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Zusammenfassung 
In der Windenergiebranche hat die Genauigkeit der Schätzung der Windressourcen einen enormen 

Einfluss auf die erwartete Rendite eines Projekts. Aufgrund der komplexen Natur des Wetters und der 

Windströmung über der Erdoberfläche kann es sehr schwierig sein, die Windressource korrekt zu 

messen und zu modellieren. Für ein bestimmtes Projekt stehen Modelliererinnen und Modellierer vor 

einer schwierigen Auswahl aus einer breiten Palette von Simulationstools mit unterschiedlichen 

Genauigkeiten und Kosten. In diesem Projekt wird in Zusammenarbeit mit der IEA Wind Task 31 eine 

öffentliche "Simulationschallenge" für Windenergiestandorte in komplexem Gelände durchgeführt, bei 

der die Teilnehmerinnen und Teilnehmer ihre Simulationsdaten und -ergebnisse in einer vordefinierten 

Vorlage einreichen. Ziel ist es, mehrere Datensätze bezüglich der "Skill" und "Costs" von 

Simulationstools sowohl vor als auch nach der Durchführung der Simulationen zu sammeln, so dass 

Transferfunktionen für die genaue Vorhersage der "Skill" und "Costs" der Tools entwickelt werden 

können. Dies wird den Modelliererinnen und Modellierern helfen, für ein bestimmtes 

Windenergieprojekt das beste Modell für die Aufgabe auszuwählen. 

Im ersten Jahr dieses Projekts wurde eine Vorlage für Vergleichsmetriken weiterentwickelt und im 

Vergleich zur ursprünglichen Version stark verbessert. Die Simulationschallenge wurde planmässig 

entworfen und gestartet. In der Folge wurden mehrere Publikationen und Kollaborationen lanciert.  

Die Datenerfassung und –auswertung wurde mit einer Verzögerung von drei Monaten, aufgrund von 

einer geringen Anzahl von Einreichungen, abgeschlossen, weshalb sich die Planung von Stage 2 

ebenso verzögert hat. 

Im zweiten Jahr des Projekts wurde zunächst die Stage 1 abgeschlossen. Dabei haben wir uns bei 

den registrierten Teilnehmerinnen und Teilnehmern informiert, warum die Ergebnisse verspätet 

eingereicht wurden, und haben die Challenge den Umständen entsprechend angepasst. Der 

Evaluierungscode wurde zudem vervollständigt und die Analyse der Ergebnisse abgeschlossen. In 

einem Workshop wurden die Ergebnisse den Teilnehmerinnen und Teilnehmern präsentiert sowie 

diskutiert. Dabei konnten offene Fragen und Ungereimtheiten geklärt werden. 

Die Ergebnisse von Stage 1 haben gezeigt, dass anspruchsvolle Simulationswerkzeuge wie Large 

Eddy Simulations (LES) nicht unbedingt zu höheren Genauigkeiten führen. Insbesondere für weniger 

komplexe Standorte ist es besser, einfachere Tools wie Reynolds Averaged Navier Stokes (RANS) 

oder WAsP zu verwenden, die mit einem Bruchteil der Kosten von LES-Simulationen ein hohes Mass 

an Genauigkeit erreichen. Insgesamt erzielte die RANS-Simulation mit der von Enercon entwickelten 

E-Wind-Software die besten und beständigsten Ergebnisse. Da der Teilnehmer auch der erfahrenste 

von allen war, könnte dies zu der Schlussfolgerung führen, dass die Fähigkeiten des Anwenders eine 

entscheidende Rolle für die Gesamtbewertung der Fähigkeiten spielen. 

Für Stage 2 dieses Projekts wurde der manuelle Prozess von Stage 1 automatisiert. Das daraus 

resultierende Decision Tool ist in der Lage, Antworten auf Fragebögen automatisch in Kompetenz- 

und Kostenbewertungen umzuwandeln. Um die Algorithmen des Tools zu entwickeln, wurde eine 

neue Challenge veröffentlicht. In dieser Challenge wurden die Teilnehmer aufgefordert, Simulations- 

und Messergebnisse von beliebig verfügbaren Standorten hochzuladen. Auf der Grundlage dieser 

Ergebnisse sollten von der Standortkomplexität abhängige Funktionen und Gewichtungen entwickelt 

und abgestimmt werden. Aufgrund mangelnder Beteiligung konnte der Tuning-Teil jedoch nicht 

abgeschlossen werden. Die daraus resultierenden Methoden dienen jedoch als Ausgangspunkt und 

können leicht aktualisiert und erweitert werden, wenn weitere Daten hinzukommen. Wir stehen 

diesbezüglich bereits in Kontakt mit mehreren Unternehmen, darunter Enercon, UL und TÜV Süd. 

Außerdem wurden die Fragen des Fragebogens neu formuliert, um sie leichter zu beantworten und zu 

verstehen sowie objektiver zu machen. 

Der Einfluss der Komplexität des Standorts auf die Bewertung der Fähigkeiten im Vergleich zu den 

Kosten wurde kurz untersucht, indem drei verschiedene Modelle für vier Standorte mit zunehmender 

Komplexität verglichen wurden. Es zeigte sich, dass mit zunehmender Komplexität des Standorts die 



 

4/70 

"Before" Skill Scores abnahmen und die Abstände zwischen den Skill Scores der einzelnen Modelle in 

Abhängigkeit von ihrer Komplexität zunahm, d. h. LES übertraf die RANS- und WAsP-Simulationen. 

Bei weniger komplexen Standorten wiederum schnitten die RANS- und WAsP-Simulationen ähnlich 

gut ab wie der LES-Fall, wiesen aber deutlich bessere Kostenwerte auf. Die entwickelten Funktionen 

und Gewichte, mit denen diese Erkenntnisse erzielt werden konnten, wurden aufgrund der wenigen 

verfügbaren Datenpunkte von Hand abgestimmt. Mit mehr Daten können maschinelles Lernen und 

statistische Modelle diesen manuellen Prozess ersetzen, um allgemeinere und zuverlässigere 

Ergebnisse zu erhalten. Die derzeitigen Methoden und Funktionen dienen als Ausgangspunkt für die 

weitere Entwicklung. 

Summary 
In wind energy, the accuracy of the estimation of the wind resource has an enormous effect on the 

expected rate of return of a project. Due to the complex nature of the weather and of the wind flow 

over the earth's surface, it can be very challenging to measure and model the wind resource correctly. 

For a given project, the modeller is faced with a difficult choice of a wide range of simulation tools with 

varying accuracies and costs. In this project, a public "simulation challenge" for wind energy sites in 

complex terrain is being implemented in collaboration with IEA Wind Task 31, in which participants 

submit their simulation data and results in a pre-defined template. The goal is to collect hundreds of 

comparison metrics data regarding the "skill" and "costs" of simulation tools both before and after 

carrying out the simulations, enabling transfer functions for the accurate prediction of tool "skill" and 

"costs" to be developed. This will help modellers choose the best model for the job for a given wind 

energy project. 

In the first year of this project, a submission template for comparison metrics was developed further 

and greatly improved compared to the initial version. The simulation challenge was designed and 

launched according to plan. Several publications and collaborations have been launched as a result of 

this. The data collection and evaluation was finished and a Python code for the analysis completed; 

however, we did not receive as many submission (five organisations with a total of 10 different 

submissions) as expected and the completion of Stage 1 had to be delayed by approximately three 

months. Due to this delay, the planning of Stage 2 was also delayed. However, the process of 

designing and evaluating Stage 1 allowed us to learn a great deal about simulation challenges, which 

served us well while designing Stage 2.  

In the second year of the project, Stage 1 was first completed. This involved improving the submitted 

results by meeting and discussing the details directly with the participants, and then applying the data 

analysis code to the final results. The results of Stage 1 showed that sophisticated simulation tools 

such as Large Eddy Simulations (LES) do not necessarily lead to higher accuracies. Especially for 

less complex sites, one is better off using simpler tools such as Reynolds Average Navier Stokes 

(RANS) or WAsP, reaching high levels of accuracy with a fraction of the costs of LES simulations. 

Overall, the RANS simulation with the E-Wind software, developed by Enercon, achieved the best and 

most consistent scores. As the participant was also the most experienced amongst all, this leads to 

the conclusion that the user skill may play a crucial role for the overall skill score. 

For Stage 2 of this project, the manual process of Stage 1 was automated. The resulting Decision tool 

is able to automatically convert answers of questionnaires into skill and cost scores. In order to 

develop the business logic of the tool, a new challenge was published. In this challenge participants 

were asked to upload simulation and measurement results of any available site. Based on these 

results site complexity dependent functions and score weightings were supposed to be developed and 

tuned. However, due to a lack of participation the tuning part could not be completed. However, the 

resulting methods serve as a starting point and can be easily updated and extended as more data 

comes in. We already have contacts with several companies including Enercon, UL and TÜV Süd 
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about this. Additionally, the questions of the questionnaire were reformulated to render them easier to 

answer and understand as well as more objective. 

The influence of site complexity on the skill versus cost score plots was briefly explored by comparing 

three different models for four sites with increasing complexity. It was shown that for increasing site 

complexity the "before" skill scores decreased and the gaps between the skill scores of each model 

increased dependent on its sophistication, i.e. LES outperformed RANS and WAsP simulations. In 

turn, for less complex sites RANS and WAsP simulations performed similar to the LES case, but had 

significantly better cost scores. The developed functions and weights that were able to achieve these 

insights were tuned by hand due to the very few available data points available. With more data, 

machine learning and statistical models can replace this manual process in order to get more 

generalised and reliable results. The current methods and functions serve as a starting point for further 

development. 

Summary 
Dans le domaine de l'énergie éolienne, la précision de l'estimation de la ressource éolienne a un effet 

énorme sur le taux de rendement attendu d'un projet. A cause de la complexité des conditions 

météorologiques et des vents à la surface de la Terre, il peut être très compliqué de mesurer et de 

modéliser correctement la ressource éolienne. Pour un projet donné, le modélisateur ou la 

modélisatrice est confronté à un choix difficile entre plusieurs outils de simulations avec des précisions 

et des coûts différents. Dans ce projet, un "challenge de simulation" public a été élaboré pour 

plusieurs sites avec un terrain complexe, en collaboration avec le IEA Wind Task 31, dont les 

participants soumettent leurs données et résultats de simulation en suivant une structure pré-définie. 

Le but est de recueillir des centaines de données métriques de comparaison suivant la "technicité" et 

le "coût" des outils de simulations, avant et après la réalisation des simulations, ce qui permet de 

développer des fonctions de transfert pour la prédiction précise de la "technicité" et des "coûts" des 

outils. Cela aidera les modélisateurs et modélisatrices à choisir le meilleur modèle pour le projet éolien 

donné. 

Lors de la première année de ce projet, un modèle de soumission pour les métriques de comparaison 

a été développé et grandement amélioré par rapport à la version initiale. Le challenge de simulation a 

été conçu et lancé selon le plan. Plusieurs publications et collaborations ont été lancées à la suite de 

ce challenge. La collection des données et leur évaluation ont été achevées ainsi que la réalisation 

d'un code Python pour l'analyse des données ; cependant, nous n'avons pas reçu autant de 

soumissions que prévu (5 organisations avec un total de 10 soumissions distinctes) et la fin de la 

première phase du projet a dû être retardée d'environ trois mois. A cause de ce retard, la planification 

de la deuxième phase a elle aussi été retardée. Cependant, la conception et l'évaluation de la 

première phase nous a permis d'apprendre beaucoup sur les challenges de simulation, ce qui nous a 

servi pour mieux préparer la deuxième phase. 

Lors de la seconde année de ce projet, la phase une a été achevée. Ceci inclut l'amélioration des 

résultats soumis en rencontrant et en discutant des détails directement avec les participants, et 

l'utilisation du code d'analyse des données aux résultats finaux. Les résultats de la première étape ont 

montré que les outils de simulation complexes, comme les simulations des grands tourbillons (LES), 

n'impliquent pas forcément une meilleure précision. En particulier pour les sites moins complexes, il 

est préférable d'utiliser des outils plus simples, comme les méthodes RANS (Reynolds Average 

Navier Stokes) ou WAsP, qui permettent d'atteindre des bons niveaux de précision en une fraction du 

coût des simulation LES. Globalement, la simulation RANS avec le logiciel E-Wind, développé par 

Enercon, a obtenu les meilleurs résultats et les plus cohérents. Comme le participant était aussi le 

plus expérimenté de tous, ceci permet de conclure que l'expérience de l'utilisateur joue sans doute un 

rôle crucial dans le score générale de "technicité". 
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Pour la deuxième phase du projet, le processus manuel de la première phase a été automatisé. L'outil 

de décision qui en résulte est capable de convertir automatiquement les réponses du questionnaire en 

scores de technicité et de coût. Dans le but de développer la logique commerciale de l'outil, un 

nouveau challenge a été publié. Dans ce challenge, il était demandé aux participants de téléverser 

leurs résultats de simulation et de mesure de n'importe quel site disponible. A partir de ces résultats, 

des fonctions dépendant de la complexité du site et la pondération des scores devaient être 

développées et ajustées. Cependant, à cause du manque de participation, l'ajustement n'a pu être 

achevé. Cependant, les méthodes qui en résultent servent comme point de départ et peuvent être 

facilement mises à jour et étendues au fur et à mesure de l'arrivée de nouvelles données. Nous avons 

déjà des contacts avec plusieurs entreprises dont Enercon, UL et TÜV Süd. De plus, les questions du 

questionnaire ont étés reformulées pour les rendre plus facile à répondre et à comprendre ainsi que 

plus objectives. 

L'influence de la complexité du terrain sur le score de la technicité par rapport au score du coût a été 

brièvement étudiée en comparant trois modèles différents pour quatre sites ayant une complexité 

croissante. Il a été démontré que pour une augmentation de la complexité du terrain, le score a-priori 

de la technicité décroit et les écarts entre les scores de technicité entre chaque modèle augmentent 

en fonction de la sophistication du modèle, c'est-à-dire que les simulations LES surpassent les 

simulations RANS et WAsP. En revanche, pour les sites moins complexes, les simulations RANS et 

WAsP ont des résultats similaires aux simulations LES, mais ont obtenu des scores bien meilleurs en 

termes de coût. Les fonctions et pondérations développées qui ont permis d'obtenir ces conclusions 

ont été ajustées à la main à cause du trop faible taux de données disponible. Avec plus de données, 

l'apprentissage automatique et les modèles statistiques peuvent remplacer ce processus manuel afin 

de mieux généraliser et rendre les résultats plus fiables. Les méthodes et fonctions actuelles servent 

comme point de départ pour un prochain développement. 
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Main findings 
 

Stage 1: 

1. A submission template for comparison metrics was developed further and greatly improved 

compared to the initial version. 

2. A Python library for the analysis was developed and will be made public. 

3. A simulation challenge was published and five organisations took part, leading to a total of ten 

different submissions. 

4. The results showed that sophisticated simulation tools such as LES do not necessarily lead to 

higher accuracies. 

5. The RANS simulations with the E-Wind software, developed by Enercon, achieved the best 

and most consistent scores for all locations at the Perdigao site. 

 

Stage 2: 

1. The manual process of Stage 1 was automated. The resulting Decision tool is able to 

automatically convert answers of questionnaires into skill and cost scores. 

2. A new simulation challenge was published and one organisation took part, leading to a total of 

four different submissions. We have established contact with two other global organisations 

who are interested in contributing in the future. 

3. The questions of the questionnaire were reformulated to render them easier to answer and 

understand as well as more objective. 

4. It was shown that for increasing site complexity the "before" skill scores decreased and the 

gaps between the skill scores of each model increased dependent on its sophistication, i.e. 

LES outperformed RANS and WAsP simulations. In turn, for less complex sites RANS and 

WAsP simulations performed similar to the LES case, but had significantly better cost scores. 
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1 Introduction 

1.1 Background information and current situation 

This project is an extension of the recently completed SFOE project "A new process for the pragmatic 

choice of wind models in complex terrain", which involved developing a new decision process for the 

optimal choice of wind modelling tool in complex terrain. This will ultimately help wind resource 

assessors improve their processes and reduce the LCOE1 of wind energy. The project involved 

applying various simulation tools to five test sites of varying terrain complexity and defining 

comparison metrics related to the "skill" (or accuracy) of the model as well as those related to its "cost" 

(or complexity). A resulting plot similar to the one in Figure 1(a) allows the most effective solution to be 

chosen. 

In order to achieve this goal, a large number of simulations with different wind modelling tools and 

WRA workflows were carried out at four complex terrain wind energy sites, followed by a detailed 

analysis of the results. The project was carried out by OST and Meteotest in collaboration with the 

Hochschule Esslingen, who implemented a separate German-funded project with the same goal at two 

mutual wind energy sites (Stötten and Enercon). This collaboration enabled the development of 

modelling and WRA workflow methods and the comparison of results with a wider range of different 

tools than would otherwise have been possible. The wind modelling tools applied in this project by the 

research partners included WindPro, WindSim and PALM (Meteotest), Fluent and Palabos LBM 

(OST), as well as CFX (HSE). 

The project was split into two main parts: (1) Design of the decision process; (2) Demonstration and 

validation of the decision process.  

For part (1), the test site Stötten in Germany was focused on, because data was available to all project 

partners including Hochschule Esslingen. In this part, WRAs were carried out using different 

combinations of wind modelling tools and WRA workflows, and the results compared and analysed in 

detail. Based on this, automated WRA processes were developed for the used wind modelling tools. 

Following this, a set of parameters (called "Comparison Metrics") for deciding the most optimal wind 

modelling tool and WRA workflow were developed. This resulted in several publications as well as a 

new publicly-available template for estimating the Comparison Metrics.  

In part (2), three other sites (ewz, Enercon and ADEV) were used to demonstrate and validate the 

Comparison Metrics parameters and method. This was done by firstly applying the new automated 

WRA processes to each of these sites and analysing the results. Finally, a comparison and evaluation 

of all the results at all four sites enabled the new decision tool to be designed, as well as several 

improvements to the WRA process and to the Comparison Metrics method to be suggested. 

 
1 Levelized Cost of Electricity 

Figure 1. (a) Theoretical cost vs- skill score; (b) Results of initial study 
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We are carrying out the present project with the goal to further expand and exploit these ideas to a 

new level on the international wind energy stage. A close collaboration with IEA Wind Task 31 aims to 

ensure maximum efficiency of the process and visibility of the results. 

1.2 Purpose of the project 

In wind energy, the accuracy of the estimation of the wind resource has an enormous effect on the 

expected rate of return of a project. Due to the complex nature of the weather and of the wind flow 

over the earth's surface, it can be very challenging to measure and model the wind resource correctly. 

For a given project, the modeller is faced with a difficult choice of a wide range of simulation tools with 

varying accuracies and costs. Additionally, different tools have different functionalities - some calculate 

the entire wind climate (all wind directions) and the energy production, whereas some have to be 

manually set up to extract this information. Some include mesoscale nesting or forcing, whereas 

others focus only on microscale features. If the choice of model is made incorrectly, either many 

resources are wasted in needlessly high accuracy simulations, or the rate of return is inaccurate and 

investors risk losing large amounts of money. As there are currently no guidelines or tools available to 

the modeller to help with this choice, it is usually left to gut feeling - and this can be catastrophic for 

investors or acquirers of wind farms. 

1.3 Objectives 

In this project, a public "simulation challenge" for wind energy sites in complex terrain was planned in 

collaboration with IEA Wind Task 31, in which participants submit their simulation data and results in a 

pre-defined template. The goal was to collect hundreds of comparison metrics data regarding the 

"skill" and "costs" of simulation tools both before and after carrying out the simulations, enabling 

transfer functions for the accurate prediction of tool "skill" and "costs" to be developed. This aims to 

help modellers choose the best model for the job for a given wind energy project. 

The targets and expected results are shown in Table 1Fehler! Verweisquelle konnte nicht 

gefunden werden.. 

Table 1. Project targets and expected results. 

Target Expected results 

• Prepare the results template in tabular 

form. 

• Template completed. 

• Publish the simulation challenge Stage 1 

(well-defined open data complex terrain 

site). 

• Challenge published. 

• Collect and evaluate the results of the 

simulation challenge Stage 1. 

• Hundreds of data points received. 

• Results evaluated (see Section 2.2 for 

expected results). 

• Publish the simulation challenge where 

participants can use their site of choice 

(Stage 2). 

• Challenge published. 

• Collect and evaluate the results of the 

simulation challenge Stage 2. 

• Hundreds of data points received. 

• Results evaluated (see Section 2.2 for 

expected results). 

• Integrate the work into IEA Wind Task 31. • Improvement of process efficiency by 

sharing experiences. 

• Generation of more interest and visibility of 

project and thus more data. 
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2 Procedures and methodology 

The following two challenge stages were planned for this project: 

 

Stage 1: Open data complex terrain 

In this stage, the participants submit their results in a pre-prepared table allowing us to calculate 

weighted parameters related to the skill scores and costs both before and after carrying out the 

simulations. The simulation case is clearly defined to allow all the results to be compared with each 

other. All the results are plotted on one graph and may look something like Figure 2(a) below, where 

each point represents one tool. The clusters are expected due to different category of tool (e.g. linear 

model, RANS-CFD, LES-CFD). As can be seen, there will be a discrepancy between the metrics 

predicted beforehand and those determined using the results of the simulations. Transfer functions to 

better predict the skill scores and costs are developed based on these results 

 

Stage 2: Test cases of choice 

In this stage, the participants submit their results in a pre-prepared table allowing us to calculate 

weighted parameters related to the skill scores and costs both before and after carrying out the 

simulations. However, in this case, no particular test case is pre-defined, allowing us to collect a much 

wider range of different sites and external conditions. The results are expected to be clustered 

according to different categories of input conditions and may look something like Figure 2(b). In this 

figure, only the best-fit lines through the data are shown, and an example for only two different 

categories is shown for simplicity. Transfer functions to better predict the skill scores and costs are 

developed based on these results. 

Stage 1 is discussed in Chapter 3, and Stage 2 in Chapter 4. 

 

 

  

Figure 2. (a) Simplified possible result of Stage 1; (b) Simplified possible result of Stage 2. 
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3 Challenge Stage 1 

In this chapter, the design of Stage 1 is first discussed, followed by the results and then a summary of 

the learnings used for the design of Stage 2. 

3.1 Design 

 Comparison metrics process 

Based on the results of the initial Bolund Hill study and the previous project [1], the Comparison 

Metrics were studied further. Additionally, some useful inputs were provided by the wind energy 

community at the IEA Wind Task 31 annual meeting at Amherst, USA in October 2019. The results of 

these activities were (and are described in [5] and [6] in more detail): 

• Definition of a new Comparison Metrics method for estimating the skill and costs scores 

before and after carrying out the simulations, shown in Figure 3 below.  

• A final definition of the parameters used to estimate the skill and cost scores for both wind 

speed and Annual Energy Production (AEP). 

o For the skill scores, a lot of thought has gone into the parameter definition in order to 

be able to include all the steps in the WRA process in the scores. This includes 

parameters related to the wind model, the input data quality, the calibration and 

validation methods, the AEP calculation method, the skill of the user and the robustness 

of the model. 

o For the cost scores, the so-called "Actual Total Costs" are estimated by splitting the 

costs up into the categories described in the table and adding up the totals. The 

software costs are estimated by dividing the total license and support costs by the 

number years of usage, and dividing this by the number of projects carried out per year. 

The time to learn and training costs are estimated by adding the staff costs for the time 

taken to learn how to use the tool to any training costs, and dividing this by the number 

of projects carried out per year and the estimated number of years of usage. The 

simulation set-up effort costs are estimated by recording the number of hours required 

to set up the simulations and multiplying this by the hourly staff rate (for all calculated 

wind directions). The simulation run time costs are estimated by recording the run-time 

of the simulations and the number of cores that they were run on, and multiplying this 

with the computational cost per core per hour (for all calculated wind directions). The 

post-processing effort costs are estimated by recording the number of hours required 

to post-process the results and multiplying this by the hourly staff rate (for all calculated 

wind directions). In order to compare the results with each other fairly, the following 

parameters should be norrnalised: Number of years of usage of the software; Number 

of projects per year; Staff hourly rate; Computational cost per core per hour = 

$0.04/hour/core; Number of cores; Processor clock speed = 2 GHz. 
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Figure 3. Comparison Metrics method 

 Results templates 

In the first three months of the project, the Excel template that had been used for collecting 

comparison metrics in the previous project [1] was published and made available to the wind energy 

community. Furthermore, the results of this project were presented at the IEA Wind Task 31 yearly 

meeting in Amherst, MA (USA) in October 2019. Following some exchanges with the task members 

and with Javier Sans Rodriguez, IEA Wind Task 31 work package leader, it was decided to convert the 

Excel table to the following different Google Forms surveys in order to make it more accessible to the 

users: 

• Registration form: participants register, set their confidentiality requirements and receive 

naming conventions for the rest of the forms; 

• Model description form: participants submit descriptions of their simulation set-ups; 

• Parameters 'before' form: participants submit estimations for relevant parameters between 

pre-defined limits related to skill and cost scores before carrying out the simulations, and the 

scores are calculated via a Python code. Additionally, participants can enter their own 

parameter weightings, which are compared to the pre-defined values and possibly adjusted, if 

required;  

• Parameters 'after' form: participants submit estimations for relevant parameters between 

pre-defined limits related to cost scores after carrying out the simulations, and the scores are 

calculated via a Python code; 
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• Results upload link: participants submit their simulation results in a pre-defined format, and 

the skill scores are calculated via a Python code. 

The exact details and links to these forms can be found in an article by Sarah Barber in The Wind 

Vane Blog [4]. 

As well as making it more accessible, the following changes were made to the content of the 

comparison metrics template: 

• In the previous version of the template, some parameters for estimating the skill scores were 

related to the complexity of the terrain. However, these parameters should not be part of the 

skill score calculation because they do not vary between models, and the goal is to compare 

different models. Instead, a new section for classifying the terrain complexity was created in 

the model description form. For this, new parameters were defined based on previous work on 

terrain classification related to lidar measurements [5]. This splits complex flow into the 

following categories: (a) Complex terrain (e.g. definition in IEC 61400-12-1 [6]); (b) Surface 

roughness (e.g. forested land, changes in ground cover); (c) Presence of obstacles (e.g. 

buildings, towers and wind turbines); (d) Local meteorology (e.g. low-level jets, divergent flows 

and fronts). The parameters used for this work should not be too difficult or time-consuming to 

calculate, and the site classification given in IEC 61400-12-1 and 61400-12-2, for example, 

are too complex for this application. Therefore, the following parameters were used here in 

order to simplify the process. The goal of this section in Stage 1 was to test, improve and 

validate the classification method for use in Stage 2, in which the site classification is key: 

o General terrain complexity - how steep are the slopes on average? 

o General terrain complexity - how many slopes are there? 

o Validation mast position - in how many 30° sectors is there a positive slope steeper 

than 30° less than 250 m away from the validation position in any direction? 

o Surface roughness complexity - approximately how many different surface roughness 

regions are you using? 

o Surface roughness - how rough is the surface in general? 

o Atmospheric stability - what is the average value of the vertical temperature gradient? 

(if relevant) 

o Atmospheric stability - are low-level jets present? 

o Degree of turbulence - what is the approximate Reynolds number, calculated based 

on the input flow velocity and the distance from the inlet to the calibration met mast? 

• For the definition of the skill scores, some parameters related to the intended operational 

envelope of the model was added. Specifically, this reduces the skill score if WAsP or another 

linear model is applied in a terrain complexity for which the model is not intended, based on 

studies that quantify the expected increase in uncertainty [7]. Additionally, a parameter related 

to the wind speed calibration method was added. For example, a lower skill score is obtained 

if the results are scaled linearly for the average wind speed at one calibration mast position 

and height than if the process is carried out for different wind sectors and measurement 

heights. Finally, further parameters that are used to calculate a separate skill score for the 

AEP calculations were added. These include the wind speed extrapolation method, the 

method of taking account of different wind speeds, and the long-term AEP extrapolation 

method. All the parameters that are used for calculating the skill score can be accessed at [8]. 

• For the definition of the cost scores, the number of simulations in total carried out for obtaining 

the AEP were added. All the parameters that are used for calculating the cost score can be 

accessed at The Wind Vane Blog [4]. 
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 Publishing 

In order to publically release the challenge Stage 1, the following steps were first carried out: 

1. Final definition of challenge goal. 

2. Identification of a suitable site. 

3. Definition and preparation of the input and validation data sets. 

4. Development of a process allowing participants to enter their results both for predicted and 

actual cost and skill scores 

5. Definition of the data to be submitted by the participants. 

6. Choice of the data format and storage platform. 

Following the final design of the challenge, it was published on the website "The Wind Vane Blog" [4], 

which is run and managed by Javier Sans Rodrigo, leader of IEA Wind Task 31. This link was then 

shared on LinkedIn and sent to as many contacts as possible. Additionally, a launch webinar was 

carried out on April 7th, 2020, which attracted more than 20 attendees. 

As well as this, a poster was presented at the WindEurope Wind Resource Assessment Workshop in 

June 2020 (online) and a poster and paper were presented at the Torque2020 conference in 

September 2020 (online) in order to attract attention. 

The above-mentioned steps are discussed further below: 

1. Final definition of challenge goal. 

The goal of Stage 1 of this challenge was to collect comparison metrics data regarding the skill and 

cost scores of a range of different simulation tools for a complex terrain site, both before and after 

carrying out new simulations. The results are expected to look something like Figure 2(b) on page 12, 

where each point represents one tool. The clusters are expected due to different categories of tool. A 

discrepancy between the metrics predicted beforehand and those determined using the results of the 

simulations is expected. Transfer functions to better predict the skill and cost scores will be developed 

based on these results. 

2. Identification of a suitable site 

The Perdigão site in Portugal [9] was chosen for Stage 1 of the challenge, due to the volume and 

quality of available measurement data, the complexity of the terrain and the relative lack of simulations 

already carried out. A large measurement campaign was undertaken between December 2016 and 

June 2017 as part of a large EU-US collaborative field experiment [10]. This is the ideal situation for a 

new challenge, because interest in taking part is therefore expected to be high. Measurement data 

from many met masts as well as perhaps from an operating wind turbine is available [9]. The site 

consists of flow over two parallel ridges with SE-NW orientation, which are 4 km long and 500-550 m 

tall and separated by about 1.5 km. The two main wind directions are approximately perpendicular to 

the ridges. A 3D representation of the site as well as an overview of all the measurement sensors is 

shown in Figure 4. 
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Figure 4. Overview of the Perdigão site: 3D view (left) and plan view (right). 

 

3. Definition and preparation of the input and validation data sets 

The input and validation measurement data for the simulation challenge was chosen by firstly 

downloading all the available ten-minute averaged wind data and assessing its quality and availability. 

It was decided to focus on the data from the nine 60 m and 100 m high masts; numbers 7, 10, 37, 22, 

27 and 34 at 60 m and numbers 20, 25, 29 at 100 m. The three 100 m masts are positioned on a 

straight line along the main wind direction as can be seen in Figure 5(a), which also shows the position 

of the wind turbine (WTG). The mean measured wind profiles for these three masts over the entire 

measurement period are shown in Figure 5(b) together with logarithmic ts using the measured wind 

speeds at 20 m and 100 m for fitting purposes. It is clear to see that the wind speed is much lower at 

mast 25, which is expected due to its location between the two ridges. The measured wind roses for 

masts 25 and 29 at 100 m and 40 m are shown in Figure 6. The main flow directions for mast 29 are 

SW and NE, agreeing with previous analysis [9]. This previous analysis showed that the main wind 

direction is the SW direction, and a mesoscale circulation leads to flow from this direction actually 

entering the simulated region from the NE direction at certain times of day. Additionally, the presence 

of the valley forces wind to travel up it in a SSE direction, reflected in the wind roses for mast 25, 

which is positioned in the valley. 

 

Figure 5. (a) Met mast considered in this work (plan view from Google Maps); (b) Measured wind profiles over entire measurement 

period, Mast 29, Mast 25 and Mast 20. 
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Figure 6. Measured wind roses for Mast 29 (left) and Mast 25 (right), both at 100 m (top) and 40 m (bottom) heights. 

In wind resource assessments, CFD simulations are typically calibrated by linearly scaling the 

simulation results in order to achieve the wind speed that equals the wind speed at a 'calibration mast'. 

The accuracy can then be assessed by comparing the scaled simulation results to measurements at a 

different location ('validation mast'), which is ideally far away from the calibration mast. In order to 

reduce calibration inaccuracies, it is important to choose a met mast location for the input data that 

represents the wind behaviour at the boundaries of the simulated domain as well as possible. 

Therefore one of the met masts on the ridge should be used. Mast 29 was chosen for the input data 

('calibration mast') due to its distance away from the wind turbine (marked on Figure 5), in order to 

allow validation using the wind turbine data as well as the validation masts. 

As different wind turbines could be positioned in various locations in a wind resource assessment, it 

was decided to take all eight remaining masts (7, 10, 20, 22, 25, 27, 34 and 37) as the 'validation 

masts', in order to assess the capabilities of different tools for calculating flow in separated regions 

(mast 25, 27, 7 and 22) as well as on top of hills (masts 10, 37, 20 and 34). A data period of 

02.02.2017- 15.06.2017 was chosen in order to ensure overlapping time periods between all the 

masts. As well as the measurement data, the following other input data will be provided to the 

modellers: 

• Topography and roughness maps; 

• Description and set-up of measurement equipment; 

• Wind turbine height, coordinates and power curve; 

• A Python script for writing data to NetCDF format correctly. 
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• The exact details and links to the data can be found at The Wind Vane Blog link on page 9. As 

this is a blind test, the validation data will only be provided after the challenge window has 

been closed. 

4. Development of a process allowing participants to enter their results both for predicted and 

actual cost and skill scores. 

This was adapted as discussed in Section 3.1 above. 

5. Definition of the data to be submitted by the participants. 

For each simulation run, participants will be asked to provide 3D wind vector components of vertical 

wind speed profiles at each validation met mast and the wind turbine location for each 30° wind 

direction sector, the calculated AEP in each sector, horizontal planes of 3D wind speed vectors at 100 

m and 40 m above ground, as well as vertical planes through each validation met mast in the SW 

direction. The upload link for submitting the results was only sent after submitting the model 

description, parameter `before' and parameter `after' forms. 

6. Choice of the data format and storage platform. 

It was decided to provide and submit data in NetCDF format, the details of which are given in The 

Wind Vane Blog article [4]. 

 Results evaluation 

In order to evaluate the submitted results, a Python package was developed with the elements shown 

in Table 2. The current version of the package can be found on Gitlab2 (access can be granted on 

request). The current status of the code is shown in the right-hand column of the table. The main part 

as well as the detailed analysis part of the code have been finished. 

  

 
2 https://gitlab.com/windenergie-hsr/pragmaticchallenge/comparisontool  

https://gitlab.com/windenergie-hsr/pragmaticchallenge/comparisontool
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Table 2. Python code elements and status. 

Step Task 

1. Preparation Read in assigned/submitted simIDs* 

Create offsets for coordinate system (see Model Description) 

Read in met mast data of all validation met masts 

Filter all metmast data and create .nc files 

2. Read submission data nameID_modelID_simXX_z 

nameID_modelID_simXX_xy 

nameID_modelID_simXX_xyz 

3. Basic handling Correct for coordinate system used 

Check plausibility of data (check met mast positions, correlate the 

data, compare to a baseilne, correct for outliers) 

Calculate absolute velocities from wind speed components (all 

files, all sectors) 

Calculate angle (horizontal) and angle (vertical) of flow from wind 

speed components (all files, all sectors) 

4. Analysis of 

nameID_modelID_simXX_z 

For each met mast and the WTG, plot one graph of absolute wind 

speed vs. z for each sector and for the average compared to met 

mast data 

Repeat for wind direction (horizontal angle) 

Repeat for wind direction (vertical angle) 

Calculate a baseline AEP value in order to make comparisons 

later (no measurements available) 

Calculate the theoretical AEP at the WTG position using the 

frequency distribution of met mast 29 in each sector, the average 

wind speed simulated at that position in each sector and the 

power curve provided (1. Using wind speed at hub height 

(interpolate if necessary). 2. Using Rotor-Equivalent Wind Speed) 

Calculate the capacity factor (AEP / (365*24*rated power)) 

For each met mast and the WTG, interpolate the absolute wind 

speed and directions and calculate values at exact met mast 

heights (for the RMSE calculation in the next step) 

Based on these interpolated values, calculate the RMSE of the 

absolute wind speed and the two directions (horizontal and 

vertical) compared to met mast, separately for each sector: 1. 

Using all heights. 2. Only using heights covering rotor area. 3. 

Only using hub-height (= absolute difference) 

For each of the three methods, average the RMSE values over all 

sectors: 1. Unweighted average. 2. Average weighted using 

frequency distribution of met mast 29 

For each met mast and the WTG position, plot a bar chart of % 

difference in wind speed between simulation and measurement 

vs. height (see example on right) 

Average the RMSE over all heights and make a polar diagram of 

these values vs. sector (see example on right) 

Calculate absolute and % difference between calculated and 

baseline AEP for each sector and for total 

Make a polar diagram of these values vs. sector (same as RMSE 

polar diagram) 

5. Analysis of 

nameID_modelID_simXX_xy 

For each xy plane, plot contours of absolute wind speed and 

directions. Note: No data available for this task. 
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6. Analysis of 

nameID_modelID_simXX_xyz 

For each met mast xyz plane, plot contours of absolute wind 

speed and directions. Note: No data available for this task. 

7. Comparison between simIDs 

of same organisation 

For each met mast and the WTG position, for each sector plot a 

bar chart of RMSE wind speed vs. simulation number (RMSE 

calculation 1. Using all heights. 2. Only using heights covering 

rotor area. 3. Only using hub-height (= absolute difference))  

Repeat for average RMSE over all sectors: 1. Unweighted 

average. 2. Average weighted using frequency distribution of met 

mast 29 (for wind speed and both angles) 

Repeat for AEP (% difference to baseline) 

8. Comparison between all 

organisations 

Same as 7 but for all results 

9. Detailed comparisons Timestamp binning 

Speed up factors and flow turning between metmasts. 

10. Documentation Write API 

Comment the code 

Create documentation 
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3.2 Results and discussion 

In the following sections, the results for Stage 1 are presented. First, in Section 3.2.1 we look at the 

submitted data of participants outside of OST. Additionally to the submitted data, we simulated the site 

with two different tools, WAsP and Ansys Fluent. An overview of the whole dataset is given in Section 

3.2.2. The site complexity score is presented in Section 3.2.3. Having gathered data from various tools 

and participants, the before and after score metrics described above can be calculated. The rationale 

behind this process is described in Sections 3.2.4 and 3.2.5. Lastly, the skill versus cost score plots for 

the wind resource assessment are presented in Section 3.2.6. 

 Data Submission 

Following the launch of Stage 1, we received a total of 20 registrations from the companies using the 

tools shown in Table 3: 

Table 3. Submissions to Challenge Stage 1. 

Organisation Country Tool Status 

Von Karman Institute of Fluid 

Dynamics 

Belgium 

OpenFOAM 

Submitted 

Freelancer France ZephyCFD Not submitted 

US Forest Service USA WindNinja-COM and 

WindNinja-CFD 

Not submitted 

JH Wind GmbH Germany WASP, ZephyCFD Not submitted 

IFPEN France waLBerla Not submitted 

GEO-NET Umweltconsulting GmbH Germany FITNAH-3D Not submitted 

UL Renewables Spain WRF Not submitted 

ZHAW School of Engineering Switzerland PALM Not submitted 

The University of Texas at Dallas USA UTD-WF Submitted 

Wind Engineer Singapore ?? Not submitted 

Srh hochschule Berlin Germany Fluent Not submitted 

ALTEN Spain WAsP Submitted 

EDFR France Meteodyn Not submitted 

EMD International A/S 

 

Denmark WAsP-IBZ, WAsP-CFD, 

OFWind-CFD 

Not submitted 

Meridian Energy Limited New 

Zealand Meteodyn WT 

Not submitted 

GE Germany OpenWind Not submitted 

EDF Renouvelables France Meteodyn WT Not submitted 

ENERCON GmbH Germany E-Wind Submitted 

Eindhoven University of Technology Netherlands ?? Not submitted 

ZephyScience France E-Wind Not submitted 

 

In the final column of this table, the submission status can be seen. Unfortunately, we did not receive 

as many submissions as expected. The other benchmarks developed within IEA Wind Task 31 also 

suffered similar problems in the same time period. The correspondence with the participants indicated 

the following reasons for the lack of submissions: 

• Many people find the challenge very interesting; however, the industrial focus means that the 

companies signed up usually have a higher task on the priority list. Research is less important 

than their daily business. The COVID-19 situation did not help with this. 

• Some people had difficulties reading in the input data: we decided upon the NetCDF format 

following recommendations from IEA Wind Task 31; however, this type of file is not easy to 



 

23/70 

understand and deal with for non-programmers. To overcome this, we provided a guideline 

and sample code for users. 

• We did not provide the input data in sufficient length or quality: some participants complained 

that the data wasn't pre-filtered or long enough to calculate the Annual Energy Production. 

• The orientation of the wind speed vectors in the input data provided by us was confusing. We 

provided a sketch that should have allowed a correction; however, it was difficult to 

understand 

• The required format of the submission data was confusing (NetCDF). We eventually decided 

to provide Excel templates to overcome this; however, this is not an ideal solution. 

• Some of the more detailed required submission data scared off some participants. We had 

originally required the participants to submit several different wind speed planes in order to 

attract academic partners; however, this was too challenging and time-consuming for the 

industry participants. We overcame this by making some of the submissions optional, in order 

to try and please both types of participant. 

Two participants (EMD and EDFR) even dropped out following a number of phone calls and 

discussions with them. 

This process has allowed us to learn a lot about public simulation challenges, which we was used for 

designing Stage 2. 

In total four external participants (Von Karman Institute of Fluid Dynamics, The University of Texas at 

Dallas, ALTEN, Enercon GmbH) submitted sufficient data for determining the skill and cost scores. 

However, each submission represents a different category of tool (e.g. linear model, RANS-CFD, LES-

CFD), helping to highlight the mentioned clusters in the skill vs cost score figure. As well as this, we 

submitted our own results using two different tools in order to ensure enough data points for the 

evaluation. 

 

 Data overview 

An overview and details of the data used to determine the skill and cost metrics are shown in Table 4. 

A more extensive overview can be found in the Appendix in Table 11. In total five different simulation 

tools from six different organisations were used with various configurations and conditions resulting in 

a total of ten different simulations. In the following sections the various simulations are denoted by the 

name given in the respective table column. Names starting with orgXX are used for organisations that 

prefer to stay anonymous in future publications. 
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Table 4. Overview and details of the submitted data 

Name Organisation Model Description 

UTD_UTD-WF_LES University of 

Texas at 

Dallas 

UTD-WF In-house high‐resolution 

large‐eddy simulation code 

UTD_UTD-WF_LES-canopy University of 

Texas at 

Dallas 

UTD-WF With canopy model 

org01_OpenFOAM_k-epsilon-structured Von Karman 

Institute 

OpenFOAM k-epsilon turbulence model 

Structured mesh 

org01_OpenFOAM_k-epsilon-

unstructured 

Von Karman 

Institute 

OpenFOAM k-epsilon turbulence model 

Unstructured mesh 

org04_wasp_sim01 Alten WAsP 
 

ENERCON_E-Wind_k-epsilon Enercon E-Wind k-epsilon turbulence model 

ENERCON_E-Wind_k-L Enercon E-Wind k-L turbulence model 

ENERCON_E-Wind_k-omega Enercon E-Wind k-omega turbulence model 

ost_fluent_k-omega-SST OST Fluent 

RANS 

k-omega-SST turbulence 

model 

In-house automated 

workflow 

ost_wasp_sim01 OST WAsP 
 

 

 Site complexity score 

First of all, the site complexity score for the Perdigao site had to be determined. This makes the results 

comparable to the other simulation sites mentioned in [1] as well as the sites submitted for Stage 2. To 

do so each participant filled out a questionnaire with questions regarding the terrain, the surface 

roughness and the complexity of local flows. The answers are summarised in Figure 7. The first thing 

to notice is the large variation of scores for some of the questions. This might either indicate that the 

question is too generic or too hard to quantify objectively leading to these discrepancies. 
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Figure 7. Scores given to each question by participants. 

The complexity score is then calculated by a sum of each of the given scores and comprises two 

parts, namely the mean complexity value and the complexity maximum deviation. The higher the 

mean score, the more complex the site. A high maximum deviation, however, indicates two important 

points. Either the questions themselves are not precise enough, which leads to the observed 

discrepancy, or the site is so complex that it is hard to pin down an accurate score for some of the 

questions. Hence, the questions with large maximum deviations have to be reconsidered for Stage 2 

in order to be able to make this distinction. 

Given the method above, the resulting complexity score for the Perdigao site considering all questions 

is 51% ± 20%. The value is marked with a red line and the range with a light red box on Figure 7. 

 Before score metrics 

Similar to the complexity score, the before skill and cost scores were determined based on the 

questionnaires filled out by each participant and their respective simulations. The questions used to 

determine the before skill scores are shown in Figure 8. The scores for each of these questions was 

additionally weighted based on its importance. In further iterations the determination of the weights 

could, however, be done by formulation of an optimisation problem, where the before skill scores are 

tried to be matched with the after skill scores. More on this in the Stage 2 section. 
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Figure 8. Questions for determining the before skill score metrics 

The results of the questionnaire are presented in Figure 9. In order to get the final before skill scores, 

the weighted sum for each individual simulation is calculated. The concrete values are given in the 

comparison plots in Section 0. 

 

Figure 9. Results for the before skill score questionnaire 

 After score metrics  

For each simulation, 3D wind speed components along a vertical line for the nine met masts as well as 

AEP values per 30° sector at two met mast positions were submitted. These values are used to 

calculate the after skill scores. Before moving on to these scores, the specific results are discussed in 

more detail in the following. This will help to better understand how the scores based on wind speed 

and annual energy production were determined. 
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For the sake of brevity, only met masts 29 (calibration), 25 and 20 are considered. To give an 

overview of the wind conditions, the wind roses for each met mast are shown in Figure 10. 

Considering met mast 29 and met mast 20 is very interesting in that they are in line with the main wind 

direction, but on different ridges (see Figure 5). Met mast 25 is located in the valley and is separated 

by the ridge from met mast 29. 

 

  

 

 

 

Figure 10. Wind roses for met mast 29 (top left), met mast 25 (top right) and met mast 20 (bottom left) 

Wind speed scores 

Figure 11, Figure 12 and Figure 13 show the root mean squared error (RMSE) values between the 

simulated and the measured wind profiles for different evaluation heights for met mast 29, met mast 

25 and met mast 20, respectively. The RMSE is defined by 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑤𝑠𝑠𝑖𝑚,𝑖 − 𝑤𝑠𝑚𝑒𝑎𝑠,𝑖)

2
𝑁

𝑖

 

with the simulated and measured wind speeds, 𝑤𝑠𝑠𝑖𝑚,𝑖 and 𝑤𝑠𝑚𝑒𝑎𝑠,𝑖, respectively, at vertical position 𝑖. 

In case of a single evaluation point, e.g. at hub height, this expression simply reduces to the absolute 

difference. 
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The dashed lines represent the mean RMSE values for all simulations at the specific height profile. For 

each of the twelve sectors the RMSE values were calculated for each simulation. The bars represent 

the mean value the twelve sectors whereas the vertical bars represent the standard deviation. 

The first thing to notice is that the lowest errors occur at met mast 29, which is not surprising as it 

serves as the calibration location. Furthermore, an increase in errors when considering heights closer 

to the ground can be observed due to the simulated and the measured wind profiles having larger 

deviations in that region. Here, for example, a special roughness model seems beneficial when looking 

at met mast 29 and met mast 20 by comparing UTD_UTD-WF_LES versus UTD_UTD-WF_LES-

canopy, where a canopy model was used in the latter case. 

At met mast 25 the overall RMSE values are larger than for met mast 29. This is due to the extreme 

flow turning as visible from the wind roses and hence the increased difficulty to simulate the wind 

profiles accurately. Moreover, the different evaluation heights have less impact on the error values. 

The simulations done with E-Wind and OpenFOAM show the lowest errors. The LES simulations show 

comparatively and unexpectedly large RMSE values and further investigations on the side of the 

participant is expected. Interestingly, the two WAsP simulations show fairly different simulation 

performances, which might potentially be due to different experience levels of the modellers. 

For the farthest location, met mast 20, E-Wind and OpenFOAM show larger errors compared to met 

mast 25. The most surprising candidate, however, is org04 with the WAsP simulations, showing great 

performance for being the most simple model and also being commonly considerate unsuitable for 

terrains such as the one seen at the Perdigao site. 

These somewhat counterintuitive results at the three met mast positions indicate already the difficulty 

to draw definite conclusions based on such a small data set. 

These results were used for the skill score vs. cost score plots presented in Section 3.2.6. 

 

Figure 11. RMSE values between simulated and measured wind profiles for different heights for met mast 29. The dashed lines 

represent the mean RMSE values for all simulations at the specific height profile. 

Speed-up and turning 

Continuing with the wind speed results, Figure 14, Figure 15 and Figure 16 show the speed-up factors 

and flow turning values for each sector of met masts 29, 25 and 20, respectively. These values were 



 

29/70 

calculated with respect to the measurement results of met mast 29, the calibration mast, at height 80 

meters. The speed-up factor is defined as follows 

𝑠𝑝𝑒𝑒𝑑‐𝑢𝑝𝑚𝑒𝑡𝑚𝑎𝑠𝑡,𝑠𝑒𝑐𝑡𝑜𝑟 =  
𝑊𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑𝑚𝑒𝑡𝑚𝑎𝑠𝑡,𝑠𝑒𝑐𝑡𝑜𝑟

𝑊𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑29,𝑠𝑒𝑐𝑡𝑜𝑟

 

and the turning is defined by 

𝑇𝑢𝑟𝑛𝑖𝑛𝑔𝑚𝑒𝑡𝑚𝑎𝑠𝑡 ,𝑠𝑒𝑐𝑡𝑜𝑟 =  𝑊𝑖𝑛𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛29,𝑠𝑒𝑐𝑡𝑜𝑟 −  𝑊𝑖𝑛𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑚𝑒𝑡𝑚𝑎𝑠𝑡 ,𝑠𝑒𝑐𝑡𝑜𝑟 . 

 

Figure 12. RMSE values between simulated and measured wind profiles for different heights for met mast 25. The dashed lines 

represent the mean RMSE values for all simulations at the specific height profile. 
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Figure 13. RMSE values between simulated and measured wind profiles for different heights for met mast 20. The dashed lines 

represent the mean RMSE values for all simulations at the specific height profile. 

No speed-up is thus defined by a value of 1.0 and no turning is defined by a value of 0 degrees, as 

both seen in Figure 14 for the measurement data. A deviation from these values for met mast 29 

therefore shows the quality of the calibration of the simulation data. As can be seen, in terms of speed-

up most of the models are well calibrated, however, both WAsP simulations show some outliers. 

Considering the wind rose for met mast 29, the various simulation tools, especially in case of WAsP, 

least accurately predicted wind directions with the lowest frequency of occurrence. 
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Figure 14. Speed-up factors (top) and flow turning values (bottom) for the twelve sectors of met mast 29. 

In terms of flow turning, E-Wind shows accurate results, whereas the LES simulations have very large 

outliers, the reason of which remains to be investigated. One possible explanation for this might be 

that only eight instead of at least twelve wind directions could be simulated because of time and cost 

constraints and thus the splitting into twelve sectors caused those differences. The Fluent and the 

OpenFOAM (unstructured) simulations also show flow turning up to ten degrees for some sectors. 
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Figure 15. Speed-up factors (top) and flow turning values (bottom) for the twelve sectors of met mast 25. 

For met mast 25 the ideal speed-up would be the same as the one observed for the measurement, as 

seen in Figure 15. Here the WAsP simulations over-predict the wind speed, in some cases 

significantly, for all sectors. In general, large deviations between the measured data and the simulation 

results can be observed, even though the overall trend for each sectors seems to match. 

As to the flow turning, again the ideal values would match the ones of the measurements. Significant 

differences for all simulations are apparent. Met mast 25 seems to be in an extremely difficult location 

and none of the models is able to reliably give accurate results. 
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For met mast 20 (Figure 16), the farthest location, the prediction accuracy of all simulation tools seems 

to be much better as compared to met mast 25. The speed-up factors match more closely the ones of 

the measurements and the general trend fits as well. Here, E-Wind is the most accurate and 

consistent. Moreover, the measurement data shows little flow turning, in the range between -10° and 

+15° and all simulations lie within that range. 

 

 

Figure 16. Speed-up factors (top) and flow turning values (bottom) for the twelve sectors of met mast 20. 
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AEP scores 

Next, we look at the values for the Annual Energy Production (AEP). Each participant submitted these 

values for each of the twelve sectors for met masts 29 and 25 in the template mentioned above. The 

summation of all sectors yields the overall AEP. Figure 17 shows the normalised AEP values per 

sector for met mast 29. The normalisation was done based on the overall production value and clearly 

highlights the relative deviation from the AEP based on the measurement data. The measurement 

based AEP values, denoted by "Measurement" and "Measurement_wasp", were calculated by 

multiplying the wind speed time series data with the power curve of the wind turbine. The wind turbine 

is located close to met mast 20 and its power curve was used for the AEP calculation at all met mast 

locations for comparison purposes. For "Measurement_wasp" a different sector division was used in 

order to match the one of the WAsP models, which defined the northern sector from -15° to +15° 

instead of 0° to 30°. The AEP prediction accuracy mainly depends on two measures, the wind speed 

and the wind speed frequency per sector. As can be observed, all models somewhat under-predict the 

energy production for most of the sectors. All E-Wind models are very consistent and the LES 

simulations are most accurate for the main wind direction, 30° to 60°. 

 

 

Figure 17. Normalised AEP values per sector for met mast 29 

For met mast 25, see Figure 18, the South-Eastern direction is largely under-predicted by all models 

but WAsP, which shows large over-estimations for all sectors. This is consistent with the over-

estimations of the speed-up factors, see Figure 15. The North-Western direction with higher wind 

speeds is only captured by E-Wind with the k-L turbulence model. 

Figure 19 shows the normalised overall AEP values for met masts 29 and 25. Notable are the 

performance of the Fluent model for met mast 29, accurately predicting the AEP, and the prediction 

performances of the three E-Wind simulations. The WAsP simulation also shows good agreement with 

the results based on the measurements. The poor performances of the OpenFOAM and LES 

simulations remains to be discussed with the participants. For met mast 25 the E-Wind simulations 

with the k-L and the k-omega turbulence models show good agreement with the measurements. As 

already observed in the AEP values per sector, the large over-estimation of the WAsP simulation very 

pronounced for the overall values. 
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Figure 18. Normalised AEP values per sector for met mast 25 

 

Figure 19. Normalised overall annual energy production values for met mast 29 and met mast 25 

The overall RMSE values between the measured and simulated wind profiles as well as the overall 

AEP values are used to determine the after skill scores, which are discussed in more detail in the next 

section. 
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 Skill versus costs 

In the previous section the overall RMSE values between the measured and simulated wind profiles 

and the overall AEP values were considered in more detail. In this section these values are reduced to 

a single number, namely the after skill score. A distinction is made between the after skill score based 

on the wind profiles and the after skill score based on the AEP values, both of which are considered in 

this section. 

For Stage 1 the after skill score based on the wind profiles was defined by 

𝑠𝑐𝑜𝑟𝑒(𝑤𝑠) = {

(3 − 𝑅𝑀𝑆𝐸𝑤𝑠)

3
, 𝑤𝑠 ≤ 3

0, 𝑤𝑠 > 3
 

( 1 ) 

and the after skill score based on the AEP was defined by 

𝑠𝑐𝑜𝑟𝑒(𝑎𝑒𝑝𝑠𝑖𝑚, 𝑎𝑒𝑝𝑚𝑒𝑎𝑠) = 1 − |
𝑎𝑒𝑝𝑚𝑒𝑎𝑠 − 𝑎𝑒𝑝𝑠𝑖𝑚

𝑎𝑒𝑝𝑚𝑒𝑎𝑠

| 

( 2 ) 

The deviation error value of 3 was used, because it corresponds to the maximum observed wind 

speed error between the simulations and the measurements. However, the exact value chosen here is 

not important because we are only making comparisons. 

 

Figure 20 shows the relative skill versus relative cost scores based on wind speed for different 

evaluation heights at met mast 29. Here relative means that all after skill scores were normalised by 

the highest achieved score at the calibration met mast (met mast 29). The light and darker red regions 

indicate possible ranges of insufficient or unacceptable scores, respectively, that could be defined by 

the user. Here, for example, relative skill scores below 40% would not be worth considering no matter 

how low the cost. In turn relative cost scores above 60% would be deemed too costly independent on 

the simulation accuracy. The dots denote the before skill score metrics, as discussed in Section 3.2.4, 

whereas the cross-marks denote the after skill scores. The before metrics predict that the E-Wind tool 

should be the most effective for this location, with most effective being defined as the region with 

relatively high skills and low costs. The after metrics, however, show that E-Wind k-epsilon, 

OpenFOAM k-epsilon and WAsP are most effective here. The highest scores are achieved at 

evaluation height 80m, whereas for the profile evaluation from 10 to 100 meters the before 

approximate the after skill scores better. Based on a qualitative analysis, the wind speed prediction 

quality at met mast 29 reaches 9 out of 10 points.  

At met mast 25, see Figure 21, the evaluation height plays less of a role and the before and after 

scores are closer to each other in general, potentially indicating that at this location the site and 

complexity is more in line with the evaluation based on the answers given in the questionnaire. As this 

location is more complex to simulate accurately, the wind speed prediction quality was given a score 

of 8 out of 10. 

For both met masts the immense cost needed for LES simulations is revealed. Given the lower 

accuracy compared to simpler models, the additional costs are not justified and so cannot be 

recommended for wind modellers in the industry. Hence, the application of tools such as LES and 

DNS will remain solely in the academic field in the foreseeable future. As mentioned before, the 

reason for the lower accuracy might be due to the restriction of wind directions that can be simulated, 

limited by time and costs. 

Figure 22 and Figure 23 show the relative skill versus cost scores based on the annual energy 

production for met masts 29 and 25. As observed in the previous section, the E-Wind and Fluent 
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perform best for both met masts. Particularly bad performance can be seen for the LES and 

OpenFOAM simulations and, as mentioned above, remains to be discussed in further detail with the 

respective participants. The AEP prediction quality for met mast 29 was assessed to be 8 out of 10, 

whereas the quality for met mast 25 achieves a score of 6 out of 10. This shows the difficulty of 

accurately modelling flow at more complex locations. 

 

Figure 20. Skill versus cost scores based on wind speed for met mast 29 
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Figure 21. Skill versus cost scores based on wind speed for met mast 25 
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Figure 22. Skill versus cost scores based on annual energy production for met mast 29 

 

Figure 23. Skill versus cost scores based on annual energy production for met mast 25 

 

 

 

 



 

40/70 

3.3 Summary of Stage 1 

The content of this chapter can be summarised by the following points. 

 

General summary: 

1. Received many different simulation results: 

1. Large variation in terms of used software and models. 

2. Makes for a great comparison. 

2. Predefined and standardised result templates worked very well. 

1. Can be used as basis for the new decision tool in Stage 2. 

3. More understanding and evaluation of Comparison Metricss needed: 

1. More data to better draw generalised conclusions. 

4. Learnings for Stage 2 challenge: 

1. Prepare and transform the data to avoid confusion in pre-processing. 

2. Three months of data not necessarily ideal for WRA focus. 

3. Use a sharing platform to improve collaboration. 

4. Organise webinars / workshops to accompany the challenge. 

 

Improvements to CM process needed: 

5. Defining the Model Description in a Google Form and then estimating skill and cost score 

parameters in a separate Google Form not optimal: 

1. User enters set-up details and then estimates skill parameters → time-consuming and 

confusing, large room for interpretation.  

2. Final decision tool for Stage 2: collect parameters related to set-up, automatically convert to 

skill score. 

6. The values entered into the Google Forms were transferred to an Excel template by hand: 

1. Template then had to be adjusted for each project.  

2. Will be automated in Stage 2 

 

Skill score before estimation: 

7. Many of the parameters can only be estimated once the simulations have been fully set up.  

1. The whole point of this method is to be able make an estimation of the most optimal model 

without carrying out any simulations.  

2. Skill score parameters need to be adjusted → user can estimate their values.  

3. Assign each parameter a confidence score → apply tool even if very little information about 

the set-up is known. 

8. Improve weightings:  

1. Some should be dependent upon the terrain complexity classification. 

2. Some of the parameter descriptions were confusing or unclear. 
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Cost scores before and after: 

9. Difficult to define the Actual Total Costs related to carrying out a WRA project:  

1. Staff hourly cost and number of projects per year had to be normalised for a fair comparison.  

2. Further consideration for the final version of the tool in Stage 2. 

 

Complex terrain classification: 

10.Difficult to classify the complexity of the terrain by asking questions that the participants could 

easily answer.  

11.Many questions difficult to understand and interpret.  

12.Definitions need improvement. 
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4 Challenge Stage 2 

In this chapter, the design of Stage 2 is first discussed, followed by the results and then a summary of 

the findings. 

4.1 Challenge design 

The goal of this Stage 2 was to collect simulation results and site complexity descriptions in order to 

develop a new decision tool for the optimal choice of model for a given project. The challenge was 

published on the WeDoWind Platform3, giving detailed information and instructions for the participants. 

Participants were asked to submit results of already existing wind simulations and/or AEP estimations 

for any site. As we wanted to assess the actual skill of the simulations, the site needed to have 

validation measurements for determining the after skill scores, as described above. 

The results were used to develop the decision tool, which is introduced in more detail in the next 

section, enabling the estimation of skill and cost scores of the submitted results using pre-defined 

weighted parameters, as well as classifying the terrain complexity of the submitted sites.  

The challenge was split into the following five parts. Participants had the opportunity to submit results 

for multiple sites and multiple simulation set-ups: 

1. For each site, details of the terrain and the site had to be uploaded. 

2. For each set-up for each site, details of the used model had to be uploaded. 

3. For each set-up for each site, simulation and measurement results had to be uploaded. 

4. Contributing to a discussion on the WeDoWind Platform about the classification of complex 

terrain could be joined in order to improve understanding. 

5. Running tests with the decision tool as soon as a sufficient amount of results come in.  

 

The final decision tool results are dependent on the amount of participation. However, we hope for: 

1. For all sites: 

• Complex terrain classification results. 

• Summary of submitted results. 

• Summary of predicted skill and cost scores compared to actual skill and costs. 

2. For sites for which three or more results are submitted: 

• Direct comparison of wind speed and AEP accuracies of different models / workflows. 

• Direct comparison of costs of different models / workflows. 

• Skill score vs. cost score scatter plots (using wind speed accuracy). 

• Skill score vs. cost score scatter plots (using AEP accuracy). 

3. Description and code for the new decision tool on GitLab. 

 

 
3 https://www.wedowind.ch/wedowind-ecosystem 
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In order to be able to process, analyse and transform the submitted data into the skill and cost score 

metrics for developing the new decision tool, the participants were asked to provide one or more of the 

following simulation and measurement results, depending on their availability: 

 

Wind speed: 

1. Simulated and measured wind speed profiles at a validation location (including the validation 

location and measured heights) AND/OR 

2. Root Mean Square Error (RMSE) between simulated and measured wind speed profiles at a 

validation location for all wind direction sectors (including the validation location, measured 

heights and wind direction sectors) AND/OR 

3. Average RMSE between measurement and simulation at a validation point over all sectors 

(including the location and measured heights) AND/OR 

4. Absolute difference between simulated and measured wind speed profiles at a validation 

location for all sectors at hub height  (including the validation location, hub height and sectors) 

AND/OR 

5. Average absolute difference between measurement and simulation at a validation point over 

all sectors (including validation location and hub height)  AND/OR 

Annual Energy Production (AEP): 

1. Simulated and measured AEP at a validation location (including validation location, wind 

turbine hub height and type, power curve used and information of how losses were corrected 

for) AND/OR 

2. Absolute or percentage difference between simulated and measured AEP at a validation 

location (including validation location, wind turbine hub height and type, power curve used and 

information of how losses were corrected for) OR 

3. Simulated and theoretical AEP at a validation location (including validation location, wind 

turbine hub height and type, power curve used and information of how the theoretical AEP 

was calculated). Note: the theoretical AEP can be calculated from the wind speed 

measurement at that location and the power curve) 

4. Absolute or percentage difference between simulated and  theoretical AEP at a validation 

location (including validation location, wind turbine hub height and type, power curve used and 

information of how the theoretical AEP was calculated). 

 

 

In order to evaluate the results of this challenge, a new decision tool was developed, as described 

below. 

 Decision Tool design 

The software application is named Decision Tool. The tool estimates the costs and accuracies, defined 

as cost and skill scores, of wind resource assessment tools based on user/costumer inputs and site 

complexities. It helps customers choose the right simulation tool for a given site based on their 

accuracy and cost expectations. The Decision Tool will provide a recommendation for the most 

suitable tool for a given site and therefore helps the modeller to rely less on gut feeling and instead 

make an informed decision. 

In order to better understand why, what and how to develop the decision tool, some user stories were 

gathered, allowing for a high level view and to give some context. 
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User stories 

1. As a wind resource modeller I want use the information and experience I have about a site so 

that I can choose the best modelling tool. 

2. As a wind resource modeller I want the best tool so that I get the most accurate results within 

a defined cost range for a given site. 

3. As a researcher I want to have a recommendation for the best tool to use for a given site so 

that I can focus more on the research aspects rather than spending time and costs on the 

process of finding the right tool myself.  

4. As a company we want to get a license for a wind resource assessment tool that works for 

most of our sites. The maximum cost of X should not be exceeded. 

5. As a researcher I want to compare my modelling tool with the most suitable tool for a given 

site in order to improve my methodology. 

Main purpose and functionality 

The tool is mainly intended for wind resource assessment tasks for under-explored sites of various 

types of complexity. The users have experience in the field of wind energy with focus on resource 

assessment. They have or should have access to the following data in order to take the most out of 

this tool: 

1. Terrain complexity: Ideal would be a roughness map to determine an objective value. 

Additionally, a trained eye for assessing the terrain in terms of slopes and other obstacles will 

greatly aid this process. 

2. Weather complexity: Ideally a good understanding of the underlying synoptic, meso- and 

microscales of the chosen site should be known in order to sufficiently assess the weather 

complexity. At least met mast data should be available to get an overview of the flow 

structures on the site. 

3. How accurate do the wind speed simulations need to be? (Skill score) 

4. How much should be the ideal and maximum cost of the whole process? 

The fewer available information and experience the lower the chance that the tool will be able to make 

a reliable decision in terms of optimal wind resource assessment tool for the given site. 

In order to build and validate the Decision Tool it is necessary to establish a database with data and 

results of already finished wind resource assessment projects. Four important parameters are needed 

and have to be determined in order to build the database. In the following, these parameters will be 

introduced and the process to obtain them explained in some detail. 1) The after skill score describes 

the actual accuracy of the employed wind resource assessment tool. The value is calculated based on 

the comparison of measurement data and simulation results at specific locations. It is differentiated 

between an after skill score based on wind speed predictions and annual energy production 

predictions. 2) The after cost score is the overall cost of the wind resource assessment project for the 

chosen site. The parameter is deemed more complex compared to the after skill score in that it 

involves less transparent influencing factors such as computing resources, hourly rates, hours spent 

working on the project and licensing costs. 3) The before cost score denotes the estimated costs 

before conducting the wind resource assessment. It includes factors similar to the after skill score with 

the difference of having only estimates instead of concrete values. 4) The before skill score is by far 

the most complex parameter to determine. It describes the estimated accuracy of a tool for a site with 

a given complexity before running any simulations. The value is solely estimated based on a 

questionnaire filled out by the modeller beforehand, including questions such as 

• How do you judge the general complexity of this site? (1-10) 

• What kind of simulation did you run? 
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• Which turbulence model was used? 

• How did you model surface roughness? 

Additionally, roughness and terrain maps or descriptions as well as meteorological data can be 

provided, if available, in order to obtain a more objective estimation compared to mere human 

judgement. 

Based on these results a transfer function between the before and after scores will be developed and 

constitutes the core of the decision tool business logic. The transfer function can then be developed 

based on techniques such as multiple regression, k-nearest neighbours, decision tree based models 

and more.  

Besides having a business logic layer with the transfer function as its central part and the data access 

layer with the mentioned database, a presentation layer is created serving as the user interface. The 

user interface is a web interface in form of a GUI. Users/modellers can simply access it through a 

modern web browser and interact with the Decision Tool. 

The interaction between the three layers will be as follows. 

1. The wind resource modeller fills out a survey through the web interface. (Presentation layer) 

2. The data will be stored in the database. (Data layer) 

3. The transfer function uses the submitted user data to determine the most appropriate 

modelling tool. (Business logic layer) 

User interface 

As mentioned above, the user interface will be a web interface in form of a GUI, where access is 

allowed via a modern web browser. The interface is in the presentation layer and is the only part of the 

tool that is exposed to the user. An input mask can be created where the user inserts all necessary 

data, and the tool then calculates the scores automatically and presents the results in the web 

application. 

The user inputs consist of: 

▪ Site details: The user enters details of the site complexity, such as the number and steepness 

of the slopes, similar to the questions asked in the Model Description related to site classification 

in the existing model. The questions will be improved to make them easier to quantify and less 

open to interpretation. 

▪ Model description: For each model, the user enters details of the planned model set-up, based 

on the information already given in the existing Model Description. However, the fields will be 

directly related to the skill score parameters, and the tool will calculate the parameters 

automatically, without the user having to interpret (or misinterpret) the parameter description 

and scale. The improvements will be added as discussed above. 

▪ User experience with model: For each model, the user answers questions similar to the 

questions in the skill score parameters (Skill E). 

▪ Cost estimations: For each model, the user estimates the costs using the categories 

introduced in this work. Few improvements are required to this part. 

▪ Optimisation constraints: The user defines what they are trying to optimise and what the 

constraints are. This helps the decision tool to automatically choose the optimum tool for a given 

application. In this work so far, this "choice" was only done by looking at the Comparison Metrics 

charts and assessing which tool offers the best compromise of costs and accuracy. The user 

may choose, for example, to always choose the model that is furthest towards the top left of the 
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chart (maximum skill, minimum costs), or to always choose the model that has the highest skill 

below a certain cost limit. 

▪ Confidence scores: Every one of the fields related to the site details, model description, user 

experience with model and cost estimations will also require a confidence score. This will allow 

users to apply the decision tool without knowing many details of the planned set-up. The more 

details that are known, the higher the confidence score will be and the more accurate the final 

decision will be. 

The main and ideal use of the tool are called the happy flow. In case special actions are needed or 

errors occur the user enters into and alternative flow. In the following the happy flow and three alternative 

flows, depending on the situation, are described. 

Happy flow 

1. User accesses web application through web browser by entering address. 

2. The user sees the landing page with two options – login and register. 

3. User logs in with user credentials. 

4. The user can start a new tool decision process by filling out a survey. 

5. After submitting the survey, the most suitable tool for the given site is presented, as explained 

above. 

6. The results are encrypted and saved in a database and can later be accessed by the same 

user again. 

7. The user may repeat the survey as many times as needed. 

 

Alternative flow 1 

3. User registers by entering email and password. 

4. After registration, the user is directed to the login page and can log in. 

 

Alternative flow 2 

4. The user can visit the account to inspect user information and saved results from previous 

sessions. 

 

Alternative flow 3 

3. In case the user does not remember the login in credentials anymore, a password reset 

request can be send. 

4. The user receives an email with a password reset link and has now 30 minutes change the 

password. 

5. Clicking the link in the mail will open a page where the user can enter the new password. 

 

GUI 

The web application is represented by a GUI, which is presented to the user. In this section 

screenshots of the application are shown in order to give a better picture of the presentation layer of 

the tool. 

The first view that is presented to the user is a login screen, as shown Figure 24 on the left. A warning 

is raised in case incorrect login credentials were used (right). 
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Figure 24. (Left) Login screen and (right) failed login attempt 

Figure 25 shows the registration page in case the user does not have an account yet. 

 

Figure 25. Registration page 

It is also possible to request a password reset. The process is shown in Figure 26. 
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Figure 26. (Top left) Reset password page (top right) Confirmation of password reset (bottom) New password creation page 

In order for the tool to determine the most suitable tool for a given site the user and site information 

mentioned above are necessary. This information can be entered in a survey, see Figure 27, which is 

encrypted and saved in a database. 
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Figure 27. Survey to be submitted 

 

Technical specifications 

 

The Decision Tool web application is based on Flask (version 2.0.2), a Python micro web framework. 

The front-end is developed with Bootstrap v5.0, which is a free and open source CSS framework. The 

business logic is written with Python 3.8 and the relational database is based on the SQLite 

management system. 

The concept of the tool is depicted in Figure 28 and consists of: 

▪ Complexity classifier: The tool will automatically calculate a complexity score based on the 

site details input by the user. This will be a number from 0-100%. The user can optionally upload 

the digital map of the site. 

▪ Skill score calculator: For each model, the model description and user experiences inputs 

made by the user will be converted to a skill score by converting the user inputs to scores, 

weighting them according to the in-built weightings, and averaging them to get one score 

between 0% and 100%. Some of the weightings will be altered for the complexity class. The 

weightings can be adjusted by the decision tool operator but not by the user. 

▪ Skill score confidence class calculator: For each model, the confidence scores that have 

been input by the user will be combined to give an overall confidence score. 

▪ Cost score calculator: For each model, the total costs will be calculated using the inputs made 

by the user. 



 

50/70 

▪ Cost score confidence class calculator: For each model, the confidence scores that have 

been input by the user will be combined to give an overall confidence score. 

The results consist of: 

▪ Complexity class: The complexity score will be converted to a number between one and four. 

This number will be used to scale certain weightings that are dependent upon the complexity 

class. The details of this step have to be developed in more detail. 

▪ Skill score: For each model, the skill score will be presented to the user. 

▪ Skill score confidence class: For each model, the skill score confidence score will be 

converted to a class (a number between one and four) and presented to the user. 

▪ Cost score: For each model, the cost score will be presented to the user. 

▪ Cost score confidence class: For each model, the cost score confidence score will be 

converted to a class (a number between one and four) and presented to the user. 

 

 

Figure 28. Concept of the decision tool 

The decision is made as follows: 

▪ For all the models considered, the resulting relative skill and cost scores are displayed on a 

chart of skill score vs. cost score (relative to the maximum score amongst the considered 

models). This chart is similar to the Comparison Metrics charts displayed in this project, but 

without the "after" scores (because the simulations have not been carried out). Each point 

represents one model, and will have error bars associated with it that relate to the confidence 

scores. 

▪ Depending upon the optimisation constraints entered by the user as described above, a decision 

will be made regarding the most optimal tool for the application, together with a confidence 

score. 

 

A simplified UML class diagram for the decision tool is depicted in Figure 29. These are the 

components that comprise the data and business logic layer. 



 

51/70 

 

Figure 29. Simple UML class diagram for the decison tool 
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4.2 Results and discussion 

In the following sections, the results for Stage 2 are presented. First, in Section 4.2.1 we look at the 

submitted data of participants. Having gathered data from various tools and participants, the site 

complexity, before and after score metrics are discussed in Sections 4.2.3, 4.2.4 and 4.2.5. Lastly, the 

skill versus cost score plots for the different submissions are presented in Section 4.2.6, followed by a 

short summary. 

 Data Submission 

Following the launch of Stage 1, we received a total of 7 registrations from the companies using the 

tools shown in Table 5: 

Table 5. Submissions to Challenge Stage 2 

Organisation Country Tool Status 

BREG BV Belgium - Not submitted 

University of Exeter UK - Not submitted 

Barcelona Super Computing Center 

– Participant 1 

Spain 

- 

Not submitted 

Barcelona Super Computing Center 

– Participant 2 

Spain 

- 

Not submitted 

ZAMG Austria - Not submitted 

ENERCON Germany E-Wind Submitted 

UL Renewables Spain WRF Not submitted 

 

In the final column of this table, the submission status can be seen. Unfortunately, as for Stage 1 we 

did not receive as many submissions as expected. In Stage 2, we attempted to address the challenges 

mentioned in Section 3.2.1 by not demanding any particular project or input data and allowing any 

format of submissions. However, this reduced the specificness of the project and we believe it was 

therefore difficult for participants to engage. In the future, a compromise between the approaches 

used for Stage 1 and Stage 2 seems to be the most sensible idea, and this will be considered for 

future projects. 

 Data overview 

An overview and details of the submitted data is shown in Table 6. In total, four different sites with 

varying site complexities from one organisation were used. As for Stage 1, Enercon used their in-

house tool E-Wind. For the different sites mainly the turbulence models and grid representation were 

changed in order to account for the site complexity. 

Table 6. Overview of submitted data 

Name Organisation Simulation Turbulence 

model 

Site 

complexity 

Grid 

Site01 Enercon RANS k-epsilon 30 Combination 

Site02 Enercon RANS k-epsilon 70 Combination 

Site03 Enercon RANS k-epsilon 20 Mesh-conform 

Site04 Enercon RANS k-L 100 Combination 
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 Site complexity score 

For Stage 1 it was concluded that the site complexity classification based on the given questions was 

rather difficult, leading to inaccurate scores. Hence, for Stage 2 we decided to determine the site 

complexity based on terrain, roughness and weather station data accompanying the respective site. 

For this, the participants were asked to upload this kind of data, if available. Additionally, the 

participants were asked to rate the site complexity on a scale from 1 to 10. The goal was to assess 

and compare the self-evaluation of the participant together with his/her experience and the objective 

complexity measure based on the submitted terrain, roughness and weather data. This would in turn 

help us to further refine questions for the site complexity classification for sites where this additional 

data is not available. 

Unfortunately, this task proofed more difficult and time consuming than initially anticipated. Moreover, 

the lack of data would have rendered the results of this analysis meaningless. Hence, we decided to 

reschedule this task to a future project and continue with solely the self-evaluated site complexity 

scores. This should not cause major problems in our case, as the values of the self-evaluation for the 

different sites is based on a single person, using the same simulation tool. The site complexity can 

hence be assessed in a relative sense. 

In order to make it more comparable to Stage 1, the complexity scores on the scale from 1 to 10 were 

scaled by a factor of 10. 

 Before score metrics 

Similar to Stage 1, the before skill scores were determined based on the answers given by the 

participants to a questionnaire. While conducting the Stage 1 challenge it was also found that some of 

the questions were either too subjective or too hard to interpret for the participant. Hence, only the 

question that seemed most objective were picked and slightly reformulated in order to make it simpler 

to answer. Furthermore, the before skill score is now comprised of two parts, the user skill score and 

the model skill score, who are determined based on the questions shown in   
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Table 7 and  
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Table 8, respectively. The weighted sum of both of these scores then results in the before skill score. 

This allows for another level of tuning and matching before and after skill scores. 
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Table 7. Questionnaire for determining the user skill score 

Questions Answers Scores 

How many years of experience do you have in the 

field of wind energy? 

Less than 1 year 20 

1 - 2 years 60 

2 - 4 years 80 

4 - 6 years 90 

More than 6 years 100 

How many years of experience do you have with 

complex terrain? 

Less than 1 year 20 

1 - 2 years 60 

2 - 4 years 80 

4 - 6 years 90 

More than 6 years 100 

How many years of experience do you have with the 

used simulation tools and applied methods? 

Less than 1 year 20 

1 - 2 years 60 

2 - 4 years 80 

4 - 6 years 90 

More than 6 years 100 

Approximately how many different sites have you 

simulated? 

1 20 

2 - 4 60 

5 - 8 80 

9 - 14 90 

15+ 100 
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Table 8. Questionnaire for determining the model skill score 

Questions Scores 

What kind of simulation did you run? (RANS, 

URANS, LES, LBM-LES, etc.) 

Score from 0 – 100 depending on the chosen 

answer. Additional weighting is applied 

depending on the site complexity. 

How did you model surface roughness? Score from 0 – 100 depending on the chosen 

answer 

What grid type did you use? (e.g. 

structured/unstructured, mesh-conform/immersed 

boundary) 

Score from 0 – 100 depending on the chosen 

answer. Additional weighting is applied 

depending on the site complexity. 

Did you conduct a grid independency study? Score from 0 – 100 depending on the chosen 

answer 

How did you calibrate the wind profile to the one at 

the calibration / reference mast? 

Score from 0 – 100 depending on the chosen 

answer 

How many different wind directions did you use for 

the AEP calculation? (e.g. 12 or 24) 

Score from 0 – 100 depending on the chosen 

answer 

Which method did you use for calculating the wind 

speed at the rotor? 

Score from 0 – 100 depending on the chosen 

answer 

How did you extrapolate the measured data for the 

wind farm lifetime? 

Score from 0 – 100 depending on the chosen 

answer 

How did you correct for air density at the site? Score from 0 – 100 depending on the chosen 

answer 

 

What is more is the addition of site complexity dependency for some of the scores in  
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Table 8. It can be safely assumed that the kind of simulation (RANS, URANS, LES, LBM-LES, etc.) as 

well as the type of grid are dependent on the complexity of the site. This dependence within the 

decision tool was modelled by the following function 

𝑓(𝑐) = 𝑏 ∙ 𝑒−𝑤∙𝑐  

( 3 ) 

with the site complexity score 𝑐, the weight 𝑤, controlling the decline of the function, and the scaling 

factor 𝑏. For each simulation and grid type one of these functions is determined by assigning a 

weighting for the highest complexity score. In   
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Table 9 the used weights for each of these for a fictitious site with complexity score of 100 are listed. 

The resulting functions are then used as an additional weight, which is dependent on the site 

complexity. Figure 30 shows the site complexity dependent functions for the simulation types (left) and 

the grid types (right). These functions should only be interpreted as an initial attempt, and depending 

on the available data these functions can be easily extended and tuned in the future. 
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Table 9. Weights for different kinds of simulations and grid types for a fictitious site with complexity score of 100 

Simulation kind Weighting for site 

complexity 100 

Grid type Weighting for site 

complexity 100 

WAsP 0.1 Not represented 0.0001 

RANS 0.5 Model 0.01 

URANS 0.6 Mesh-conform 0.85 

LES 0.85 Combination 0.95 

DNS 0.95   

 

  

Figure 30. Site complexity dependent functions for the simulation types (left) and the grid types (right) 

Another extension of the new method are a confidence skill score and a confidence cost score class. 

These are used to determine the confidence score. The determination of this score is based on every 

one of the fields related to the site details, model description, user experience with model and cost 

estimations. The confidence score allows users to apply the Decision tool without knowing many 

details of the planned set-up. The more details that are known, the higher the confidence score will be 

and the more accurate the final decision will be. The consideration of the confidence score adds 

another level of tuning and matching before and after skill scores. 

 After score metrics 

The after skill and cost score metrics were determined according to the methodology given in Section 

3.2.5 for Stage 1. 

 Skill versus costs 

In this section the skill versus cost scores for the four sites with different site complexities are 

analysed. As shown in the table above, the participant used RANS simulations for all sites. Hence, it 

should be possible to see a clear trend according to the above assumptions that for increasing site 

complexity the model accuracy decreases. Due to the lack of submission data we decided to produce 

artificial, but realistic, test cases, denoted by the labels WAsP and LES. For this data a fictitious 

modeller with a comparable user skill score to the Enercon cases was used and the only variables are 

therefore the model skill score and the site complexity. The model skill scores were determined by 

filling out the questionnaire, shown in Table 10. As no real simulations were conducted for the WAsP 

and LES cases, only the before metrics are available. 
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Table 10. Fictitious but realistic test cases for the comparison with the Enercon cases 

Questions LES WAsP 

What kind of simulation did you 

run? (RANS, URANS, LES, LBM-

LES, etc.) 

LES WAsP 

How did you model surface 

roughness? 

Model Model 

What grid type did you use? (e.g. 

structured/unstructured, mesh-

conform/immersed boundary) 

Mesh-conform - 

Did you conduct a grid 

independency study? 

Yes No 

How did you calibrate the wind 

profile to the one at the calibration 

/ reference mast? 

Iteratively through changing 

input conditions, For entire 

measurement period 

Direct input at met mast 

(similar to WAsP) 

How many different wind directions 

did you use for the AEP 

calculation? (e.g. 12 or 24) 

8 24 

Which method did you use for 

calculating the wind speed at the 

rotor? 

Hub-height only Hub-height only 

How did you use the wind 

simulations to obtain the AEP? 

Based on time series and the 

OEM's power curve 

Direct simulation output 

(similar to WAsP) 

How did you correct for air density 

at the site? 

None None 

 

The next step, before calculating and plotting any before skill scores, is to determine the weights for 

each before score associated to a question in Table 10 based on the after skill scores, determined 

through the simulation and measurement results. This step is also part of the business logic of the 

Decision tool and was planned to be implemented in such a way as to allow for easy updates and 

extensions. In order to determine the weights, the data has to be split and transformed into the parts 

shown in Figure 31. The score matrix, S, contains all scores for each of the k questions in the 

questionnaire above for all N submissions or rather simulation cases. Hence, the matrix S is of size 

𝑁 × 𝑘. For each of the k scores there is a weight wi to be determined. The final after skill scores, yj, for 

each case are stored in the vector y. 
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Figure 31. The scores matrix, S, based on the questionnaire, the weight vector, w, which is to be determined, and the after skill scores 

vector, y. 

One way to readily obtain the vector of weights, w,  by solving the following equation 

𝑺 ∙ 𝒘 = 𝒚 

However, the constructed matrices and vectors can also be used with more complex algorithms such 

as random forests, k-nearest neighbours, support vector machines, multiple regression and other 

machine learning and statistical algorithms. However, due to the low number of submissions, it was 

not possible to conduct this step. Instead the weights could simply be tuned by hand. 

The results of this manual tuning are shown in Figure 32, where the relative skill versus the relative 

cost scores for the four sites with increasing site complexities are depicted. As already mentioned 

above, only the before skill scores are available for the artificial data. The first thing to notice is that the 

complexity weighting functions work as intended. For increasing site complexities, the skill scores 

decrease for all models. As well as that, the relative distances between the models also increases for 

increasing complexities. This means that for less complex sites the model accuracies approach each 

other and the skill score is less dependent on the simulation kind and roughness representation, but is 

rather governed by other parameters such as the number of simulated wind directions for predicting 

the annual energy production. As LES simulations are inherently expensive with regard to time and 

costs, less wind direction can be simulated as opposed to RANS and WAsP simulations, where a 

large number of simulations can be carried out for reasonable time and cost efforts. However, for more 

complex sites, LES proves is well ahead in terms of accuracy and it is up to the modeller if the 

additional costs of running such a case are justified. An important point to remember is, however, the 

fact that the shown analysis of the before score metrics are dependent on a very small number of data 

points and are subject to change as more data comes in. At any rate, the assumptions made and the 

conclusions drawn from these results appear to be a sensible starting point. 

The actual after skill and cost score metrics do not show a dependence on the site complexity. A 

possible explanation for this might be that other parameters play an important role as well, which, 

however, are not currently known and could therefore not be considered while tuning the weight 

vector. More data is needed in order to shed light on this issue. 
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Figure 32. Relative skill versus relative cost scores for four sites with increasing site complexities 

 Summary of Stage 2 

The content of this chapter can be summarised by the following points. 

 

General summary: 

1. A new Decision tool in form of a web application was developed. 

1. Create surveys that are automatically saved in a database. 

2. Automatic calculation of skill and cost scores. 

3. The business logic is extendable for ML and other statistical models. 

2. Received results of four sites with different site complexities: 

1. Not sufficient to draw major conclusions, but good as a starting point. 

3. More understanding and evaluation of Comparison Metricss needed: 

1. More data to better draw generalised conclusions. 

2. How to better advertise challenges and increase motivation to participate 

 

Improvements to Comparison Metrics process needed: 

4. Defining the Model Description in a Google Form and then estimating skill and cost score 

parameters in a separate Google Form was not optimal in Stage 1: 
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1. User now enters set-up details and the Decision tool automatically converts answers to skill 

score and cost score 

5. The values entered into the Google Forms were transferred to an Excel template by hand: 

1. Template then had to be adjusted for each project.  

2. This process was automated in Stage 2 

 

Skill score before estimation: 

6. Many of the parameters could only be estimated once the simulations had been fully set up.  

1. A starting point for a method was established that is able to make an estimation of the most 

optimal model without carrying out any simulations. 

2. The questions used to determine the skill score were adjusted 

1. Reformulated to be easier to answer 

2. More objective questions such as kind of simulation were chosen  

3. Assigning each parameter a confidence score was not possible due to the lack of submissions 

7. Improved weightings:  

1. The simulation kind and the roughness representation parameters are now dependent upon 

the terrain complexity classification. 

2. Weightings can be tuned by machine learning and/or statistical models 

 

Cost scores before and after: 

8. After the final workshop for Stage 1 we reached out to the participants to discuss about the 

calculation of the cost scores. We were able to slightly adjust the process to match the estimations 

and actual costs of the different simulations for Stage 2. 

 

Complex terrain classification: 

9. Difficult to classify the complexity of the terrain by asking questions that the participants could 

easily answer. 

1. The participants were asked to submit site data comprising terrain maps, roughness maps 

and weather data, if available, in order to calculate a more objective site complexity score. 

10.This task proofed more difficult and time consuming than initially anticipated. Moreover, the lack of 

data would have rendered the results of this analysis meaningless. Hence, we decided to drop the 

task and continue with solely the self-evaluated site complexity scores. 
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5 Conclusions 

  

In this project, two public "simulation challenges" for wind energy sites in complex terrain were 

implemented, in which participants submit their simulation data and results in a pre-defined template. 

The goal was to collect hundreds of comparison metrics data regarding the "skill" and "costs" of 

simulation tools both before and after carrying out the simulations, enabling transfer functions for the 

accurate prediction of tool "skill" and "costs" to be developed. This aims to help modellers choose the 

best model for the job for a given wind energy project. 

 

In Stage 1 of the project, a submission template for comparison metrics was developed further and 

greatly improved compared to an initial version. A simulation challenge for the Perdigao site in 

Portugal was designed and launched according to plan. Five organisations with a total of 10 different 

submissions participated in the challenge. Each submission contained vertical wind profiles for a total 

of nine met mast locations and annual energy production values for two met mast positions. These 

results allowed for an extensive analysis including speed-up factors and flow turning between various 

met masts, wind profile comparisons, annual energy production values as well as before and after skill 

and cost score metrics.As part of the project a Python library for the analysis of the data was 

developed, which will be made public. The library was enhanced and improved after the final Stage 1 

workshop based on feedback and discussions with the participants. The results of Stage 1 showed 

that sophisticated simulation tools such as LES do not necessarily lead to higher accuracies. 

Especially for less complex locations one is better off using simpler tools such as RANS or WAsP, 

reaching high levels of accuracy with a fraction of the costs of LES simulations. Overall, the RANS 

simulation with the E-Wind software, developed by Enercon, achieved the best and most consistent 

scores. As the participant was also the most experienced amongst all, this might lead to the 

conclusion that the user skill plays a crucial role for the overall skill score. 

For Stage 2 of this project, the manual process of Stage 1 was automated. The resulting Decision tool 

is able to automatically convert answers of questionnaires into skill and cost scores. In order to 

develop the business logic of the tool, a new challenge was published. In this challenge participants 

were asked to upload simulation and measurement results of any available site. Based on these 

results site complexity dependent functions and score weightings were supposed to be developed and 

tuned. However, due to a lack of participation the tuning part could not be completed. However, the 

resulting methods serve as a starting point and can be easily updated and extended as more data 

comes in. Additionally, the questions of the questionnaire were reformulated to render them easier to 

answer and understand as well as more objective. The influence of site complexity on the skill versus 

cost score plots was briefly explored by comparing three different models for four sites with increasing 

complexity. The used models comprised the submitted RANS simulation results by Enercon as well as 

artificially generated, but nonetheless realistic, data based on the developed questionnaires. This, 

however, only allowed for an analysis of the before score metrics. It was shown that for increasing site 

complexity the before skill scores decreased and the relative distance between each model increased 

dependent on its sophistication, i.e. LES outperformed RANS and WAsP simulations. In turn, for less 

complex sites RANS and WAsP simulations performed similar to the LES case, but had significantly 

better cost scores. The developed functions and weights that were able to achieve these insights were 

tuned by hand due to the very few available data points. With more data machine learning and 

statistical models can replace this manual process in order to get more generalised and reliable 

results. The current methods and functions serve as a starting point for further development. 
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6 Outlook and next steps 

This project has been completed successfully. The next steps planned are:  

• Complete the documentation of the Python library and make it public on GitLab 

• A journal paper is currently written for Stage 1 of this project together with the participants. It is 

expected to be published in the Wind Energy Science journal by the end of next year. 

• Submit a journal paper about the Decision tool to the open access journal "Journal of Open 

Source Software" 

• Submit abstracts to the TORQUE2023 conference. 

• Possible continuation and data gathering with a commercial partner in order to improve and 

tune the Decision tool using existing contacts with the global companies Enercon, UL and TÜV 

Süd. 

 

7 National and international cooperation 

This project involves the following national and international collaborations: 

• International: 

o This work is a collaboration with IEA Wind Task 31. The challenge was first introduced 

at the IEA Wind Task 31 meeting in Amherst, USA during the AWEA/Windtech 

conference in October 2019. A progress report was presented at the online IEA Wind 

Task 31 meeting in June 2020.  

o Participants in this challenge come from all over the world, as can be seen in Table 3. 

• National: 

o The work is based on the methods that are being developed together with the Swiss 

partner Meteotest AG in the separate SFOE-funded project "A new process for the 

pragmatic choice of wind models in complex terrain". 
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8 Communication 

The following communication has been used in the first year of this project: 

• The challenge was first introduced at the IEA Wind Task 31 meeting in Amherst, USA during 

the AWEA/Windtech conference in October 2019. A progress report was presented at the 

online IEA Wind Task 31 meeting in June 2020.  

• The challenge was published on The Wind Vane Blog [4]. 

• The challenge has been posted on LinkedIn multiple times. 

• The challenge Stage 1 design was presented in a poster at the WindEurope Wind Resource 

Assessment Workshop in June 2020 (online), which was delayed from April 2020.  

• The challenge Stage 1 design was presented in a poster and a paper at the Torque2020 

conference in September 2020 (online), which was delayed from May 2020. 

• The Stage 2 challenge was published on the WeDoWind Platform. 

 

9 Publications 

Stage 1 of the challenge is published here, and is continually updated: 

https://thewindvaneblog.com/comparison-metrics-microscale-simulation-challenge-for-wind-resource-

assessment-stage-1-3d0f88cff313  

The rest of the publications related to this work can all be found under Sarah Barber's profile on the 

Zenodo platform. The links are given as hyperlinks below: 

• S. Barber, "Comparison metrics microscale simulation challenge for wind resource 

assessment – stage 1", Launch webinar, April 2020. 

• S. Barber, M. Buehler, H. Nordborg, "IEA Wind Task 31: Initial results of a new comparison 

metrics simulation challenge for wind resource assessment in complex terrain", WindEurope 

Wind Resource Assessment Workshop, June 2020 (poster). 

• S. Barber, M. Buehler, H. Nordborg, "IEA Wind Task 31: Design of a new comparison metrics 

simulation challenge for wind resource assessment in complex terrain Stage 1", J, September 

2020 (poster). 

• S. Barber, M. Buehler, H. Nordborg, "IEA Wind Task 31: Design of a new comparison metrics 

simulation challenge for wind resource assessment in complex terrain Stage 1", Journal of 

Physics: Conference Series 1618 062013, doi: https://doi.org/10.1088/1742-

6596/1618/6/062013. 

  

https://thewindvaneblog.com/comparison-metrics-microscale-simulation-challenge-for-wind-resource-assessment-stage-1-3d0f88cff313
https://thewindvaneblog.com/comparison-metrics-microscale-simulation-challenge-for-wind-resource-assessment-stage-1-3d0f88cff313
https://zenodo.org/record/3743247#.X4lWqObiuUk
https://zenodo.org/record/3743247#.X4lWqObiuUk
https://zenodo.org/record/4094624#.X4lWnObiuUk
https://zenodo.org/record/4094624#.X4lWnObiuUk
https://zenodo.org/record/4094624#.X4lWnObiuUk
https://zenodo.org/record/4094632#.X4lWoObiuUk
https://zenodo.org/record/4094632#.X4lWoObiuUk
https://zenodo.org/record/4094632#.X4lWoObiuUk
https://doi.org/10.1088/1742-6596/1618/6/062013
https://doi.org/10.1088/1742-6596/1618/6/062013
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11 Appendix 

11.1 Simulation setups for Stage 1 challenge 

Table 11. Simulation setup details 

 Model 1 and 2 Models 3 - 5 

 

Model 6 Model 7 Model 8 and 9 Model 10 

Wind 

model 

UTD-WF E-Wind Fluent WAsP OpenFOAM WAsP 

Institution UTD Enercon OST OST VKI Alten 

Model type LES 

 

Smagorinsky 

SGS 

Steady state 

RANS 

 

k-epsilon, k-L 

and k-omega 

turbulence 

models 

Steady state 

RANS 

k-omega SST 

turbulence 

model 

Linear wind 

model 

Steady state 

RANS 

k-epsilon 

turbulence 

model 

Linear wind 

model 

Grid 

dimensions 

(resolution) 

5.4 x 3.7 x 2 km 

(4 m) 

Circular domain 

with 11 km 

radius, height 6 

km (25 m) 

10 x 10 x 1.5 

km (20 m) 

6 x 4 km 

(automatic) 

5 x 5 x 4 km 

(Not specified) 

11 x 11.5 km 

(100 m) 

Number of 

cells 

Not specified 

~ 60 million 

1.8 million 20 million Not specified Not specified Not specified 

~ 126'000 

Input 

profile 

Above 

topography with 

a shear 

exponent of 

0.68 

Precomputed 

numerical 

profiles 

Log law profile Met mast 29 

data 

Log law profile Met mast 29 

data 

Turbulence 

intensity 

None None Energy k and 

turbulence 

dissipation rate 

ε in the ABL 

are based on 

the Harris and 

Deaves (1981) 

model 

None None None 

Other 

models 

PCE surrogate 

model, 

Canopy model 

for second 

simulation 

Buoyancy 

effects included 

in the 

turbulence 

equations, 

Coriolis force, 

forest model, 

atmospheric 

stability 

modeled by 

surface heat 

flux 

Sand grain 

roughness 

model 

None Porosity model None 
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Wind 

directions 

8 (7°, 36°, 85°, 

147°, 213°, 

275°, 323°, 

353°) 

24 12 12 12 12 

 


