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Zusammenfassung 
Speichersysteme sind eine wichtige Voraussetzung für die Integration zunehmender Mengen 

erneuerbarer Energie. Für die Planung von Elektrizitätssystemen und den Betrieb elektrochemischer 

Speichersysteme werden Modelle benötigt, die sich für die Verwendung im Rahmen der 

mathematischen Optimierung eignen und die die wichtigsten Betriebsbeschränkungen von Batterien, 

wie etwa die Degradation, die zu einer Verringerung der verfügbaren Speicherkapazität führt, 

ausreichend genau erfassen. Im Rahmen dieses Projekts wurde ein Open-Source-Modell für Batterien 

entwickelt, das auf einem öffentlichen Simulationsmodell basiert, das durch experimentelle Daten 

gestützt wird. Dieses Modell ermöglicht es, mehrere Faktoren, die zur Degradation von Batterien 

beitragen, in Optimierungsrahmen auf der Grundlage nachvollziehbarer Daten angemessen zu 

berücksichtigen. Das Modell wurde einerseits durch den Nachweis von Fehlern bei der 

Degradationsvorhersage von weniger als 5 % über ein ganzes Jahr im Vergleich zu zuvor verfügbaren 

und validierten empirischen Modellen validiert. Andererseits wurde in simulierten Szenarien gezeigt, 

dass es zur Verbesserung der Lebensdauer und der wirtschaftlichen Leistung von Batterien in Arbitrage- 

und Eigenverbrauchsszenarien eingesetzt werden kann. Bei der Optimierung des Ladeprofils einer 

Batterie, die Arbitrage auf den Strompreisen betreibt, wurde beispielsweise festgestellt, dass die 

Lebensdauer der Batterie auf 12 Jahre verlängert werden kann, im Vergleich zu 5 Jahren, wenn nur die 

Standardlademenge und Ladezustandsgrenzen verwendet werden, was den Nettonutzen 

(einschließlich der jährlichen Kosten für den Batterieaustausch) von -1,2k auf +10kCHF/MWh/Jahr 

erhöht. 

Résumé 
Les systèmes de stockage constituent un outil important pour l'intégration de quantités croissantes 

d'énergie renouvelable. La planification du système électrique et l'exploitation des systèmes de 

stockage électrochimique nécessitent des modèles adaptés à l'optimisation mathématique qui 

saisissent avec suffisamment de précision les principales limites de fonctionnement des batteries, telles 

que la dégradation entraînant une réduction de la capacité de stockage disponible. Ce projet a conduit 

à la création d'un modèle open-source pour les batteries qui est construit sur un modèle de simulation 

public soutenu par des données expérimentales. Ce modèle permet de prendre en compte correctement 

les multiples facteurs contribuant à la dégradation des batteries dans des cadres d'optimisation basés 

sur des données traçables. Le modèle a été validé d'une part en démontrant des erreurs de prédiction 

de dégradation inférieures à 5% sur une année complète par rapport aux modèles empiriques 

précédemment disponibles et validés. D'autre part, il a été démontré dans des scénarios simulés qu'il 

peut être utilisé pour améliorer la durée de vie et les performances économiques des batteries dans des 

scénarios d'arbitrage et d'autoconsommation. Par exemple, lorsqu'il est utilisé pour optimiser le profil 

de charge d'une batterie effectuant un arbitrage sur les prix de l'électricité, il a été constaté que la durée 

de vie de la batterie pouvait être prolongée à 12 ans par rapport à 5 ans en utilisant uniquement le taux 

de charge standard et les limites de l'état de charge, ce qui porte le bénéfice net (y compris un coût 

annualisé pour le remplacement de la batterie) de -1,2k à +10kCHF/MWh/an. 

Summary 
Storage systems are an important enabler for the integration of increasing amounts of renewable 

energy. Electricity system planning and operation of electrochemical storage systems require models 

that are suitable for use within mathematical optimization that capture sufficiently accurately the main 

operating limitations of batteries, such as degradation resulting in a reduction of the available storage 

capacity. This project has led to the creation of an open-source model for batteries that is built upon a 

public simulation model supported by experimental data. This model allows to properly consider multiple 
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factors contributing to battery degradation in optimization frameworks based on traceable data. The 

model has been validated on the one hand by demonstrating errors in degradation prediction of less 

than 5% over a full year compared to previously available and validated empirical models based. On the 

other hand, it was demonstrated in simulated scenarios that it can be used to improve the lifetime and 

economic performance of batteries in arbitrage and self-consumption scenarios. For example, when 

utilized to optimize the charging profile of a battery performing arbitrage on electricity prices, it was found 

that the battery life could be extended to 12 years compared to 5 years when using only standard 

charging rate and state of charge limits, bringing the net benefit (including an annualized cost for battery 

replacement) from -1.2k to +10kCHF/MWh/year. 
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Abbreviations 
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1 Introduction 

1.1 Background information and current situation 

Battery models are used in a wide range of applications, which require different levels of complexity and 

accuracy. Broadly speaking, model users include: 

- Designers (of cells, battery packs, BESSs, etc) which use sophisticated, generally physics-

based models. 

- Planners (for entire national/regional power grids or complex energy systems/networks) which 

use models to run techno-economic analyses to select appropriate subsystem sizes, typically 

through the use of mathematical optimization of system parameters and scenario simulation 

(e.g., with tools such as TIMES), 

- Operators (of buildings, energy systems or local grids) which choose operation strategies of 

energy assets. An emerging trend is the rise of the use of dynamic energy management 

strategies based on real-time mathematical optimization (also called predictive), to operate 

complex systems optimally according to some chosen criterion (e.g., cost, CO2 emission, etc.). 

The main advantage of this approach compared to traditional management strategy based on 

pre-determined operation rules, is the capacity to plan efficiently based on forecasts (of 

production, consumption and prices), while its drawback is the need for more computations and 

the availability of calibrated model to represent reality. 

These applications require publicly available models of batteries that incorporate sufficient details to 

capture the operating limitations of batteries and phenomena such as battery degradation. The use of 

models in optimization contexts imposes strong limitations on the model size (# of parameters) and 

structure (e.g., linearity, convexity, etc.). In the context of planning, most established grid planning tools 

such as TIMES rely on linear models, as the underlying optimization problem is a mixed-integer linear 

program due to the availability of reliable solvers for this type of problem. So far, degradation is generally 

not considered satisfactorily: it is either disregarded, post-computed or treated in a very simplified way. 

In the context of operation, tools for predictive energy management (such as NRGMaestro™, see below) 

generally feature the same constraints of model linearity (with integer variables), although they may 

tolerate more complex models due to shorter optimization horizons and smaller systems under scope. 

In any case, considering degradation which is a highly nonlinear phenomenon requires some level of 

simplification. 

In the frame of the IEA ES TCP Task 32 project1, the team at CSEM has already developed and open-

source empirical simulation model for battery degradation, named SoXery [1], which can be used to 

simulate efficiently degradation of battery incurred through cycling and calendar ageing and capture the 

main contributing factors to ageing (temperature, depth of discharge, average state-of-charge and C-

rates). SoXery is backed by experimental data of cell cycling tests. Despite being itself simplified and 

very efficient for fast simulation purposes, SoXery is not directly usable in MILP optimization contexts. 

Additionally, CSEM has developed the predictive energy manager NRGMaestro™, which also relies on 

MILP optimization for the operation of energy systems and has gathered experience in operating energy 

systems including batteries for behind-the-meter applications. 

This combined expertise will allow us to bridge the gap from the existing simulation model towards a 

model that properly captures degradation and is directly usable in optimization contexts. 

  

 
1 https://iea-es.org/task-32/  

https://iea-es.org/task-32/
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1.2 Purpose of the project 

The project aims to design a methodology to produce optimization-compatible models that capture the 
impact of battery charging and discharging on its ageing. By optimization-compatible models, we 
assume that models are described with mixed-integer linear equations (which is the most widely used 
approach to optimization, see 3.1) The methodology will be backed by experimental data and adapted 
to different battery chemistries and characteristics in line with previous modelling efforts that led to the 
publication of the SoXery battery simulation models.   
The main target is the publication of the new battery models on an open-source repository with 
documentation so that they can be integrated in operations planning oriented optimization frameworks 
such as NRGMaestro™, and in planning tools such as TIMES. 
The research questions underpinning this work are: 

- What is the model complexity required to incorporate sufficient information about 
degradation in optimization tools? 

- To which extent an “enhanced” model of battery does help to operate batteries in ways that 

extend battery life. 

2 Procedures and methodology 

The ultimate objective of the project is to derive, validate and disseminate a battery ageing model that 
can be described fully with mixed-integer linear equations and possesses could forecasting 
performance. This involves the following steps:  

 

1. Review state-of-the-art of battery models with degradation modelling, as used in optimization 
contexts. 

2. Select a methodology for deriving battery models from raw data and the available simulation 
model. 

3. Implement a prototype software to generate models. This software processes data and pre-
existing simulation models of battery into optimization-compatible models. 

4. Evaluate the accuracy of new model and impact within operations’ optimization in simulation 
scenarios. This involves the integration within optimization tools for operation and the evaluation 
of benefits of the new models compared to basic model without consideration of battery 
degradation. The background software from CSEM NRGMaestro™ will be used for this part. 

5. Disseminate the work: 
o A publication has been accepted to the IEEE ISGT 2023 conference and will be 

presented there in October 2023.  
o An open-source implementation of the model has been released and can be found at 

https://github.com/csem/batmaestro  
o The results of the project have been presented to experts in the OPEN SESAME 

consortium during a project meeting in May 2023  

3 Results and discussion 

SoXery [1] is an open-source battery degradation simulation model, based on an empirical stress-based 

degradation model [2]. The degradation equations were developed on experimental tests on lithium-ion 

cells with a Lithium Nickel Manganese Cobalt (NMC) oxide. Soxery was developed in the frame of the 

IEA Open Source Energy Storage Models project [5]. 

The State-of-Health (SoH) of a battery at time t is defined as the ratio of the maximum capacity (in Ah) 

of a battery at time t to the maximum capacity of that battery at beginning of its life. As commonly done, 

the SoH decrease is modeled with two components: the calendar ageing 𝐷_𝑐𝑎𝑙 that is happening 

https://github.com/csem/batmaestro
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continuously, and the cycle ageing 𝐷_𝑐𝑦𝑐 that occurs while the battery is cycled. The SoH after a period 

of time is forecasted as the integral of the sum of the cycle and calendar ageing. 

SoXery offers a relatively complex method to calculate 𝐷_𝑐𝑎𝑙 and 𝐷_𝑐𝑦𝑐 as a function of its cycling input 

power: each degradation component is based on a reference Degradation Rate (DR) multiplied by 

Stress Factor (SF) equations for every influencing parameter. Calendar ageing has a linear SF for SoC 

and exponential SF for temperature and is found by multiplying those two SF equations by the reference 

DR for calendar ageing and by the time elapsed. On the other hand, cycle ageing has nonlinear SFs for 

C-rate, SoC, DoD and temperature, where the average value is considered over the half-cycle. As a 

result, four nonlinear SF equations are calculated and multiplied by the reference charging or 

discharging DR, and by the DoD of the half-cycle hc considered.  

𝐷𝑐𝑦𝑐 = 𝐷𝑅𝑟𝑒𝑓 ∗ 𝐷𝐹𝐶𝑟𝑎𝑡𝑒 ∗ 𝑆𝐹𝑆𝑜𝐶 ∗ 𝑆𝐹𝐷𝑜𝐷 ∗ 𝑆𝐹𝑇 ∗ 𝐷𝑜𝐷ℎ𝑐 

Similar equations apply for the calendar ageing and for the prediction of the state of resistance (SoR) 

increase. This type of model is not linear, due to the multiplication of all the stress factors and the 

breakdown of the charging profile into half-cycles: our goal has been to transform these equations into 

approximately equivalent ones that can be cast as a set of linear equations on continuous and discrete 

variables so that they are compatible with MILP optimization. To do so, the following assumptions have 

been made: 

 

- A constant SF for temperature is calculated at 25°C. This is because the battery dynamic model 

considered in the optimization problem which we are currently able to handle currently does not 

include a thermal model to forecast the temperature of the cells, 

- The cycle degradation is calculated at every time step (except for DoD as explained later), 

instead of each half-cycle. This is because extracting half-cycles in the optimization is complex 

and nonlinear. This makes no difference for linear SFs, but introduces errors for nonlinear ones. 

 

As a result, calendar ageing depends on the SoC only, which has a linear SF, making it compatible with 

the MILP optimization framework: 

The cycle ageing is more complex as it depends on the C-rate, SoC and DoD. We observe that the C-

rate is the dominant factor for degradation. Therefore, we have developed two models with different 

levels of complexity and accuracy: a simplified model SoH model has first been developed accounting 

only for the C-rate in cycle ageing; and a more complex one that considers all SFs. The cycle ageing 

DR (in \%SoH loss per Half Equivalent Cycle (HEC)) is converted to %SoH loss per hour by multiplying 

by the C-rate (in HEC per hour), shown in Figure 1. By integrating over time, we get the cycle ageing 

DR for the simplified model. 
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Figure 1: Degradation rate for SoH cycle ageing and piecewise affine approximation 

The negative and positive C-rates represent charging and discharging, respectively. This simple model 

assumes that the SoC and DoD do not influence the cycle ageing, yielding SF values of 1 for those 

factors.  

For the more complex SoH model, the cycle SF for SoC is a linear function and it is considered at each 

time step. This gives rise to a bilinear term that must be transformed to approximate linear equations. 

Similarly, the DoD SF needs to be piecewise linearized, but another approximation was introduced to 

avoid considering only the DoD of each time step, which would always be small if time steps are short: 

we have considered in the optimization the maximum SoC range over the horizon of optimization to 

approximate the DoD. This is not perfect as there can be multiple cycles of different DoDs over the 

optimization horizon, but typically not many for a horizon of one to a few days, as will used for our 

receding-horizon control application.  

This results in the following equation for the complex cycle ageing degradation at the end of the horizon 

of N time-steps: 

𝐷𝑐𝑦𝑐
𝑐𝑜𝑚𝑝𝑙𝑒𝑥(𝑁) =∑𝐷𝑅𝑐𝑦𝑐,𝑟𝑒𝑓 ∗ 𝑆𝐹𝐶𝑟𝑎𝑡𝑒 ∗ 𝐶𝑟𝑎𝑡𝑒(𝑡) ∗ 𝑆𝐹𝑆𝑜𝐶 ∗ 𝐷𝐹𝐷𝑜𝐷𝑚𝑎𝑥

∗ 𝑑𝑡

𝑡

 

As this is multilinear, we have tailored the piece-wise McCormick relaxation to this use case. This 

technique allows to apply the well-known convex McCormick relaxation for bilinear terms on different 

portion of the variables space controlled by the introduction of new discrete variables. Our formulation 

was adapted from the formulation [NF-12] found in the reference [3], where we partition the variables. 

Note that this approach allows a controlled level of accuracy through a higher or lower number of 

subintervals for the relaxation. Full details of the derivation will be found in our publication referenced in 

section 9.  

Based on the above, we have considered three alternate battery models in a simulation study with the 

goal of studying the effect of considering degradation in an optimization problem. The three models 

considered are:  

- A0: ignoring the degradation in the optimization, and limiting the battery operating range: 

maximum 0.5C for charging and SoC between 10% and 90%. 

- A1: simple SoH model, including exact calendar ageing and only C-rate dependent cycle ageing 

- A2: complex SoH model, including SoC and DoD in the cycle ageing calculations, and relax 

through the tight McCormick relaxation approach 
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Two simulation scenarios have been studied with two use cases for batteries over a one year period. 

The first one considers an arbitrage scenario on electricity prices. The price data used was from 2021. 

Although this is generally not very profitable for batteries it is an interesting scenario as it involves high 

cycling of the battery and complex decision to be made which is suitable for an optimization framework. 

The second is a more traditional PV + battery scenario where the battery is used to increase self-

consumption. Here we report only results for the first scenario as results were very comparable between 

the two studies. Full details of the second scenario is available in an extended report [4] 

We show in the results of the study in the following table 

Table 1: Comparison of model performance within MPC for arbitrage scenario 

 

The real SoH loss is calculated a posteriori based on the optimized SoC and C-rate profiles with the 

original SoXery model. This is assumed to be the ground truth in terms of degradation. The battery end-

of-Life (EoL) is assumed when the battery reaches a SoH of 80%. Finally, the computing time reflects 

the complexity of using each degradation model in the optimization.  

Table 2: Economical benefits in arbitrage scenario 

 

 

The economical results, reported in Table 2 and given in EUR per MWh of battery installed per year, 

are broken down in two parts. First, the arbitrage gain is calculated as the gain from selling energy from 

the battery to the grid, minus the cost of the energy bought from the grid. Also, an equivalent cost of 

degradation is computed by assuming that the batteries need to be replaced at EoL, and attributing a 

fraction of the replacement cost proportional to SoH loss over that year (this is consistent with the cost 

of degradation incorporated in the optimization). Finally, the total real benefit is the difference between 

the arbitrage gain and the equivalent degradation cost.  

 

The total real benefit is negative in option A0 (if degradation is only limited with hard constraints) 

meaning that the degradation cost exceeds the benefit from using a battery for arbitrage. The simple 

SoH model of option A1 is quite accurate (1.2% difference with exact degradation equations) and allows 

to significantly reduce the SoH loss per year and extends the battery life to 12 years. As a result, the 

benefit has a positive value of 6,250 EUR/MWh/year, making arbitrage beneficial over the battery 

lifetime. The complex SoH proposed in A2 allows to reduce further the degradation cost and yields a 

higher benefit, allowing up to 10,000 EUR/MWh/year, while exhibiting a manageable computing time 

per run of 5 seconds. Overall, we conclude that both A1 and A2 options are viable, and which one is to 

be used depends on the desired trade-off between performance and computational load in a given 

application. 
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4 Conclusions 

We have demonstrated in this work that including degradation in a predictive energy management 

strategy allows to account accurately for the hidden cost of degradation, therefore boosting the 

economic viability and lifetime of batteries in an arbitrage scenario. It has also been demonstrated that 

it is possible to manage a tradeoff between accuracy, computational load and optimality with different 

levels of degradation model accuracy, leading up to savings of up to 10,000 EUR/MWh/year.  

 

5 Outlook and next steps 

The results reached are promising. It shows explicitly modelling the degradation due to charging profiles 

on battery life allows to increase battery life and economical benefits when managing battery charging 

through a mathematical optimization strategy such as MPC.  

What is more, we have shown that nonlinear degradation model wich may a priori be hard to use in 

optimization contexts can be transformed accurately to models amenable to mixed-integer linear 

optimization, a very popular framework for energy systems design optimization and management. This 

can be done at a moderate cost in terms of complexity and in a way that allows to control the accuracy-

complexity tradeoff of the model.  

Future work can include further investigation of the McCormick relaxation with multivariate partitioning 

or other technical refinement in the formulation, but should most importantly consider more realistic case 

studies with other grid services such as frequency control. Additionally, the main assumption 

underpinning this work is the availability of a pre-existing ageing model for the battery, which often is 

unavailable. To reach wide applicability of the results of this project, further work in building such 

degradation models from live measured data from battery packs is required.  

 

 

6 Publications 

A publication has been presented at the IEEE ISGT Europe 2023 in Grenoble, France in October 2023: 

Method to Embed Behavioral Battery Model in Predictive Energy Management Systems, A. Sutter, T. 

T. Gorecki and S. S. Bhoir 

Open-access link : https://yoda.csem.ch/items/d080c968-da94-47c4-83a4-bf28b87bac4f  

 

In addition, an open-source implementation in Python of scripts to generate the optimization-compatible 

version of the model with examples has been published at the following repository: 

https://github.com/csem/batmaestro  
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