbreviations...................................................................................................................................... 7

1 Introduction............................................................................................................................ 8

1.1 Background information and current situation ......................................................................... 8

1.2 Purpose and objectives of the project ..................................................................................... 8

2 Description of facility ............................................................................................................ 9

3 Activities and results ............................................................................................................ 10

3.1 WP 1: Customer interaction, market and tariff design............................................................. 10

3.1.1 Study groups ........................................................................................................................... 11

3.1.2 Tariff design ............................................................................................................................. 11

3.1.3 Customer recruiting ................................................................................................................. 13

3.2 WP 2: Idealized analysis of interactions and tariff design ....................................................... 14

3.2.1 Problem formulation ................................................................................................................ 14

3.2.2 Solution approach.................................................................................................................... 16

3.2.3 Case study............................................................................................................................... 16

3.2.4 Discussion and pilot time-of-use tariff...................................................................................... 17

3.3 WP 3: Automatized load management and tariff design ......................................................... 18

3.3.1 Inflexible load forecast ............................................................................................................. 18

3.3.2 Real-time tariff setting.............................................................................................................. 22

3.3.3 Automatized load management in the Time-of-Use tariff setting............................................. 24

3.3.4 Direct load control.................................................................................................................... 25

3.3.5 Local verification module ......................................................................................................... 27

3.4 WP 4: Hardware and infrastructure ......................................................................................... 28

3.4.1 WP 4.2: Peer-to-Peer platform................................................................................................ 28

3.4.2 WP 4.3: Transformer station active components .................................................................... 28

3.4.3 WP 4.4: Control devices.......................................................................................................... 28

3.4.4 WP 4.5: Community electricity storage ................................................................................... 29

3.4.5 WP 4.6: Algorithms in the field ................................................................................................ 29

4 Evaluation of the results to date .......................................................................................... 31

5 Next steps .............................................................................................................................. 31

6 National and international cooperation............................................................................... 32

7 Communication...................................................................................................................... 32

8 Publications ........................................................................................................................... 33

5/34



9 References ............................................................................................................................. 34

6/34



Abbreviations
API Application Programming Interface

DLC Direct Load Controller

DSM Demand Side Management

DSO Distribution System Operator

EV Electric Vehicle

EVCS Electric Vehicle Charging Station

EWH Electric Water Heater

FEDRO Federal Roads Office

HES Head End System

HP Heat Pump

KKT Karush-Kuhn-Tucker

LCD Load Control Device

LCMA Load Control Master Agent

LCSA Load Control Service Agent

MAE Mean Absolute Error

MILP Mixed Integer Linear Programming

MIQP Mixed Integer Quadratic Programming

PLC Power Line Communication

PV Photovoltaic

P2P Peer-to-Peer

RL Reinforcement Learning

SFH Single Family Home

SoC State of Charge

TECA Total Energy Correctly Assigned

TS Transformer Station

ToU Time-of-Use

WP Work Package
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1 Introduction
1.1 Background information and current situation
Current efforts towards decarbonization and increased sustainability are fundamentally reshaping the
electricity sector. Conventional power plants running on fossil fuels are replaced with distributed, renew-
able energy sources, which are much more volatile and intermittent. These changes challenge traditional
supply-side approaches to balancing supply and demand. Simultaneously, the electrification of transport
and heating increases electricity demand, putting extra stress on the distribution grid during peak times
and necessitating costly grid expansions [1].

Enabled by the progressing digitalization, Demand Side Management (DSM) is a means to address
these challenges. Instead of adapting supply to a given demand, the flexibility present in many devices
is used to adapt their demand to available supply, shifting peaks in demand to those in supply or flattening
demand curves in general. In particular, the heating and transportation sectors exhibit considerable flex-
ibility. Heating systems can use thermal inertia to store energy, and batteries in Electric Vehicles (EVs)
are typically connected to the grid for longer periods than they require for charging, allowing flexibility
during the charging process. Due to these beneficial properties, demand-side flexibility has been in-
corporated in the revision of the StromVG [2] and is already grounded in the “NOVA” concept for grid
planning.

1.2 Purpose and objectives of the project
The overall goal of OrtsNetz is to define and evaluate approaches that facilitate the integration of renew-
able energy sources into the future’s low-voltage grid by using appropriate tariff schemes and flexible
loads. To this end, the project aims to reduce power peaks in the low-voltage grid, considering system
costs, practicability, and the fair distribution of costs and benefits.

The project studies different DSM approaches and evaluates their effectiveness in promoting grid-friendly
behavior of the consumers. Two main strategies are compared (Figure 1): In a direct load control setting
(strategy 1), the Distribution System Operator (DSO) directly controls devices based on a centralized
optimization. The control is limited to allowing or blocking power consumption by a particular device,
and customers receive in return a reduced constant grid-usage tariff for providing flexibility to the DSO.
In the second approach, indirect load control scheme (strategy 2), the tariff is time-dependent. Here,
two different tariff schemes are compared, a pre-planned Time-of-Use (ToU) tariff that extends existing
high/low tariff rates, and a fully dynamic real-time tariff that adapts to newly developing grid situations.
Part of the customers are equipped with a device on which a intelligent local agent can control Heat
Pumps (HPs) and Electric Water Heaters (EWHs) based on the current tariff value, while EV charging is
controlled via an Application Programming Interface (API) over the internet. Customers can also react
manually to price changes to minimize their electricity cost.

OrtsNetz consists of three key components, which also form the basis for the different work packages:
Firstly, it studies customer acceptance of dynamic tariffs and automated control of devices, as well as
manual intervention of participants. Secondly, it explores and develops algorithms to determine the tariff
values and the switching commands for the automatic load control. Finally, it provides important insights
regarding the required infrastructure and hardware for a successful implementation of DSM schemes.
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Figure 1: Overview of demand side management schemes studied in the project.

2 Description of facility
The pilot project is set in the municipality of Winkel, located in the canton of Zurich. Winkel has a pop-
ulation of 4,855 persons living in 2,198 private households (as of 2022) [3]. All inhabitants are supplied
by the local electricity supply company EKZ.

The households are equipped with a smart electricity meter that measures active and reactive energy
consumption (and possibly feed-in) at intervals of 15 minutes. The measurements are communicated
once a day to EKZ via Power Line Communication (PLC). In some cases, a household can have more
than one smart meter for separately monitoring the consumption of appliances like HPs.

Due to the rapidly increasing share of EV sales, the number of vehicles registered in Winkel have signif-
icantly changed since the last report. According to data by the canton of Zurich, there are 130 privately
owned EVs (4.1 % of all registered vehicles) and 288 hybrid vehicles (8.8 %) in Winkel [3], which is a
relatively high share of EVs compared to the rest of Switzerland (3.3% and 7.6%, respectively) [4].

Customers’ residences are connected to one of 16 Transformer Stations (TSs) with a total power rating of
10 MVA. Three TSs are equipped with fiber networked equipment that allows near real-time monitoring of
power and voltage levels. Each of the DSM schemes described in chapter 1 is assigned to one of these
TSs. A battery storage system will be installed at a fourth TS that will also be equipped with network
equipment.

For automatic switching of EWHs and HPs, nearly 53 Load Control Service Agents (LCSAs) and Load
Control Devices (LCDs) were installed in households, where a potential of 11 installtions is left. The
LCSA is an intelligent control device that can compute switching commands based on a price signal,
while the LCD is a simple device implementing the switching commands computed by the LCSA or the
central system. Since the project focuses on using existing infrastructure, the LCSAs are not networked
and only communicate through PLC with the central system. Furthermore, LCDs act as simple on/off
switches and do not receive any information on the state of the device they control, e.g., the water
temperature. LCDs can only block devices from running but not actively turn them on.

Currently, 37 customers registered their EVs to be used as a flexible load in the pilot project. EV charging
is controlled via an API that directly communicates with the vehicles. This allows retrieving information
on a vehicle’s current status, e.g., its State of Charge (SoC) and whether it is plugged in. The charging
process can be started and stopped via the API, while the vehicle controls the power.

Automatized load control is used either for direct load control (following a command issued by the central
system) or for indirect load control via price signals (Figure 2). In the former case, the DSO communicates
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a switching profile to the LCDs every 15 minutes for the next 96 15-minute intervals (24 hours) or in case
of EVs potentially starts or stops the charging process. In the latter case, the LCD receives switching
commands from the LCSA, which computes them based on the time-variable tariff. This price profile is
either known in advance (ToU tariff) or dynamically calculated by the DSO and communicated every 15
minutes to the households (real-time tariff). The algorithm determining the EV charging schedules in the
indirect load control setting is implemented centrally but acts in the interest of each individual customer.

The existing PLC infrastructure has a direct impact on the kind of data that is available at each location
and time. In the decentralized scheme, local LCSAs have immediate access to the 15-minute interval
smart meter readings of their given household. On the other hand, the smart meter data of each house-
hold is collected only once a day by the central location. Furthermore, communication errors can lead to
data sometimes being available later or not at all.

In order to ensure comparability among the different settings that will be evaluated, the basis for the
switching decision must be the same in all approaches. Therefore, the assessment of the grid situation
(Fig. 2) is based on the same information from the TS in all scenarios.

Figure 2: Influence of the grid situation on automatic switching through a variable tariff or direct control.

3 Activities and results
OrtsNetz is a collaboration of two labs at ETH Zurich and EKZ, the electricity utility company of the canton
of Zurich. OrtsNetz is organized in Work Packages (WPs) that are distributed across the partners, each
having distinct milestones. Exchange between partners and collaboration in WPs happens in weekly
meetings on a technical level and quarterly steering meetings on an organizational, strategic, and ad-
ministrative level. The activities conducted in the various WPs and their results are presented in the
following sections.

3.1 WP 1: Customer interaction, market and tariff design
Work package WP1 deals with the design of the tariff schemes as well as the evaluation of customer
behavior and overall impact. Over the course of the last year, the tariff schemes and customer groups
presented in the previous report were developed in detail and implemented. Letters with tariff sheets
were sent to customers over the summer and at this point in time all participants have been success-
fully recruited. Most milestones due in WP1 have already been reached last year. Regarding the final
evaluation (WP1.4_MS3 & WP1.5_MS36), we present initial results on participant recruiting.

The next subsection presents the grouping of study participants. This is followed by a detailed expla-
nation of the tariff structure and design decisions in regard to cost recovery and fairness. The final
subsections features a preliminary evaluation of recruiting efforts.
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3.1.1 Study groups

Participation in the OrtsNetz study is differentiated along three dimensions. Firstly, OrtsNetz features
three distinct grid usage tariffs (OrtsNetz Tariffs) that are different from the standard tariff (EKZ Tariff):

• A Time-of-Use tariff

• A dynamic real-time tariff

• A unit tariff for participants with directly controlled devices

Each tariff is matched to one of the three selected Transformer Stations (TSs). TSs have been chosen
from within the project area to optimize the number of single family households with EWHs and HPs,
which are the customers eligible for installation of an LCD.

Since the direct control approach is most assured to reduce peaks and avoid rebounds effectively, it is
applied to the TS with the lowest power rating, while the real-time and ToU tariff settings are matched to
the two remaining TS. Secondly, two classes of participants are discerned: the ones with automatically
controlled devices and those without (Fig. 3). Automatically controlled devices are HPs, EWHs and EVs.
As HPs and EWHs are controlled via PLC, they are distributed among the three selected TSs equipped
with the required gateways (Section 3.4.2). These participants receive a Load Control Device (LCD) that
is installed in their electrical panel. EVs are instead distributed across the whole project area as they are
controlled via the internet. As detailed in the next subsection, customers with automatically controlled
devices may receive a modified energy tariff in addition to their OrtsNetz grid tariff to provide further
compensation. Additionally, customers with EVs can decide for every charging session if they want to
deactivate the intelligent control and opt out of the associated energy tariff for the following 12 hours.

Thirdly, participants are either recruited in an opt-in or an opt-out scheme. The initial announcement of
the project encouraged proactive registrations by the customers. In summer 2023, an additional group
of customers was selected and informed by letter about their respective new OrtsNetz tariff, with the
possibility to opt out. All participants are subject to the best-accounting policy, such that no one will
pay more than they would under the normal EKZ Tariff. After the first billing period (January 2024), the
revenue of the OrtsNetz Tariffs and the standard EKZ tariff will be calculated. The differences will give
valuable insight into the cost of load-shifting within the project.

This design allows for three major studies:

• The effect of different DSM approaches can be studied by comparing the efficiency of automatic
control between direct control, agents reacting to ToU prices, and agents reacting to real-time
prices.

• The behavior of participants in response to dynamic prices can be compared between the ToU and
real-time tariffs.

• The results of opt-in recruiting and opt-out recruiting can be compared to unveil the impact of
selection biases on observed participant behavior.

These participation schemes have been implemented in the project area of Winkel as described in Sub-
section 3.1.3.

3.1.2 Tariff design

Automatic devices Participants with automatic devices are compensated for the inconvenience of
having an LCD installed, as well as giving up some flexibility in when they can use their device. This is
implemented by billing them a lower energy component of the electricity tariff. Specifically, they receive
the low-tariff component of the normal EKZ Tariff, which is usually only valid during night times and
weekends, for all points in time (10.35 Rp./kWh in 2023 and 17.50 Rp./kWh in 20241). This change
in the tariff has the benefit that it is easy to communicate to customers. Assuming the H4 standard

1Unless stated otherwise, all tariff values are without taxes.
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OrtsNetz Customer

Participation without
automatic load
Energy unit tariff

Decision for every 

charging session

Optimized Charging

Reduced energy tariff

"Sofort Laden"

Standard energy tariff 

for 12h

OrtsNetz grid usage tariff (depending on tariff group, no guarantees for savings)

Participation with

HP / EWH

Reduced energy tariff

Opt-out from 
participation 

Standard energy tariff

Participation with EV

Reduced energy tariff

EKZ grid usage tariff

Figure 3: Overview of ways to participate in the OrtsNetz project. When taking part with an EV, participants still have the chance
to opt-out of intelligent charging of their vehicle for individual charging sessions.

profile published by ElCom [5] with additional demand of 2000 kWh/year for an EV, the reduction in the
energy component results in savings of 33 CHF over one year. The exact savings for the participants
however strongly depends on their heating and driving demand and can be far greater. On top of this
compensation, participants are subject to the grid usage OrtsNetz Tariff at their respective TS which
enable additional savings.

Time-of-Use tariff The ToU grid usage price profile is determined based on a bilevel programming
problem that optimizes grid utilization and customer costs simultaneously (Section 3.2.3). While the
optimization selects the best times for the price switches, the exact values of the profile need to be
scaled for cost recovery and fair distribution of costs.

Cost recovery is implemented by calculating the revenue from non-responding customers without flexible
loads to the baseline EKZ Tariff. Calculations for a specific season are based on historic demand in the
equivalent period from 2022–2023. Specifically, we use the total demand of residential households at a
selected TS without devices that could be controlled automatically and calculate the revenue for Winter
2023 (October–December), Winter 2024 (January–April), and Summer 2024 (May–September). This
implementation reflects the understanding of fair cost distribution in the project that is also compatible
with the best-accounting policy. Customers without the ability to majorly shift demand will pay the same,
whereas customers with large loads are encouraged to shift their operation to times of cheaper prices
which are the ones with lower grid utilization.

Before selecting the final grid usage tariff values, we take another consideration into account. The current
EKZ Tariff already includes a ToU profile, not only for the grid usage component, but also for the electricity
price. The two components have the same profile (high tariff on weekdays from 7:00–20:00), resulting
in a price jump between only two levels that is convenient for customers to memorize. However, the
ToU profile that is selected by the bilevel optimization (Section 3.2.3) has up to three price levels at
different times (Fig. 4). Overlaying this with the existing time profile of the energy component of the
EKZ Tariff would result in an undesirably complicated profile. Instead, we calculate a single energy tariff
component from the low and high tariffs. We use the average weighted by the energy demand of the
selected subgroup of inflexible load customers to ensure cost recovery.

The preceding considerations allow to determine the specific tariff values for the ToU grid tariff. For a tariff
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Figure 4: Final ToU tariff profiles selected for the project. Exact values are annotated on the right y-axis of each plot.

with two price levels, selecting one level determines the other one to achieve cost recovery. For a three
component tariff there is another degree of freedom that needs to be decided. As the grid component
of the EKZ Tariff 2024 will be a unit tariff, we decided to fix the mid value of the summer profile of the
OrtsNetz 2024 tariff to the same value. This reduces one degree of freedom and cost recovery enforces
a direct relation between the high and low tariff components. To analyze the effect of this relation we
developed a tool that allows to dynamically visualize the tariff profiles, ratios, and cost impacts. The
final selection of the tariff values was conducted together with the tariff department of EKZ and aimed
to increase the span between high and low tariff components while keeping them at reasonable levels
(Fig. 4).

Real-time tariff The real-time grid usage tariff can vary from the high to low tariff range (4.30–9.30
Rp./kWh for 2023 and 3.70–10.00 Rp./kWh for 2024) and must fulfill the same cost recovery constraints
as the ToU tariff. Cost neutrality is applied per day, using the monthly mean daily revenue with a cor-
responding cost-neutral unit tariff for reference. Section 3.3.2 provides more details on the algorithm
choice and the current implementation of the real-time tariff.

Direct control Finally, as the direct control setting is not price-based, participants receive a unit tariff
for grid usage. This allows the direct control system to optimize based on the grid situation alone, without
taking potential cost (dis-)advantages for customers due to time-varying prices into account. The grid
component of the 2024 EKZ Tariff is a unit tariff anyways (6.90 Rp./kWh). For 2023 the value is deter-
mined based on the same calculations as above, as the demand weighted average of the low and high
tariff, using the demand profile of customers without flexibility for costs recovery (5.80 Rp./kWh).

3.1.3 Customer recruiting

While the final project evaluation and derivation of recommendations can only be conducted once the
trial phase is complete, here we present initial findings regarding customer recruiting.

The study grouping described in Subsection 3.1.1 was applied to a total of 630 participants in Winkel,
of which 35 opted out of the OrtsNetz tariff. The three automatic control settings are distributed across
three selected TSs. Table 1 lists the number of customers that were approached for installation of an
LCD, as well as the additional customers with an EV that are part of the same control scheme but not
located at the same TS. While the direct control and real-time price schemes have the same number of
LCDs, the ToU scheme only has half as many due to the size of the respective TS. Furthermore, since
the control of EVs does not depend on the PLC infrastructure, they can be matched to any tariff. Each
TS only has one customer with an EV, which have to be matched to the respective DSM scheme. The
other EV participants reside elsewhere in Winkel and are randomly distributed across the direct control
and real-time price settings. Due to the limited number of EV participants, we decided to leave out the
ToU tariff here. The customers without an automatically controlled device are distributed across the two
time-varying tariffs only. The direct control setting brings no insights for customers without automatic
loads (only 35 customers without an LCD that reside at the TS with the ToU scheme receive this tariff).
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LCD EV No automatic device
Opt-in Not opt-out

Direct control 21 20 17 18
Time-of-Use 10 1 108 149
Real-time 21 16 111 138

Table 1: Participant numbers

Of the 257 customers with the ToU tariff, 42% had already opted into the project by signing up on the
platform. For the real-time tariff, 45% of 249 customers had already opted in.

Participation in the project is generally high. Only 21 customers (3.7%) without automatic control opted
out. For the installation of an LCD, 14 customers (21%) opted out. Furthermore, 12 devices could not
be installed because of space constraints. More potential candidates are currently being approached to
install the last LCDs.

Recruiting of EV participants started in March 2023. The Federal Roads Office (FEDRO) provided a list of
all plugin vehicles (battery electric vehicles and plugin hybrid electric vehicles) registered by inhabitants
of Winkel. Out of a total of 206 vehicles, 143 are fully supported by the provider of the API interface that
allows to control the charging process (exactly 100 of which are battery electric vehicles). Recruiting
was done by letter, which provided project information and a link to a website through which vehicles
can be connected to the OrtsNetz system. To incentivize participation, the letter advertised savings of
around 100 CHF/year on average. This amount corresponds to average driving demand and shifting of
all charging to the lowest tariff times. Naturally, the exact savings highly depend on driving demand and
general household electricity consumption. To protect residents’ privacy, the letter was sent by FEDRO
in the name of EKZ to all inhabitants of Winkel that own a plugin vehicle.

Overall interest in the EV study has been high. In the first two weeks, 221 page visits were registered
and 50 unique email addresses were entered into the system. This resulted in 32 successful sign-ups
of users that connected at least one vehicle. Over the course of the following half year more customers
signed up, whereas some participants had to deregister for various reasons (not charging at home, not
residing in Winkel, sold vehicle). Currently there are 37 users (26% if possible vehicles) registered in the
OrtsNetz system.

3.2 WP 2: Idealized analysis of interactions and tariff design
A key component of the project is determining the tariff values for indirect load control via time-varying
grid-usage tariffs. The tariff values influence customer behavior as the customers aim to minimize their
electricity costs while meeting their demand needs. On the other hand, the resulting consumption profiles
affect the power flows in the grid. Therefore, there is a mutual impact between the tariff values and the
consumption behavior. Thus, the DSO must take the customers’ reactions into account when computing
the tariff values, which results in a problem structure that is rather complex to describe and solve math-
ematically. As a first step, idealized conditions are assumed in WP 2. It is assumed that the inflexible
consumption and production profiles, as well as the load behavior, are known. Furthermore, the cus-
tomers behave rationally with respect to the cost minimization. Lastly, there is complete transparency,
i.e., the DSO has the same information as the customers.

3.2.1 Problem formulation

The above-mentioned interdependency between the DSO’s and customers’ actions is modeled as a
bilevel programming problem. Thereby, the hierarchy between the DSO (upper-level problem) and the
customers (lower-level problems) can be represented. As described in [6] and [7], the customer prob-
lem is a mixed-integer problem when the control is modeled according to the given infrastructure in the
project, i.e., blocking a device or not. Several solution approaches were evaluated in [6], but none of the
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investigated approaches showed satisfactory results. Therefore, the focus of WP 2 in this report is on a
simplified problem formulation with continuous variables for the device power. Further, it is limited to the
ToU tariff scheme to reduce the upper-level search space, only considers EWHs as flexible loads, and
does not take self-consumption optimization into account.

Customer’s perspective (lower level) Each customer aims to minimize the electricity costs by shifting
EWH consumption to low-price periods:

min
PEWH

c

D−1∑
d=0

K−1∑
t=0

(
πbuyt ·∆t+ βc · t

)
· PEWH

c,d,t (1a)

s.t.
K−1∑
t=0

PEWH
c,d,t ·∆t = EEWH

c,d , ∀d (1b)

0 ≤ PEWH
c,d,t ≤ PEWH

c,nom, ∀d, t (1c)

where D denotes the number of considered days, K is the number of time steps within one day (96 for
15-minute resolution), ∆t is the duration of one time step, and πbuyt denotes the electricity price in time
step t (the price profile is the same for all days). The variable PEWH

c,d,t describes the EWH demand for
customer c in time step t on day d and is limited by the nominal power PEWH

c,nom, while EEWH
c,d is the energy

that must be delivered by the EWH on day d. Finally, βc specifies the customer preference for running the
EWH as early (positive value) or late (negative value) as possible. This preference is included to ensure
the uniqueness of the lower-level solution, as explained in [6]. βc is set to a small value such that the
second summand in (1a) does not shift consumption to a different tariff level, but only shifts consumption
among times with the same price.

DSO’s perspective (upper level) The DSO aims to determine the tariff values for drawing electricity
from the grid such that the maximum aggregated active power of all customers Pmax, i.e., the peak
absolute power observed within the analyzed time horizon, is minimized. The constraints of the DSO
are the following:

Pmax ≥ P inf
d,t +

Ncustomers∑
c=1

PEWH
c,d,t , ∀d, t (2a)

Pmax ≥ −

(
P inf
d,t +

Ncustomers∑
c=1

PEWH
c,d,t

)
, ∀d, t (2b)

πbuy,min ≤ πbuyt ≤ πbuy,max, ∀t (2c)

πbuyt+1 = πbuyt , ∀t ∈ [tstartp , tendp ), ∀p (2d)

Constraints (2a) and (2b) define the lower bound for Pmax, given by the sum of the inflexible load P inf
d,t

and the EWH load in each time step. Constraint (2c) puts bounds on the tariff values, while constraint
(2d) specifies that the price must be constant within each pre-specified period p. If there should not be a
change in the tariff value at midnight, this is enforced by an additional constraint πbuyK−1 = πbuy0 .

DSO - customer interaction The interaction between the DSO and the customers is expressed in a
bilevel programming problem:

min
πbuy,Pmax,PEWH

Pmax (3a)

s.t. (2a)− (2d) (3b)
(1a)− (1c), ∀c (3c)

Note that the customer problems can be combined into one problem with the sum of the individual
customer’s objectives as the overall objective function, subject to all the individual constraints.
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3.2.2 Solution approach

The bilevel programming problem presented is a pricing problem with linear upper-level and lower-level
constraints, a linear upper-level objective function, and a bilinear lower-level objective function as it con-
tains products of upper- and lower-level variables. However, the lower-level objective function is linear
for fixed upper-level variables, and therefore, the lower-level problem can be replaced by its Karush-
Kuhn-Tucker (KKT) conditions or by optimality conditions based on the strong duality theorem [8].

We chose the second approach to transform (3) into a single-level problem, i.e., the lower-level problem
is replaced by its primal constraints, its dual constraints, and the strong duality condition, which states
that the primal and dual objective function values must be equal. The only non-linearities in the resulting
problem are the products πbuyt · PEWH

d,t in the primal objective function (PEWH
d,t =

∑Ncustomers
c=1 PEWH

c,d,t ). These
bilinear terms are linearized by discretizing πbuyt using a binary expansion, and linearizing the resulting
products of a binary and a continuous variable, as proposed, e.g., in [9], and described in the following.
The price variable πbuyt is rewritten as πbuyt = πbuy,mint +∆πbuy

∑W−1
w=0 2wbt,w, where bt,w is a binary vari-

able, πbuy,mint is the lower price bound, ∆πbuy describes the discretization interval, and the parameter W
determines the number of considered different price values 2W . Then, the bilinear terms πbuyt ·PEWH

d,t can
be replaced by πbuy,mint PEWH

d,t +∆πbuy
∑W−1

w=0 2wzd,t,w, where the continuous variable zd,t,w is defined by
the following two constraints:

0 ≤ zd,t,w ≤ G · bt,w, ∀d, t, w (4a)
0 ≤ PEWH

d,t − zd,t,w ≤ G · (1− bt,w) ∀d, t, w (4b)

G is a sufficiently large positive constant. A valid value for G is given by
∑Ncustomers

c=1 PEWH
c,nom. The resulting

model is a Mixed Integer Linear Programming (MILP) and is solved using Gurobi [10].

3.2.3 Case study

Setup The optimization is applied to one of the TSs in Winkel. According to EKZ’s records, 45 house-
holds at this TS have an EWH. For each of these households, the energy consumption EEWH

c,d is de-
termined by disaggregating the EWH load from the smart meter data using the approach described in
section 3.3.1. The nominal device power PEWH

c,nom is specified according to EKZ’s records, and the inflexi-
ble load P inf

d,t at the TS is estimated by subtracting the EWH load from the total TS load. Note that HPs
and EVs are considered inflexible in this analysis, while they are flexible in the pilot implementation. The
constant βc is set to a small positive value, such that all EWHs operate as early as possible, which is
reasonable assuming that devices are unblocked for the entire low-price period. The analysis focuses
on one week in summer and one week in winter. More specifically, we analyze the week for which the
grid load in Winkel most closely resembles the average over eight weeks in July and August for summer
and January and February for winter [11]. The duration of one time step ∆t is 15 minutes.

The project partners agreed that the price can change every full hour (enforced by constraint (2d)), but
there can be at most three different price levels and four price changes. As the model does not consider
price sensitivities, only the shape of the price profile matters and not the actual price values, i.e., the
customers’ response is the same for any linear transformation of the price profile obtained from the
bilevel solution [12]. Therefore, we enforce πbuyt ∈ {1, 2, 3}, ∀t to reduce the search space and transform
the profile ex-post to meet the cost neutrality condition. The number of price changes is enforced by
adding a binary variable per time step that takes a value of 1 if the price differs from the previous time
step and 0 otherwise. The sum of these binaries over the entire day must be smaller than or equal to
four.

Results Figures 5 and 6 show the results for summer and winter, respectively. From Fig. 5, it is visible
that the disaggregation captures a major share of the nightly peaks (original P tot−P inf), which are caused
by the current ripple control of EWHs. However, the remaining peaks in P inf, e.g., at 3:00 on the first day,
indicate that the actual EWH load is potentially higher than considered in this analysis. For summer, the
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Figure 5: Original TS load and bilevel results for the week from 18.07.2022 to 24.07.2022.

Figure 6: Original TS load and bilevel results for the week from 31.01.2022 to 06.02.2022.

optimization chooses a low price value starting from 14:00 and thereby shifts the peak EWH load to this
time. It does not operate the EWHs at an earlier hour with excess Photovoltaic (PV) power, e.g., 10:00,
because this would lead to a higher maximum load Pmax. Note that several other tariff profiles lead to
the same customer response. What is most relevant is the start of the lowest price period. In winter,
the overall consumption is higher and there is no excess PV power. A main contributor to the high load
during the night are electric storage heaters, which are currently unblocked from 23:00 to 7:00. The dip
in original demand before noon stems from HP blocking during weekdays. The optimization chooses a
low price value starting from 11:00, which results in a peak load that is 39 kW higher than the highest
“inflexible load” in the analyzed time window. If HPs and electric storage heaters were also considered
flexible, this would further increase the peak in total load. This indicates that synchronized operation of
devices is not desirable in winter.

3.2.4 Discussion and pilot time-of-use tariff

Two limitations of the above analysis are that only EWHs are considered as flexible loads, and that the
disaggregation could potentially be improved (e.g., by improving the data quality with respect to EWH
presence, unblocked time windows and nominal device power), which impacts the shiftable energy and
inflexible load. Even though these could be addressed in future work, the results already give important
insights into the tariff design and were leveraged for determining the ToU tariffs in the OrtsNetz pilot. As
discussed by many studies in the literature and observed above, time-variable prices can cause power
rebounds. In summer, the DSO can exploit these rebounds to reduce injection peaks. For this, it is
important to “schedule” the flexible devices to run during the hours with the highest PV power. Solar
noon in Zurich in summer occurs at around 13:30 local time, so we choose 13:00 as the start of the
low-price period. Most EVs are only connected to the charging station from evening to morning. To
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reduce the coincidence between EV charging and inflexible load peaks in the morning and the evening,
a mid-price period is applied from midnight to 7:00, which incentivizes shifting charging to these hours.
Note that we intentionally chose the medium price for this period and not the low price, such that EWHs,
which are always available, do not shift to the same time. In winter, the results show that synchronized
operation of devices should be avoided, as there is less PV power and the spread between the minimum
and the maximum inflexible load is not high enough to schedule a power rebound effectively. To increase
randomness in EWH operation, the price is low for most of the day, and there is only a high-price period
from 18:00 to midnight to avoid coincidence between the evening inflexible load peak and EV charging.
The resulting price profiles are visualized in Fig. 7 and were scaled according to section 3.1 before they
were communicated to the customers. The summer tariff is applied from the beginning of May until the
end of September, and the winter tariff is applied in the remaining months.

(a) Summer (b) Winter

Figure 7: ToU tariff OrtsNetz pilot.

3.3 WP 3: Automatized load management and tariff design
3.3.1 Inflexible load forecast

Overview Forecasting the inflexible load is required for direct load control and the proposed propor-
tional pricing scheme. The most similar historical day to the one being forecasted is identified to forecast
this load. Then, the inflexible load estimated for that historical day is used as a forecast. The method is
split into two steps:

1. Load disaggregation: This step disaggregates past smart meter data to create a database of his-
torical flexible demand.

2. Most similar day matching: This step involves leveraging weather data to match the day to be
forecasted to a similar historical day. Then, the inflexible load for that historical day is computed
using the historical TS load measurements and flexible demand.

In the following paragraphs, these two steps are described in detail.

Load disaggregation Disaggregating the total TS load into its flexible and inflexible components is
the first step toward forecasting the inflexible load. The flexible load at a TS level is the sum of the load
of every EWH, HP, and EV managed through a control scheme. While the demand of EVs is known
via the API, EWHs and HPs are not measured separately. Therefore, this paragraph describes how
the load profiles of EWHs and HPs can be estimated given the smart meter data at a household level,
i.e., the active and reactive energy withdrawn from the grid in each 15-minute interval. First, the smart
meter data are converted from energy to active power. Then, the load disaggregation is split into two
sub-components:

1. HP load detection: this component estimates the average active power of the HP given measure-
ments of active and reactive power withdrawn from the grid at a household level (with a 15-minute
resolution) minus the EV consumption (if present), the nominal power of the HP installed, and a list
of switching commands. Each switching command uHPt ∈ {0, 1} determines whether the HP can
run in time step t for a specific customer/household.
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2. EWH load detection: this component estimates the active power of the EWH given the active
power measurements at a household level where the HP and EV consumption (if present) has
been already extracted, the nominal power of the EWH installed, and a list of switching commands.
Each switching command (uEWH

t ) is in {0, 1} and determines whether the EWH can run.

The HP load detection component uses the smart meter measurements converted to power values (with-
out the EV consumption) to estimate the time steps when the HP is running. The heuristic algorithm
defines a variable hpONt ∈ {0, 1} that represents whether the HP is running at time step t or not (hpONt = 1
represents a running HP at time step t). At every time step t, hpONt is computed as follow:

hpONt = 1{Pt>γ·PHP
nom} · 1{Qt>QAVG24h} · u

HP
t (5)

The first indicator function 1{Pt>γ·PHP
nom} is 1 if the active power measurement from the smart meter data

is greater than the discounted nominal power of the HP: γ · PHP
nom. The discount factor γ is heuristically

determined to be 0.3. The second indicator function evaluates to 1 if the reactive power measurement
is greater than the average reactive power of the measurements in the 24-hour window that is being
disaggregated. If both indicator functions evaluate to 1 and the switching command (uHPt ) is 1 the HP is
considered to be running. In a second step, the heuristic algorithm computes an approximation of the
magnitude of the HP demand. To that end, the average active power when the HP cannot run P noHP

AVG24h
(i.e., during the time steps in the 24-hour window when the switching command is 0) is computed based
on the smart meter measurement. Then the HP active power at time step t is estimated as follow:

PHP
t = 1{hpONt =1} · max(min(Pt − P noHP

AVG24h, P
HP
nom), 0) (6)

If the HP is estimated to be running hpONt = 1, its active power is obtained by subtracting P noHP
AVG24h from

the active power measured via the smart meter Pt and taking the minimum between the result and the
nominal power of the HP (PHP

nom). The outer max operator ensures that the HP active power is non-
negative.

The EWH load detection component leverages the active power P noHP
t from the smart meter measure-

ments where the HP load (and if present, the EV load) has already been subtracted. The heuristic
algorithm defines a variable ewhONt ∈ {0, 1} that represents whether the EWH is running at time step t
or not. At every time step t, ewhONt is computed as follow:

ewhONt = 1{P noHP
t >ζ(P EWH

nom )·P noHPnoEWH
AVG24h } (7)

The EWH is estimated to be running if the active power measured without the HP load exceeds the
average active power without the HP when the EWH cannot run, i.e. P noHPnoEWH

AVG24h , by ζ(PEWH
nom ) times.

ζ(PEWH
nom ) is heuristically determined as follow:

ζ(PEWH
nom ) =


2 if P EWH

nom < 3

3 if 3 ≤ PEWH
nom ≤ 7

4 if P EWH
nom > 7

(8)

Once ewhONt has been computed for the entire 24-hour window, all the groups of 1s that are not fully
included in an unblocked window (i.e., where the switching commands allow the EWH to run) are dis-
carded. The new obtained variable is called ewh

ON
t . Finally, the EWH active power at time step t is

estimated as follow:
PEWH
t = 1{ewh

ON
t =1} · max(P noHP

t − P noHPnoEWH
AVG24h , 0) (9)

If the EWH is estimated to be running, its active power is obtained by subtracting P noHPnoEWH
AVG24h from the

active power measured via the smart meter P noHP
t without the HP (and if present, without the EV). The

outer max operator ensures that the EWH active power is non-negative. In this case, the power is not
capped at the nominal value because it is unlikely that another large load is running at the same time
(given the narrow unblocking window for EWHs, 3-8 hours) and because the records of the nominal EWH
power are not always accurate.
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Table 2: Assessment of load disaggregation accuracy. AP refers to active power.

Test Case TECA MAE AP (kW) Mean AP (kW) Std. AP (kW)

1 0.82 0.52 1.44 2.43
2 0.94 0.10 0.84 1.76

To assess the accuracy of the disaggregation approach, the algorithm is applied to two households in
Winkel for which the EWH and HP consumptions are measured with a separate meter from the rest of the
households’ load. Table 2 presents the results for applying the algorithm to the two households on the
historical data over one year (from June 2022 to June 2023). The table shows the Total Energy Correctly
Assigned (TECA), the Mean Absolute Error (MAE), the mean active power, and its standard deviation
for the two test cases. TECA is introduced in [13] and is a dimensionless metric evaluating the degree
to which energy is correctly assigned (and not assigned) in relation to the total energy. The analytical
formulation of TECA is given by:

TECA = 1−
∑T

t=1 |yt − ŷt|
2
∑T

t=1 yt
(10)

In the above equation, y is the ground truth, while ŷ is the prediction. Interpreting the results for test
cases 1 and 2, it is noticed that in both cases, TECA is high (above 0.8). In test case 2, the metric even
exceeds the 0.9 mark. To further understand the accuracy of the disaggregation algorithm, a few results
for both test cases are plotted.

Figure 8: Load disaggregation results versus ground truth for test case 1 from 10.07.2022 to 13.07.2022.
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Figure 9: Load disaggregation results versus ground truth for test case 1 from 10.01.2023 to 13.01.2023.

Figure 10: Load disaggregation results versus ground truth for test case 2 from 10.01.2023 to 13.01.2023.

The results displayed in Figs. 8, 9, and 10 show that the heuristic algorithm can estimate fairly accurately
the HP and EWH loads. The major challenge for the algorithm lies in identifying the correct magnitude
of the loads. In particular, it can be seen in Fig. 9 that the algorithm underestimates the HP load. This
is because the estimation of the HP load is capped at its nominal power. However, in some instances,
the HP shows a higher load than its nominal power. Load magnitude estimation is a possible future
improvement to the proposed method.

Most similar daymatching Most similar day matching is the second step toward forecasting the inflex-
ible load. After having populated a database with flexible loads (EWH and HP) for every household, there
is the need to identify the most similar day to the one being forecasted. Similarity between days is mea-
sured by leveraging weather data. In particular, temperature (T ) and solar irradiation (S) are considered.
Given two different days d1, d2 and two lists for each day T di, Sdi, i ∈ {1, 2} that contain measurements
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or forecasts of the temperature and solar irradiation values at a fixed frequency, the similarity score can
be defined as follow:

SIMd12 =

√∑T
t=1(T

d1
t − T d2

t )2 +
√∑T

t=1(S
d1
t − Sd2

t )2

2
(11)

The above equation computes the similarity score SIMd12 between d1 and d2 as a simple average of
the Euclidean distance between the temperature lists and the solar irradiation lists. In practice, before
computing the Euclidean distance, the lists are normalized from 0 to 1 to ensure comparability.

To forecast the inflexible load, the following approach is used:

1. For each day in the database where historical flexible load profiles are present, a similarity score
SIMdif is computed based on available weather data, TS load measurements, and flexible load
profiles.

2. The day with the highest similarity score is identified.

3. The inflexible load estimate for this day is then calculated by subtracting the flexible load profiles
(EWH, HP, and EV, the latter obtained through direct measurement) from the total TS load.

It is important to note that days are clustered in types (weekdays, Saturdays, Sundays and holidays),
and the similarity score is computed only between days of the same type. In the actual implementation
of the component the temperature and solar irradiation measurements and forecasts have a 15-minute
frequency. A future improvement for this method could be to return an average inflexible load from the
X most similar days (e.g., X=5) instead of exclusively returning the inflexible load from the most similar
day. This could prevent outliers and reduce the variance of the load.

3.3.2 Real-time tariff setting

Overview This chapter presents the algorithms that were developed for the indirect load control scheme
with real-time prices. Figure 11 provides an overview of the different components.

Figure 11: Interactions of the DSO agent and the customer agents.

On the DSO level (DSO agent), the price values need to be determined taking the uncertainties in cus-
tomer behavior and consumption and generation forecasts into account. However, the DSO’s knowledge
of the customers’ load models and device states, such as temperatures and charging states, is limited.
On the one hand, this is due to technical limits. On the other hand, customers might also have privacy
concerns when sharing their data with the DSO. Additionally, WP 2 showed that already under the as-
sumption of idealized conditions, the bilevel problem is hard to solve. This is especially the case for the
real-time tariff, which can take a different price value in each time step. Modeling the uncertainty in the
bilevel programming problem would increase the computational complexity further. Therefore, we apply
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a proportional pricing scheme in the first step and are developing an Reinforcement Learning (RL)-based
approach to determine the price in each 15-minute interval.

On the customer level, the optimal commands for the EWH, HP, and EV charging need to be determined.
For the EWH and the HP (Customer agent EWH/HP), the LCSA receives a new price value via PLC
every 15 minutes and takes the blocking decision locally at the household. A key challenge is the limited
information on the devices and customer behavior. Besides the current electricity price, only the smart
meter measurements and the rated power of the devices are known. To overcome this challenge, again
an RL-based solution approach is applied in the project. The arrow for the measurement is dashed
because this information is not used in the current implementation. For the EV (Customer agent EV),
information on the current SoC and whether the EV is plugged in at home is available via the API.
Additionally, customers specify their desired SoC and a departure time. The commands are determined
by solving an optimization problem that chooses the time intervals with the lowest price while ensuring
that all the constraints are met. The following subsections provide more details on the formulation and
the results for the different agents.

DSO agent At this project stage, the real-time price is proportional to the estimated inflexible load.
Shortly before midnight on each day, the inflexible load for the next day is forecasted using the approach
explained in section 3.3.1. The resulting profile is scaled to meet the cost neutrality condition defined in
section 3.1. For this, the following equation is solved to compute πbuy,max given πbuy,min:

K−1∑
t=0

(
πbuyt · P inf,cons

t

)
=

K−1∑
t=0

(
πbuy,reft · P inf,cons

t

)
, (12)

where the price in time step t is defined as:

πbuyt = πbuy,min +
P inf
t − P inf,min

P inf,max − P inf,min ·
(
πbuy,max − πbuy,min

)
. (13)

K denotes the number of time steps within one day, and P inf,cons
t describes the mean demand of inflexible

consumers for the given type of day (weekday, Saturday, Sunday) and month, while P inf
t is the forecasted

inflexible net load at the TS, with minimum and maximum values P inf,min and P inf,max. The reference price
πbuy,reft is a flat tariff, which is cost-neutral with respect to the monthly demand of inflexible consumers
and the EKZ standard tariff. The EKZ standard tariff has a high-price window from 7:00 to 20:00 on
weekdays and low prices at all other times [14]. Therefore, directly using it as πbuy,reft in (12) would lead
to considerably lower prices on weekends. To ensure comparable savings for flexible loads, πbuy,min is set
to the lowest price of the ToU tariff. If a price πbuyt exceeds the maximum price specified in the dynamic
tariff sheet, it is replaced by the corresponding value.

The proportional pricing scheme can shift flexible loads to times when the inflexible load is low. However,
it cannot leverage different device characteristics (e.g., EWHs are always connected while EVs are not),
and in reality, the DSOwould not know at which time steps an EWHor HPwas blocked, which is leveraged
for the disaggregation. Therefore, we are working on an RL agent. The inputs to the agent are the current
timestamp, past TS load measurements, past electricity price values, and past and forecasted values for
solar irradiation. The agent’s action is the price for the next 15-minute interval.

Customer agent EWH/HP The customer agents are implemented according to the second approach
described in [15], i.e., using a hypothetical energy consumption instead of the actual smart meter mea-
surement as feedback to the agent. The agent takes the current timestamp, the electricity price for the
next 15-minute interval, as well as the 95 latest price values and the 95 latest applied blocking actions
as inputs and outputs whether the EWH and/or HP should be blocked in the next 15-minute interval. A
key difference between [15] and the final implementation is that EV charging is not considered anymore,
as the control of EVs is implemented via the API and not, as initially planned, via the LCSA and the
charging station. This reduces the number of possible actions to four if the household has both an EWH
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and HP and two if only one of the devices is present. Furthermore, PV generation is not considered as
LCSAs are only installed in households without an energy management system. Therefore, the selling
price and its history are removed from the state vector. Finally, the agent is trained not to violate the
constraints concerning the maximum number of blocked time intervals in each 24-hour window instead
of per calendar day. The settings for the blocking constraints are based on the current ripple control
scheme.

Customer agent EV This agent computes the switching (blocking/unblocking) commands to the EV by
solving a MILP. The objective is to minimize the cost of EV charging, subject to a) reaching the desired
SoC (namely SoCgoal

c,EV) at the departure time defined by the user, b) the EV can be blocked only after it
has reached a minimum SoC, and c) no more than Nmax,24h

c,EV OFF-to-ON switchings are allowed in any
24-hour window. The optimization model is coded in Python, and the problem is solved by Gurobi [10].
As depicted in Fig. 11, the customer agent EV uses as input the electricity price signal, the current SoC
and the desired SoC at the departure time, as defined by the EV owner. The price signal is a prediction
for the next 24 hours; only the price for the next time step is known.

Figure 12: Optimal EV charging based on the price forecast.

Figure 12 illustrates an optimal EV charging based on this optimization problem for the predicted elec-
tricity price shown in the plot. It is assumed that the EV owner wants to charge the almost-empty battery
to SoCgoal

c,EV = 90%. In this case, the owner did not define any departure time, but Nmax,24h
c,EV was set to 3.

The charging session starts at 11:35 hours and is interrupted at about 18:30 hours when the electricity
prices are high. The charging is restarted at the end of the night and continues until the desired SoC is
reached.

3.3.3 Automatized load management in the Time-of-Use tariff setting

The same optimization as in the real-time tariff setting (cf. section 3.3.2) is applied for the EV. The only
difference is that the optimization takes the price values of the ToU tariff for the next 24 hours as an input
instead of a price prediction. Figure 13 presents the optimal charging for a second EV for the price values
of the ToU tariff. The charging session starts at 12:50 hours and is interrupted before 18:00 hours when
the electricity prices for the ToU tariff are higher. The charging is restarted at midnight until the desired
SoC is reached.

24/34



Figure 13: Optimal EV charging based on ToU-price signal in winter.

EWHs are unblocked for the entire low-price period. Additionally, if the minimum number of hours, for
which the device must be unblocked in each 24-hour window exceeds five hours (duration of low-price
period in summer), the earliest hours of the mid-price period are unblocked, as shown in Fig. 14.

HPs can be blocked for up to four hours in each 24-hour window and up to two hours per blocking
instance. Therefore, they are blocked for two hours at the end of each high-price period, such that the
rebound falls into the following lower-price period.

(a) Summer (b) Winter

Figure 14: EWH and HP control based on ToU-price signal; 1means a device can operate, while 0means it is blocked; the number
of hours indicates how long an EWH needs to be unblocked according to the current ripple control scheme.

3.3.4 Direct load control

The proposed Direct Load Controller (DLC) consists of a centralized optimization-based scheme that
sends optimal switching (blocking/unblocking) commands every 15 minutes to EWHs, HPs, and EVs to
flatten the total demand curve of the TS. The optimization is a Mixed Integer Quadratic Programming
(MIQP) problem coded in Python and solved by Gurobi [10].

This controller uses a 24-hour rolling horizon (K =96 time steps of 15 minutes each) to compute the
switching commands (uEWH

c,t , uHPc,t , uEVc,t) sent to the flexible loads of each customer c for 0 ≤ t ≤ K − 1,
see Fig. 15. The DLC inputs are the estimation of the inflexible load, the prediction of the ambient
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Figure 15: Rolling horizon for DLC with inputs and outputs.

temperature, and the information of the controlled devices, for example, the nominal powers (PEWH
c,nom,

PHP
c,nom, PEV

c,nom), the switching commands in the previous 24 hours, the maximum number of blocking
intervals in any 24 hours (Kblock,24h

c,EWH and Kblock,24h
c,HP ), the minimum (Kmin,block

c,EWH and Kmin,block
c,HP ) and maximum

(Kblock,instance
c,EWH andKblock,instance

c,HP ) consecutive blocking intervals, and the minimum consecutive unblocking
intervals (Kmin,unblock

c,EWH andKmin,unblock
c,HP ) for all EWHs and HPs. For each EV, the DLC receives information

of the current SoC and the desired SoCgoal
c,EV at the departure time step tgoal, the charger’s power PEV

c,nom,
the battery capacity Emax

c,EV, the maximum OFF-to-ON switches allowed in any 24-hours Nmax,24h
c,EV , and the

OFF-to-ON switching events in the last 24 hours.

The objective of the DLC is to flatten the total 24-hour demand curve by managing the times when the
available flexible loads are allowed to operate. For this, we penalize the deviations from a reference value
P ref of the total demand P tot at any time t of the 24-hour horizon. For EWHs and HPs, the optimization
ensures that the maximum number of blocking intervals in any 24-hour window, and the maximum num-
ber of consecutive blocking intervals are not exceeded. In addition, the optimization guarantees the
minimum duration of the blocking and unblocking instances for these devices. As for the EVs, the op-
timization guarantees the EVs reach a minimum SoC value in Kmin

c,EV time steps. In addition, it ensures
the desired SoC are reached at the departure time. Finally, the optimization does not allow more than
Nmax,24h

c,EV OFF-to-ON switchings for any 24-hour window.

We tested the DLC performance in a simulation environment. In this test, we control the EWHs and HPs
of 32 Single Family Homes (SFHs). In addition, there are four EVs with battery capacities that range
from 60 to 80 kWh. The rated powers of the EWHs range from 2 to 8 kW. Similarly, the rated powers
of the HPs range from 2.5 to 7 kW, and the charging power for the EVs is 6 or 8 kW. However, the HP
demand is not fixed at the nominal value, it changes with the ambient temperature.

For illustration purposes, the parameters used for the flexibility constraints of all EWHs areKblock,24h
c,EWH = 72,

Kblock,instance
c,EWH = 64, Kmin,block

c,EWH = 30, and Kmin,unblock
c,EWH = 8. For all the HPs we used Kblock,24h

c,HP = 16,
Kblock,instance

c,HP = 8, Kmin,block
c,HP = 4, and Kmin,unblock

c,HP = 8. Finally, Nmax,24h
c,EV = 3 for EVs. Note that the

EWHs are more flexible than the HPs. This simulation assumes that none of the controlled devices were
blocked previously, i.e., uEWH

c,t = uHPc,t =,uEVc,t = 1 for t < 0.

The controller reads the predicted inflexible demand P inf and optimally accommodates the flexible load
P flx by computing the optimal switching commands for the EWHs, HPs and EVs. Figure 16 presents the
DLC results for the simulated test case. There are 7,296 decision variables and 23,623 constraints. The
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Figure 16: Direct control of flexible loads from 32 SFHs.

solver took five minutes to find a solution with an MIP gap of 0.45%.

In this scenario, the P inf is high at the beginning of the horizon. Therefore, the DLC initially blocks the
EWHs and some of the HPs. However, since the HPs are less flexible, they cannot remain blocked for
long periods. When P inf reduces at t = 28, the EWHs are progressively unblocked before P inf increases
again. At the end of the horizon, most of the EWHs and some HPs are blocked again.

The EV chargers are intermittently blocked at the beginning of the control horizon, but they are all allowed
to charge for t > 36. The resulting total demand, i.e., P tot = P inf + P flx, is almost flat with the available
controlled devices and their flexibility constraints.

3.3.5 Local verification module

All switching commands for EWHs and HPs are locally verified and corrected before they are passed to
the LCD, such that communication issues or invalid actions by the RL agent do not lead to a violation
of the flexibility constraints. At every time step, the verification module checks if the 24-hour switching
command schedule which is to be saved in the LCD (i) satisfies the flexibility constraints with respect to
the previously applied blocking actions and (ii) satisfies the flexibility constraints if it is played in a loop.
The first requirement ensures that the system meets the flexibility constraints during normal operation,
while the second requirement ensures that the system meets the constraints if communication to the
LCD fails for a longer period and the schedule is repeated.
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3.4 WP 4: Hardware and infrastructure
3.4.1 WP 4.2: Peer-to-Peer platform

TheOrtsNetz Platform is themain channel to communicate with participants in the pilot project. Its central
functions are the following:

1. Providing functionalities for the Peer-to-Peer (P2P) trading of certificates of origin

2. Displaying individual and aggregate energy information

3. Displaying electricity cost information

4. Displaying tariff information

5. Computing costs according to the pilot tariffs

6. Providing an interface for customers to enter their preferences regarding load control

7. Providing notification functions

8. Providing an interface for ETH Zurich to access pseudonymized data

Functionalities 1, 2 and 7 were made available during the first year of this project. Functionality 4 is now
available such that the customers can see their tariffs. The customers can see the current and historic
energy and grid prices depending on their corresponding tariff. For the customers getting a dynamic
tariff, the grid tariff price is updated every 15 minutes. The prices are sent from the LCMA running in the
cloud (Microsoft Azure) to the P2P platform.

The remaining functionalities 3, 5, 6 and 8 are on hold, since the partner VGT was not able to implement
these functionalities before October 2023. In parallel, EKZ is looking for a solution.

3.4.2 WP 4.3: Transformer station active components

In the three TSs, at which the LCSAs are installed, G3-PLC gateway gateways have been installed.
These gateways communicate with the LCSAs in the TS via PLC. Furthermore, the gateways are con-
nected to EKZ internal network. The prices and switching tables are sent to the LCSA devices through
the gateways. The LCSAs can also be monitored via the gateways. Furthermore, the gateways read
consumption data from the smart meters and send these to the Head End System (HES). This data can
then be accessed by the LCMA. The gateways are connected to a router that is connected to the EKZ
internal fiber network. Currently, only a mobile connection is used, since the fibers are not completely
installed in the area.

3.4.3 WP 4.4: Control devices

The LCDs are the devices that receive the switching tables from the LCSAs and then switch the EWHs
and the HPs. The LCDs are provided by Swistec. The LCSA devices are developed in collaboration with
Neuron. Neuron provided the basis for communication via PLC and an environment where the agents’
codes can run. ETH Zurich provided the software of the agents and the verification module. The latter
verifies each switching command that is applied on the LCD. This ensures that the EWHs and HPs are
operated sufficiently long per day. Furthermore, it prevents the HPs from too many switching operations
which could result in equipment damage. In addition to the to the load control, the LCSA also reads the
electricity consumption from the customer’s smart meter via an MBUS connection. This data is currently
not used by the agent. EKZ provided the software infrastructure that handles the data management,
the connection to the LCD, and the agents’ operation. The setup has been extensively tested on a test
setup, see Fig. 18. Currently, 53 LCSAs are installed while there is a potential left for 11 devices where
the customers have not responded so far to mail, e-mail, or phone contact.

For controlling the EVs, the consortium decided not to control the vehicles via the charging stations.
Instead, the EVs will now be controlled via the internet through an API to the manufacturer. This allows
us to see the current SoC of the EVs and as well more convenient monitoring and control via the internet.
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Figure 17: Overview of the system in OrtsNetz. The G3-plc coordinator is the gateway installed in the trafostations. This device
connects the G3-plc network with the internet and finally with the cloud, where the LCMA is running and setting prices and switching
commands.

3.4.4 WP 4.5: Community electricity storage

The community electricity storage will be installed by the end of November. Long delivery times in the
battery storage market lead to a delivery time of over 6 months. The community electricity storage
has just been delivered at the end of October. The electricity storage model to be installed is a pixii
PowerShaper 2. The battery has a capacity of 48 kWh with a power of 50 kW.

3.4.5 WP 4.6: Algorithms in the field

The cloud infrastructure has been set up to control and monitor the EVs. Furthermore, the infrastructure
for the price setting agent, the DLC optimization problem and the ToU algorithm have been set up.
Currently, the price setting agent and the ToU algorithm are already sending prices and switching tables
to the LCSAs. The DLC optimization problem is already formulated, but running it in the cloud is still
resulting in some technical challenges.

On the LCSAs, the algorithms have been extensively tested on a test setup at EKZ. The devices are
now deployed with the first software version to the customers. The software includes a trained model
for each combination of EWH size and HP. During the project, the agents can be retrained offline and
updated via remote connection.
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Figure 18: Test setup at EKZ. The EV charging station is not controlled via the LCSA. In the control cabinet, the LCSA is on the
lower left side and the smart meter on the lower right side.
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4 Evaluation of the results to date
OrtsNetz made significant progress in its second year of the project. Over 600 people in the municipality
of Winkel are participating in the project. We have almost reached 100 customers where we control an
electrical load by one of the control schemes with 53 LCSAs already installed and 37 customers with
EVs. We expect to install a few more LCSAs in the following weeks.

In the last year, the experiment phase of the project has been prepared. WP1 finalized and implemented
the study design and tariff schemes that had been developed. In WP2&3, the algorithms for the different
control schemes have been developed and are mostly in a first stage to be tested in the field. They
will be updated during the project. To date, the performance tests for all algorithms have been made
in simulation environments only. Nevertheless, real-time grid tariffs and switching commands are being
sent to and used by control devices at customers. In WP4, the control devices have been developed and
installed. The hardware infrastructure is ready to apply the different control and tariff schemes. Finally,
the software infrastructure is slightly delayed such that not all control schemes are running in the field.

Overall, the project is on track and we have not found issues that could compromise the completion
of the project objectives. Still, we faced some challenges that were not contemplated at the beginning
of the project: In WP2&3, the RL agent at the household level required several training strategies to
obtain a good performance. Moreover, the first disaggregation methodology of flexible and inflexible
load was based on power measurements at the TS level. However, the first results were not satisfactory.
Therefore, we opted for using smart meter measurements to disaggregate the loads at the household
level. As for the DLC, the proposed MIQP formulation could not be solved fast enough with open-source
solvers, and we decided to acquire a 14-month license from Gurobi. This commercial solver provided
satisfactory results in just a few minutes. The full functionality of all the algorithms will be tested when the
software infrastructure is ready. Currently, we are verifying that all device data needed by each algorithm
are readily available and correct. In WP4, on the P2P platform, the interface for customer preferences
for load control is not ready, since the platform partner did not deliver the EV control functionalities. Thus,
we need to build an in-house solution on short notice. Currently, we are setting up this part of the platform
and are confident to have it ready by the end of the year. On the hardware side, some additional LCSAs
need to be installed. Since the infrastructure is already in place, the challenge is to reach the customers
who have not responded so far. On the software and cloud architecture side, the price setting agent and
the ToU scheme are already running in the field, while the DLC needs more efforts to be finalized. In
summary, WP4 has a delay for the final state of the hardware and infrastructure, but we are confident
that the overall project objectives are not hindered.

The consortium is confident that the missing parts will be made available before the end of the year.
The project partners are happy about the close collaboration and attitude to solve problems. The work
package leaders are in constant communication about ongoing work. All parties of the consortium are
looking forward to the next steps of the project and the result of the experiment phase.

5 Next steps
The following tasks are in focus for the next and final project year:

• Within WP1 we look forward to analyzing the first results of the project:

– Evaluate the impact of dynamical prices on participant behavior.
– Derive general recommendations with regard to EV smart charging, Demand Side Manage-
ment, and grid pricing.

– Investigate the impact of a local community storage battery on TS load peaks.

• Regarding the control algorithms, i.e., WPs 2 and 3, the next steps are:
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– Continuing the development of the RL agent on the DSO level.
– Improving the adaptability of the RL agent on the household level (Customer agent EWH/HP).
Specifically, we will reinvestigate whether the actual smart meter measurements can be lever-
aged to improve the performance further and make the agent applicable to households with
PV generation.

– Investigating the functioning of the algorithms in the field and identifying opportunities for im-
provement.

– Defining performance indices to compare the different control schemes.
– Gathering data from the pilot project to draw conclusions and recommendations based on the
performance of each controller.

• In WP4, the next steps are:

– Finalizing and maintaining the cloud infrastructure for load control of the HPs and EWHs as
well as controlling the EVs.

– Finalizing the P2P platform with the function that customers can set the EV charging param-
eters as well as billing of the customers.

– Installing and operating the community electricity storage.

6 National and international cooperation
Besides the collaboration between the project partners at ETH Zurich and EKZ, there is an active ex-
change with the chair of Information Systems and Energy Efficient Systems at the University of Bamberg,
which is led by Prof. Thorsten Staake. Furthermore, EKZ collaborates with Virtual Global Trading (Ort-
sNetz platform), Aveniq (IT), Swistec (LCD), Netinium (HES), Neuron (LCSA), Enode (EV connection),
HSLU (data analysis) and ewz (HES).

7 Communication
The following list presents the events and articles since the publishing of the last interim report:

• Aufsichtskommission über die wirtschaftlichen Unternehmen (AWU), Visitation EKZ and OrtsNetz,
16. November 2022

• ZHAW Lecture, Lecture on ”Intelligente Mess- und Steuersysteme”, 20. April 2023

• Zukunft des ZEVs, Presentation on OrtsNetz, course on ZEV, GBS St. Gallen, 9. May 2023

• Verein Zürich Erneuerbar, Presentation on Ortsnetz, 12. May 2023

• EKZ Betriebsleitertagung, Presentation on Ortsnetz, all utility companies connected to the EKZ grid
are invited, 12. May 2023

• GLP Thalwil, Presentation on Ortsnetz, 16. May 2023

• EKZ information event, Winkel, September 11th, 2023

• Zukunft des ZEVs, Presentation on OrtsNetz, course on ZEV, Primeo Energie Kosmos (Basel), 7.
November 2023

• Newspaper article, Zürcher Unterländer, September 20th, 2023, ”Winkel testet das Stromnetzder
Zukunft und spart Geld dabei”

• Multiple Newspaper articles and information, Winkel “dorfziitig”, Articles in October 2022, Novem-
ber 2022, January 2023, April 2023, May 2023, July 2023, August 2023, September 2023
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8 Publications
The following list presents the publications that resulted from OrtsNetz to date:

• T. Brudermueller and M. Kreft, “Smart meter data analytics: Practical use-cases and best practices
of machine learning applications for energy data in the residential sector,” in ICLR 2023 Workshop
on Tackling Climate Change with Machine Learning, 2023

• K. Kaiser, M. Kreft, E. Stai, M. González Vayá, T. Staake, and G. Hug, “Reducing power peaks in
low-voltage grids via dynamic tariffs and automatic load control,” in 27th International Conference
on Electricity Distribution (CIRED 2023), (Rome, Italy), June 2023

• E. Stai, K. Kaiser, J. Stoffel, M. González Vayá, and G. Hug, “Automatic load management in ac-
tive distribution grids using reinforcement learning,” in IEEE PES ISGT Europe 2023, (Grenoble,
France), October 2023
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