
 
Federal Department of the Environment, Transport, 
Energy and Communications DETEC 

Swiss Federal Office of Energy SFOE 
Energy Research and Cleantech Division  

 

 

 

 

Deliverable 1 dated 18/11/2021 

 

 

COSTAM Project 

D1.2 – Report on Modular STATCOM 
structures: Simulations of the selected structures 
 

 

  



 

2/57 

 

 

 

 

 

 

 

 

 
 

 

 

 
 

 

Date: 18/11/2021 

 

Location: Yverdon-les-Bains 

 

Subsidiser: 

Swiss Federal Office of Energy SFOE 

Energy Research and Cleantech Section 

CH-3003 Bern 

www.bfe.admin.ch 

 

Subsidy recipients: 

HEIA-FR 

Bd. De Pérolles 80, 1700 Fribourg 

 

HEIG-VD 

Route de Cheseaux 1, 1401 Yverdon-les-Bains 

 

Authors: 

Gislain Grosjean, HEIG-VD, gislain.grosjean@heig-vd.ch 

Guillaume Courteau, HEIG-VD, guillaume.courteau@heig-vd.ch 

Simon Kissling, HEIG-VD, simon.kissling@heig-vd.ch 

Mokhtar Bozorg, HEIG-VD, mokhtar.bozorg@heig-vd.ch  

Mauro Carpita, HEIG-VD, Mauro.Carpita@heig-vd.ch 

 

SFOE project coordinators: 

Dr. Michael Moser, michael.moser@bfe.admin.ch 

 

SFOE contract number: SI/502069-01 

 
All contents and conclusions are the sole responsibility of the authors  

http://www.bfe.admin.ch/
mailto:gislain.grosjean@heig-vd.ch
mailto:guillaume.courteau@heig-vd.ch
mailto:simon.kissling@heig-vd.ch
mailto:mokhtar.bozorg@heig-vd.ch
mailto:Mauro.Carpita@heig-vd.ch


 

3/57 

CONTENTS 

1 INTRODUCTION ............................................................................................................................. 9 

2 SINGLE STAR BRIDGE-CELLS (SSBC) ....................................................................................... 9 

 ARM CURRENT ......................................................................................................................... 10 

 INSERTION INDEX AND SYSTEM MODEL....................................................................................... 10 

 CONTROL OF THE SYSTEM ........................................................................................................ 12 

 CURRENT CONTROL ................................................................................................................. 13 

 VOLTAGE CONTROL .................................................................................................................. 14 

 UNBALANCED GRID................................................................................................................... 16 

2.6.1 Zero Sequence Voltage Control (ZSVC) ....................................................................... 17 

2.6.1.1 Operating range of the ZSVC .................................................................................................. 19 

2.6.2 Negative Sequence Current Control (NSCC) ................................................................ 20 

3 SINGLE DELTA BRIDGE-CELLS (SDBC) .................................................................................. 22 

 SYSTEM MODEL ....................................................................................................................... 23 

 CONTROL OF THE SYSTEM ........................................................................................................ 23 

 UNBALANCED GRID................................................................................................................... 23 

3.3.1 Zero Sequence Current Control (ZSCC) ....................................................................... 23 

3.3.1.1 Operating range of the ZSCC ................................................................................................. 25 

3.3.2 Negative Sequence Current Control .............................................................................. 27 

4 DOUBLE STAR CHOPPER-CELLS (DSCC) ............................................................................... 28 

 CONVERTER MODELLING .......................................................................................................... 28 

4.1.1 Output voltage and current relationship......................................................................... 29 

4.1.2 Circulating voltage and current relationship .................................................................. 30 

4.1.3 Arms voltages and currents ........................................................................................... 31 

4.1.4 Insertion indices ............................................................................................................. 32 

 CONVERTER CONTROL IN BALANCED GRID ................................................................................. 34 

4.2.1 Overall control in balanced grid ..................................................................................... 34 

4.2.2 Modulation technique and individual capacitor balancing ............................................. 35 

4.2.3 Arm insertion index references calculations .................................................................. 36 

4.2.4 Output currents regulation ............................................................................................. 37 

4.2.5 Internal control ............................................................................................................... 38 

4.2.6 Power and total energy control ...................................................................................... 39 

 CONTROL IN UNBALANCED GRID ................................................................................................ 41 

4.3.1 Overall control in unbalanced grid ................................................................................. 41 

4.3.2 DVCC for DSCC ............................................................................................................ 42 

4.3.3 Power and total energy control in unbalanced grid ....................................................... 42 

5 OPERATING RANGE OF THE PROJECT ................................................................................... 43 

6 SIMULATION RESULTS .............................................................................................................. 45 

 SSBC SIMULATIONS ................................................................................................................. 45 



 

4/57 

6.1.1 Rebalancing of the cluster voltage ................................................................................ 45 

6.1.2 One-phase short-circuit ................................................................................................. 46 

6.1.3 Two-phase short-circuit ................................................................................................. 47 

 DSCC SIMULATIONS ................................................................................................................ 49 

6.2.1 Rebalancing of the internal voltages ............................................................................. 49 

6.2.2 One-phase short-circuit ................................................................................................. 50 

6.2.3 Two-phase short-circuit ................................................................................................. 51 

7 CONCLUSION ............................................................................................................................... 52 

8 BIBLIOGRAPHIE .......................................................................................................................... 52 

9 APPENDIX .................................................................................................................................... 53 

 ZSVC DEVELOPMENT............................................................................................................... 53 

 ZSCC DEVELOPMENT .............................................................................................................. 55 

  



 

5/57 

LIST OF FIGURES 

FIGURE 2-1 : SSBC SCHEMATIC ................................................................................................................. 9 

FIGURE 2-2 : SINGLE PHASE SCHEMATIC OF THE SSBC ............................................................................. 10 

FIGURE 2-3 : TRANSFER FUNCTION OF THE ARM CURRENT ......................................................................... 10 

FIGURE 2-4 : SCHEMATIC OF A CELL .......................................................................................................... 10 

FIGURE 2-5 : BLOCK DIAGRAM COMPLETED WITH THE RELATION (2.4) ......................................................... 11 

FIGURE 2-6 : BLOCK DIAGRAM OF THE SSBC SYSTEM MODEL .................................................................... 12 

FIGURE 2-7 : CONTROL SCHEME OF THE VOLTAGE ..................................................................................... 13 

FIGURE 2-8 : SCHEME CONTROL OF THE CURRENT ..................................................................................... 13 

FIGURE 2-9 : SCHEME CONTROL OF THE THREE-PHASE CURRENTS ............................................................. 13 

FIGURE 2-10 : COMPLETE CONTROL SCHEME OF THE SSBC IN A BALANCED GRID ....................................... 15 

FIGURE 2-11 : CONTROL SCHEME OF THE SSBC IN AN UNBALANCED GRID ................................................. 16 

FIGURE 2-12 : DUAL VECTOR CURRENT CONTROL (DVCC) ...................................................................... 17 

FIGURE 2-13 : CONTROL SCHEME OF THE SSBC WITH ZSVC .................................................................... 19 

FIGURE 2-14 : DETAIL OF THE CLUSTERS CONTROL WITH THE ZSVC STRATEGY.......................................... 19 

FIGURE 2-15 : AMPLITUDE OF THE ZERO SEQUENCE VOLTAGE IN THE WORST (A) AND BEST (B) CASE ........... 20 

FIGURE 2-16 : AMPLITUDE OF THE ZERO SEQUENCE VOLTAGE IN THE WORST (A) AND BEST (B) CASE 

(FLATTENED VIEW) ........................................................................................................................... 20 

FIGURE 3-1 : SDBC SCHEMATIC ............................................................................................................... 22 

FIGURE 3-2 : SINGLE PHASE SCHEMATIC OF THE SDBC ............................................................................. 22 

FIGURE 3-3 : BLOCK DIAGRAM OF THE SDBC SYSTEM MODEL .................................................................... 23 

FIGURE 3-4 : COMPLETE CONTROL SCHEME OF THE SDBC IN A BALANCED GRID ......................................... 23 

FIGURE 3-5 : CONTROL SCHEME OF THE SDBC WITH ZSCC...................................................................... 25 

FIGURE 3-6 : DETAIL OF THE CLUSTERS CONTROL WITH THE ZSCC ............................................................ 25 

FIGURE 3-7 : AMPLITUDE OF THE ZERO SEQUENCE CURRENT IN THE WORST (A) AND BEST (B) CASE ............. 26 

FIGURE 3-8 : AMPLITUDE OF THE ZERO SEQUENCE CURRENT IN THE WORST (A) AND BEST (B) CASE 

(FLATTENED VIEW) ........................................................................................................................... 26 

FIGURE 4-1 : DSCC (DOUBLE-STAR CHOPPER-CELL) STATCOM SCHEMATIC WITH HALF-BRIDGE 

SUBMODULES ................................................................................................................................... 28 

FIGURE 4-2: DSCC (DOUBLE-STAR CHOPPER-CELL) STATCOM PER PHASE ANALYSIS SCHEMATIC ........... 29 

FIGURE 4-3: OUTPUTS BLOCK DIAGRAM .................................................................................................... 30 

FIGURE 4-4: CIRCULATING BLOCK DIAGRAM .............................................................................................. 31 

FIGURE 4-5: RELATIONSHIP BETWEEN ARMS CURRENTS AND VOLTAGES ..................................................... 32 

FIGURE 4-6: HALF BRIDGE SUBMODULE ..................................................................................................... 32 

FIGURE 4-7: DSCC CONVERTER COMPLETE BLOCK DIAGRAM ..................................................................... 34 

FIGURE 4-8: DSCC OVERALL CONTROL BLOCK DIAGRAM IN BALANCED GRID ............................................... 34 

FIGURE 4-9: CLASSICAL PS-PWM PRINCIPLE FOR 𝑙𝑒𝑔1 UPPER ARM WITH N = 5 SUBMODULES .................... 35 

FIGURE 4-10: 𝑆𝑀1𝑢1 VOLTAGE BALANCING CONTROLLER .......................................................................... 35 

FIGURE 4-11: PS-PWM & INDIVIDUAL CAPACITOR BALANCING TECHNIQUE FOR 𝑙𝑒𝑔1 UPPER ARM WITH N = 5 

SUBMODULES ................................................................................................................................... 36 



 

6/57 

FIGURE 4-12: ARM INSERTION INDEX REFERENCES CALCULATIONS BLOCK DIAGRAM .................................... 37 

FIGURE 4-13: PER PHASE CURRENTS CONTROLLER BLOCK DIAGRAM .......................................................... 37 

FIGURE 4-14: 3-PHASE OUTPUT CURRENTS CONTROLLER BLOCK DIAGRAM ................................................. 38 

FIGURE 4-15 : INTERNAL CONTROL BLOCK DIAGRAM .................................................................................. 38 

FIGURE 4-16: POWER AND TOTAL ENERGY CONTROL BLOCK DIAGRAM ........................................................ 41 

FIGURE 4-17: DSCC OVERALL CONTROL BLOCK DIAGRAM IN UNBALANCED GRID ......................................... 41 

FIGURE 4-18: DVCC BLOCK DIAGRAM FOR DSCC .................................................................................... 42 

FIGURE 4-19: POWER AND TOTAL ENERGY CONTROL BLOCK DIAGRAM IN UNBALANCED GRID ........................ 42 

FIGURE 6-1 : SSBC, REBALANCING OF THE CLUSTER VOLTAGE SIMULATION ............................................... 46 

FIGURE 6-2 : SSBC, ONE-PHASE SHORT-CIRCUIT SIMULATION ................................................................... 47 

FIGURE 6-3 : SSBC, TWO-PHASE SHORT-CIRCUIT AT BOISDAVAUX SIMULATION .......................................... 48 

FIGURE 6-4 : SSBC, TWO-PHASE SHORT-CIRCUIT AT POLNY SIMULATION ................................................... 49 

FIGURE 6-5: DSCC REBALANCING OF INTERNAL VOLTAGES SIMULATION ..................................................... 50 

FIGURE 6-6: DSCC ONE-PHASE SHORT-CIRCUIT SIMULATION RESULTS ....................................................... 51 

 

  



 

7/57 

LIST OF TABLES 

TABLE 5-1 : GRID VOLTAGE AT “BOISDAVAUX” SUBSTATION SEQUENCES WHEN A FAULT OCCURS IN THE GRID43 

TABLE 6-1 : SIMULATION PARAMETERS FOR THE SSBC SIMULATIONS ......................................................... 45 

TABLE 6-2 : SIMULATION PARAMETERS FOR THE SSBC SIMULATIONS ......................................................... 49 

 

  



 

8/57 

 

 

ABBREVIATIONS 

ANPC : Active Neutral-Point Clamped 
BC : Bridge Cell 
BESS : Battery Energy Storage System 
CNPC : Cascaded Neutral-Point Clamped 
CSC : Current Source Converter 
DS : Double Star 
DSCC : Double Star Chopper-Cells 
DVCC:  Dual Vector Current Control 
GRD : Gestionnaire de Réseau de Distribution 
FC : Fix Capacitor 
FCI : Flying Capacitor Inverter 
FC-TCR : Fix Capacitor - Thyristor Controlled Reactor  
KCL: Kirchhoff's Current Law 
KVL: Kirchhoff's Voltage Law 
LPF: Low Pass Filter 
MMCC : Modular Multilevel Cascaded Converter 
NNPC : Nested Neutral-Point Clamped 
NPC : Neutral-Point Clamped 
NSCC: Negative Sequence Current Control 
PCC: Point of Common Coupling 
PI: Proportional Integral 
PIR: Proportional Integral Resonant 
PLL: Phase Locked Loop 
PS-PWM: Phase-Shifted PWM 
PSI-LVRT: Positive Sequence Injection Low-Voltage Ride-Through 
PWM : Pulse Width Modulation 
RES : Renewable Energy Sources 
SDBC : Single Delta Bridge-Cells 
SiC : Silicone Carbite 
SM: SubModule (cell) 
SSBC : Single Star Bridge-Cells 
STATCOM : STAtic synchronous COMpensator 
SVG : Static Var Generator 
TCR : Thyristor Controlled Reactor 
THD: Total Harmonic Distortion 
TSC : Thyristor Switched Capacitor 
VSC : Voltage Source Converter 
ZSCC: Zero Sequence Current Control 
ZSVC: Zero Sequence Voltage Control 

 

  



 

9/57 

1 INTRODUCTION 

Different STATCOM topologies are possible to exchange reactive power with the electrical grid. From 
previous work [1], three configurations have been chosen. They are: SSBC, SDBC and DSCC. These 
topologies are able to work on medium and high voltage grid and to continue to operate when the grid 
is unbalanced or when a fault occurs in the grid. 

This report presents the detailed analysis of the three selected topologies behaviour with theoretical 
equations and with simulations done in the Plecs environment. These topologies are assessed for every 
state of the electrical grid when a fault occurs is taken from the previous analysis in [1]. 

2 SINGLE STAR BRIDGE-CELLS (SSBC) 

The schematic of the SSBC structures is visible on the Figure 2-1. This topology is particularly interesting 
because it presents the least number of cells, so it makes the solution to be the most practical one in 
terms of technique, size and cost. On the other side, this structure has no internal circulating current 
which can give difficulties at zero power exchange. 

This system is suitable to exchange a controlled reactive power and to regulate the voltage at the point 
of common coupling (PCC). 

 

Figure 2-1 : SSBC schematic 

To simplify the analysis, the single phase schematic as seen on the Figure 2-2, is used. For that, it is 
supposed that the grid is balanced. 
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Figure 2-2 : Single phase schematic of the SSBC 

 ARM CURRENT 

From the single phase schematic (Figure 2-2) and the Kirchhoff’s laws, the equation (2.1) is extracted. 

𝑢𝑔 − 𝑢𝑆𝑀𝐿 = 𝐿𝑎 ∙
𝜕𝑖𝐿
𝜕𝑡
+ 𝑅𝑎 ∙ 𝑖𝐿  (2.1) 

From this equation, the transfer function linking the arm current 𝑖𝐿 from the voltage produced by the cells 

𝑢𝑆𝑀𝐿 is visible on the Figure 2-3. 

 

Figure 2-3 : Transfer function of the arm current 

 INSERTION INDEX AND SYSTEM MODEL 

Afterwards, it is necessary to include the insertion index to finalise the system model. The insertion index 

of the cell 𝑛𝐿
𝑖  may take the values -1, 0 or 1. When its value is -1, the capacitor of the cell 𝐶𝑆𝑀 is inserted 

to produce a negative voltage. So the power switches are in the states: 𝑆1 & 𝑆4 « off » and 𝑆2 & 𝑆3 « on » 
(see Figure 2-4). When its value is 0, the capacitor is not inserted and the outputs A and B are in short 
circuit. When its value is 1, the capacitor of the cell 𝐶𝑆𝑀 is inserted to produce a positive voltage. So the 

power switches are in the states: 𝑆1 & 𝑆4 « on » and 𝑆2 & 𝑆3 « off ». 

 

Figure 2-4 : Schematic of a cell 
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The arm voltage depends of the state of the cells. For the control of the SSBC, it is supposed that it 
exists a control system which keep the average voltage of each capacitor at the same value. The 
mathematical description is done in the equation (2.2). 

𝑢𝑆𝑀𝐿 =∑𝑛𝐿
𝑖

𝑁

𝑖=1

∙ 𝑢𝑆𝑀𝐿
𝑖 ≅∑𝑛𝐿

𝑖

𝑁

𝑖=1

∙
𝑢𝑆𝑀𝐿
∑  

𝑁
=
𝑢𝑆𝑀𝐿
∑  

𝑁
∙∑𝑛𝐿

𝑖

𝑁

𝑖=1

 (2.2) 

Where 𝑢𝑆𝑀𝐿
∑  

 is the sum of each capacitor voltage in a phase and is called the cluster voltage of the 

phase. 

By summing the insertion indices of each cell in an arm divided by the number of cascaded cells as 
shown in the relation (2.3), the insertion index of each arm is obtained in per unit. The number of possible 
states is then 2 ∙ 𝑁 + 1 discrete values and the value of 𝑛𝐿 can vary between -1 and 1. A value of 0 
means that all the capacitors are not inserted while a value of ±1 means that they are all positively or 
negatively inserted. 

𝑛𝐿 =
1

𝑁
∑𝑛𝐿

𝑖

𝑁

𝑖=1

 (2.3) 

Inserting the relation (2.3) in (2.2), gives the equation (2.4) to adjust the arm voltage between ±𝑢𝑆𝑀𝐿
∑  

. 

The arm voltage depends linearly of the insertion index. Indeed, if 𝑁 is large or the voltages 𝑢𝑆𝑀𝐿
𝑖  are 

controlled by PWM, 𝑛𝐿 can be considered continuous between -1 and 1. 

𝑢𝑆𝑀𝐿 = 𝑛𝐿 ∙ 𝑢𝑆𝑀𝐿
∑   (2.4) 

The block diagram of the system model can be completed with the relation (2.4) as presented on the 
Figure 2-5. 

 

Figure 2-5 : Block diagram completed with the relation (2.4) 

According to the relation 𝑖 = 𝐶 ∙
𝜕𝑢

𝜕𝑡
, the current in the cell is defined by the equation (2.5). The insertion 

index 𝑛𝐿
𝑖  is present. In the case where the capacitor is not inserted, the capacitor does not deliver current. 

𝑛𝐿
𝑖 ∙ 𝑖𝐿 = 𝐶𝑆𝑀 ∙

𝜕𝑢𝑆𝑀𝐿
𝑖

𝜕𝑡
  𝑤𝑖𝑡ℎ 𝑖 = 1,2,… ,𝑁 (2.5) 

As the SSBC is composed of several cascaded cells, the current 𝑖𝐿 depends on the number of active 
cells. The result gives the equation (2.6). 

𝐶𝑆𝑀 ∙∑
𝜕𝑢𝑆𝑀𝐿

𝑖

𝜕𝑡

𝑁

𝑖=1

= 𝑖𝐿 ∙∑𝑛𝐿
𝑖

𝑁

𝑖=1

 (2.6) 

 

Using the arm insertion index equation (2.3), the relationship (2.6) simplifies to equation (2.7). The factor 
N is derived from the fact that the insertion index  𝑛𝐿 is in per unit. 
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(2.3) & (2.6)
 
⇒ 𝐶𝑆𝑀 ∙∑

𝜕𝑢𝑆𝑀𝐿
𝑖

𝜕𝑡

𝑁

𝑖=1

= 𝑖𝐿 ∙ 𝑁 ∙ 𝑛𝐿 (2.7) 

Supposing that the average voltage of each cell are the same, the equation (2.7) can be simplified to 
the relation (2.8). 

𝐶𝑆𝑀
𝑁
∙
𝜕𝑢𝑆𝑀𝐿

∑  

𝜕𝑡
= 𝑖𝐿 ∙ 𝑛𝐿 (2.8) 

Finally, using the relation (2.8), it is possible to establish the block diagram of the whole system model 
as shown in Figure 2-6. 

 

Figure 2-6 : Block diagram of the SSBC system model 

 CONTROL OF THE SYSTEM 

This chapter explains the development required to implement a control strategy of the SSBC. The goal 
is to control the exchange of reactive power between the system and the grid. The reference of the 
control is QAC. 

From the Figure 2-6 which represents the system model to control, it can be seen that the input variable 
of the system is the insertion index 𝑛𝐿. This variable has a double impact on the control. It acts on the 

generation of the arm voltage 𝑢𝑆𝑀𝐿 by multiplying the cluster voltage 𝑢𝑆𝑀𝐿
Σ  but also in the variation of this 

cluster voltage. The control of the system with the insertion index 𝑛𝐿 is therefore non-linear and complex 
to handle. 

In order to avoid this problem of non-linearity, it is possible to define the important quantities to be 
adjusted. These quantities are: 

- 𝑖𝐿 : the arm current which acts in the reactive power control and the variation of 𝑢𝑆𝑀𝐿
Σ . 

- 𝑢𝑆𝑀𝐿
Σ : the cluster voltage which undergoes variations depending on 𝑖𝐿 and permits to generate 

the voltage 𝑢𝑆𝑀𝐿 for the control of the system (thus of 𝑖𝐿). 

 
The quantities 𝑖𝐿 and 𝑢𝑆𝑀𝐿

Σ  represent the internal dynamic state of the system. Thus, it seems obvious 

that the voltage 𝑢𝑆𝑀𝐿
Σ  will be control using the arm current 𝑖𝐿. So, there is only one current to adjust, the 

arm current 𝑖𝐿. 

According to the relation (2.1), the current 𝑖𝐿 is easily controlled with the arm voltage 𝑢𝑆𝑀𝐿. However, the 

system model has the insertion index 𝑛𝐿 as input. Therefore, the relation (2.4), which links the voltage 
to the insertion index, is used. Assuming that the delay of the voltage control is negligible compared to 
the average model of the SSBC, it is then possible to replace the voltage by its reference value 𝑢𝑆𝑀𝐿

∗ , 

which gives the equation (2.9). 

𝑛𝐿 =
𝑢𝑆𝑀𝐿

𝑢𝑆𝑀𝐿
∑  

≅
𝑢𝑆𝑀𝐿
∗

𝑢𝑆𝑀𝐿
∑  

 
(2.9) 

From this last relationship, the control scheme shown on the Figure 2-7 can be used to define the 
insertion index as a function of the arm voltage. 
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Figure 2-7 : Control scheme of the voltage 

It is obvious that this control scheme is simply the inverse of the input stage of the system model which 
was shown at the Figure 2-6. 

 CURRENT CONTROL 

The arm current regulator (𝐺𝑅𝑖𝐿(𝑠)) generates the arm voltage 𝑢𝑆𝑀𝐿. The Figure 2-8 shows how this 

regulator is integrated in the control scheme. 

 

Figure 2-8 : Scheme control of the current 

There are 2 important points to note in the above image: 

- The voltage 𝑢𝑔 is summed in order to perform a voltage feed-forward to counteract the grid 

voltage. 

- The output of the arm current regulator is inverted to take in count the negative sign on the 

arm voltage in the system model to control (see Figure 2-6). 

Until now, a single-phase system was always considered. Now it is possible to switch to a three-phase 
system. To do this, taking the single-phase model, the arms current are handled with the space vectors. 
It is assumed that a PLL (Phase Locked Loop) gives the phase θ of the grid and is used to do the Park 
and Park inverse transformations to obtain the dq/three-phase values. The result is shown in Figure 2-9. 

Note that the insertion index 𝑛𝐿
∗⃗⃗⃗⃗  is obtained by dividing the reference voltages 𝑢𝑆𝑀𝐿𝑖

∗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   by the average value 

of the cluster voltage for each phase, i.e., 3 (∑ 𝑢𝑆𝑀𝐿𝑖
∑  

3

𝑖=1
)⁄ . This is because the three-phase system is 

assumed to be balanced and thus the voltages 𝑢𝑆𝑀𝐿𝑖
Σ  are equal. 

 

Figure 2-9 : Scheme control of the three-phase currents 
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 VOLTAGE CONTROL 

In section 2.3, it was explain that the sum of the arm capacitor voltages 𝑢𝑆𝑀𝐿
Σ  represents the internal 

dynamic state of the system. If the control scheme in Figure 2-9 is used, the voltages 𝑢𝑆𝑀𝐿
Σ  will diverge 

and reach the physical limits of the different electronic components. Therefore, these voltages must be 
controlled. 

By injecting equation (2.4) into equation (2.8), the relation (2.10) is obtained. 

(2.4) & (2.8)
 
⇒𝑢𝑆𝑀𝐿

∑  ∙
𝐶𝑆𝑀
𝑁
∙
𝜕𝑢𝑆𝑀𝐿

∑  

𝜕𝑡
= 𝑖𝐿 ∙ 𝑢𝑆𝑀𝐿  (2.10) 

The mathematical relation (2.11) can then be used to modify the relation (2.10). 

𝑢𝑆𝑀𝐿
∑  ∙

𝜕𝑢𝑆𝑀𝐿
∑  

𝜕𝑡
=
1

2
∙
𝜕 (𝑢𝑆𝑀𝐿

∑  )
2

𝜕𝑡
 (2.11) 

This gives the equation (2.12). 

(2.10) & (2.11)
 
⇒
𝐶𝑆𝑀
2 ∙ 𝑁

∙
𝜕 (𝑢𝑆𝑀𝐿

∑  )
2

𝜕𝑡
= 𝑖𝐿 ∙ 𝑢𝑆𝑀𝐿  (2.12) 

The energy in a capacitor is obtained by the equation (2.13). 

𝐸 =
1

2
∙ 𝐶 ∙ 𝑢2

 
⇒
𝜕𝐸

𝜕𝑡
 =
1

2
∙ 𝐶 ∙

𝜕(𝑢)2

𝜕𝑡
 (2.13) 

Thus, from equation (2.12) , it is possible to obtain the equation (2.14). 

(2.12) & (2.13)
 
⇒
𝜕𝐸𝐿
𝜕𝑡

= 𝑖𝐿 ∙ 𝑢𝑆𝑀𝐿  (2.14) 

The arm voltage and current are desired purely sinusoidal, so they are described in the equations (2.15) 
and (2.16). 

𝑢𝑆𝑀𝐿 = �̂�𝑆𝑀𝐿 ∙ cos(𝜔𝑔 ∙ 𝑡) (2.15) 

𝑖𝐿 = 𝐼𝐿 ∙ cos(𝜔𝑔 ∙ 𝑡 − 𝜑) (2.16) 

Injecting relations (2.15) and (2.16) into (2.14), equation (2.17) is established. 

(2.14), (2.15) & (2.16)
 
⇒
𝜕𝐸𝐿
𝜕𝑡

= �̂�𝑆𝑀𝐿 ∙ 𝐼𝐿 ∙ cos(𝜔𝑔 ∙ 𝑡) ∙ cos(𝜔𝑔 ∙ 𝑡 − 𝜑) (2.17) 

It is then possible to simplify the relation (2.17) by applying a trigonometric relation to obtain the equation 
(2.18). Then the single-phase AC power from the relation 𝑃 = 𝑈 ∙ 𝐼 ∙ cos(𝜑) comes. 

 

𝜕𝐸𝐿
𝜕𝑡

=
�̂�𝑆𝑀𝐿 ∙ 𝐼𝐿

2
∙ cos(𝜑) +

�̂�𝑆𝑀𝐿 ∙ 𝐼𝐿

2
∙ cos(2 ∙ 𝜔𝑔 ∙ 𝑡 − 𝜑) 

(2.18) 

The time-dependent term in this last equation has no influence on the derivative of the energy average. 
This means that it is the active power that allows the adjustment of the internal energy of the system as 
shown in relation (2.19). 

  

𝑃𝑚𝑜𝑛𝑜𝐴𝐶 
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𝜕�̅�𝐿
𝜕𝑡

=
�̂�𝑆𝑀𝐿 ∙ 𝐼𝐿

2
∙ cos(𝜑)  

(2.19) 

By integrating equation (2.19), the relation (2.20) is obtained. The arm energy is decomposed into 

constant term �̅�𝐿 which is the average value and a time-dependent term ∆𝐸𝐿 which represents the ripple 
in the energy arm. It is interesting to note that the frequency of the ripple is twice that of the grid. 

 

𝐸𝐿 = �̅�𝐿 +
�̂�𝐿 ∙ 𝐼𝐿
4 ∙ 𝜔𝑔

∙ sin(2 ∙ 𝜔𝑔 ∙ 𝑡 − 𝜑)  (2.20) 

Since the goal is to have the cluster voltage equal to the reference cluster voltage (𝑢𝑆𝑀𝐿
∑  = 𝑢𝑆𝑀𝐿

∑∗ 
), this 

gives the relation (2.21). This relation defines the average reference value of the arm energy. 

�̅�𝐿
∗ =

1

2
∙
𝐶𝑆𝑀
𝑁
∙ (𝑢𝑆𝑀𝐿

∑∗ )
2

 (2.21) 

As seen previously, to increase the energy, it is necessary to increase the active power. Since the three-
phase system is assumed to be balanced (and it must be for its proper operation), the energy in the 3 
phases can be increased by using the three-phase active power and therefore by increasing the 
reference current 𝑖𝑑

∗ . To do this, it is possible to implement a PI energy controller that respects the control 
law (2.22). 

𝑖𝑑
∗ = 𝐾𝑝𝐸 ∙ (�̅�𝐿

∗ − �̅�𝐿) + 𝐾𝑖𝐸 ∙
1

𝑠
∙ (�̅�𝐿

∗ − �̅�𝐿) (2.22) 

To measure the average value of energy, it is necessary to add a low-pass filter “LFP” which leads to 
the relationship (2.23). 

𝑖𝑑
∗ = 𝐾𝑝𝐸 ∙ (�̅�𝐿

∗ − 𝐿𝑃𝐹{𝐸𝐿}) + 𝐾𝑖𝐸 ∙
1

𝑠
∙ (�̅�𝐿

∗ − 𝐿𝑃𝐹{𝐸𝐿}) 

𝑊𝑖𝑡ℎ ∶ �̅�𝐿
∗ =

1

2
∙
𝐶𝑆𝑀
𝑁
∙ (𝑢𝑆𝑀𝐿

∑∗ )
2
 

(2.23) 

The cutoff frequency of the filter can be set to 1/10 of the ripple frequency i.e., 
𝜔𝑔

5
. 

Finally, the complete control scheme of the SSBC is shown in Figure 2-10. To simplify the control 
scheme, the PLL, Park and Park inverse transformation are not shown. 

 

Figure 2-10 : Complete control scheme of the SSBC in a balanced grid 

∆𝐸𝐿 

𝑃𝑚𝑜𝑛𝑜𝐴𝐶 
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 UNBALANCED GRID 

In this project, the STATCOM has to continue to operate properly even if the grid is unbalanced or if a 
fault occurs in the grid. When the system operates in unbalanced conditions, it is important to use the 
method of symmetrical components [2]. This method is also explained in [3] and [4]. In brief, this method 
shows that an unbalanced poly-phase system may be decomposed in three balanced poly-phase 
sequences. The positive, negative and zero sequences. In reverse order, the sum of these three 
balanced poly-phase sequences gives the unbalanced poly-phase system of the beginning. Note that 
the negative sequence turns the opposite way than the positive sequence. 

The transformation which permits to pass from the unbalanced system to the three balanced poly-phase 
sequences is called the Fortescue transformation and works in the phasors domain. In [3], and [5] for 
more details, an extension of the work of Fortescue to apply the method of the symmetrical components 
in the time domain is done. This extended method is called the Lyon transformation and will be used in 
this project. 

The Figure 2-11 represents the control scheme of the SSBC when it is used in an unbalanced grid. The 
PLL block allows to do the synchronization between the grid voltages and the control. The Lyon blocks 
give the positive and negative sequence of the grid voltage and current. The Park transformations permit 
to obtain the dq phasors for the positive and negative sequences. 

 

Figure 2-11 : Control scheme of the SSBC in an unbalanced grid 

The Dual Vector Current Control (DVCC) block detailed in the Figure 2-12 contains the current 
regulators for the dq currents of the positive and negative sequence. The outputs of the current 
controllers pass through the inverse Park transformation and are summed to give the final arm voltage 

references 𝑢𝑆𝑀𝐿𝑖
∗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . This decoupling between the positive and negative sequences allows to control 

individually the two sequences. 
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Figure 2-12 : Dual Vector Current Control (DVCC) 

Finally, the energy control which generates the d-axes positive sequence reference 𝑖𝑑
+∗ and the 

calculation of the q-axes positive sequence reference 𝑖𝑞
+∗ are the same as for the balanced grid explain 

in the Figure 2-10. The dq-axes negative sequence references  𝑖𝑑
−∗ and 𝑖𝑞

−∗ depends of the application 

and will be discussed in more detail further in this report. 

Note that the zero sequence of the currents and voltages are not used because the SSBC is not able to 
influence the zero sequence from the grid point of view. Indeed, the neutral point of the SSBC is not 
connected to the neutral point of the grid. 

If the control scheme of the Figure 2-11 is used for unbalanced operation, it will not work properly due 
to unbalanced phase power exchange. As a matter of fact, the difficulty in an unbalanced grid for a 
STATCOM application with a MMCC topology comes from the lack of a common DC link in the system. 
This lack makes that it has no automatic energy exchange between the phase legs. Therefore, the 

unbalance grid leads to unbalanced phase power exchange and leads to cluster voltages 𝑢𝑆𝑀𝐿
Σ  that will 

diverge. This complicates the control and need more sophisticated controller to exchange energy 

between the phase legs and (re)balance the cluster voltages 𝑢𝑆𝑀𝐿
Σ . 

As presented in [6], it is possible to balance the cluster voltage with 2 different control strategies. The 
first one is the Zero Sequence Voltage Control (ZSVC) and the second one is the Negative Sequence 
Current Control (NSCC). These two strategies are detailed in the two next sections and are called the 
clusters control. 

2.6.1 Zero Sequence Voltage Control (ZSVC) 

The objective of the ZSVC is to generate a zero sequence voltage to compensate the unbalanced phase 
power exchange coming from the unbalanced grid conditions. The basis of the development below 
comes from [4] and [6]. 

Let assume that all the quantities are sinusoidal. The SSBC exchange positive and negative sequence 
currents with the grid. The grid contains positive and negative sequence voltages. Thus, the SSBC will 
generate positive, negative and zero sequence arm voltages 𝑢𝑆𝑀𝐿𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . These definitions are shown in the 

equations (2.24). 

𝐼 𝐿1 = 𝐼𝑝 ⋅ 𝑒
𝑗⋅𝛿𝑝 + 𝐼𝑛 ⋅ 𝑒

𝑗⋅𝛿𝑛 

𝐼 𝐿2 = 𝐼𝑝 ⋅ 𝑒
𝑗⋅(𝛿𝑝−

2⋅𝜋
3
)
+ 𝐼𝑛 ⋅ 𝑒

𝑗⋅(𝛿𝑛+
2⋅𝜋
3
)
 

𝐼 𝐿3 = 𝐼𝑝 ⋅ 𝑒
𝑗⋅(𝛿𝑝+

2⋅𝜋
3
)
+ 𝐼𝑛 ⋅ 𝑒

𝑗⋅(𝛿𝑛−
2⋅𝜋
3
)
 

𝑈 𝑆𝑀𝐿1 = �̂�𝑝 ⋅ 𝑒
𝑗⋅𝜃𝑝 + �̂�𝑛 ⋅ 𝑒

𝑗⋅𝜃𝑛 + �̂�0 ⋅ 𝑒
𝑗⋅𝛼0 

𝑈 𝑆𝑀𝐿2 = �̂�𝑝 ⋅ 𝑒
𝑗⋅(𝜃𝑝−

2⋅𝜋
3
)
+ �̂�𝑛 ⋅ 𝑒

𝑗⋅(𝜃𝑛+
2⋅𝜋
3
)
+ �̂�0 ⋅ 𝑒

𝑗⋅𝛼0 

𝑈 𝑆𝑀𝐿3 = �̂�𝑝 ⋅ 𝑒
𝑗⋅(𝜃𝑝+

2⋅𝜋
3
)
+ �̂�𝑛 ⋅ 𝑒

𝑗⋅(𝜃𝑛−
2⋅𝜋
3
)
+ �̂�0 ⋅ 𝑒

𝑗⋅𝛼0 

(2.24) 



 

18/57 

The active power in each phase can be calculated by:  

𝑃𝐿𝑖 = ℜ{𝑆 𝐿𝑖} = ℜ{𝑈 𝑆𝑀𝐿𝑖 ⋅ 𝐼 𝐿𝑖
∗ } (2.25) 

Once the development is done and simplified, it is possible to define the zero sequence voltage to 
generate (amplitude and phase angle) which will lead to the desired unbalanced phase power exchange 
that will compensate the effects of the unbalanced conditions of the grid. This result is shown in the 
relation (2.26). For more details on the development, see appendix 9.1. 

𝑡𝑎𝑛(𝛼0) =
(𝑃𝑖𝑚𝑏 𝐿2 − 𝐾2) ⋅ 𝐾3 − (𝑃𝑖𝑚𝑏 𝐿1 − 𝐾1) ⋅ 𝐾5
(𝑃𝑖𝑚𝑏 𝐿1 − 𝐾1) ⋅ 𝐾6 − (𝑃𝑖𝑚𝑏 𝐿2 − 𝐾2) ⋅ 𝐾4

 

�̂�0 =
𝑃𝑖𝑚𝑏 𝐿1 − 𝐾1

𝐾3 ⋅ 𝑐𝑜𝑠(𝛼0) + 𝐾4 ⋅ 𝑠𝑖𝑛(𝛼0)
=

𝑃𝑖𝑚𝑏 𝐿2 − 𝐾2
𝐾5 ⋅ 𝑐𝑜𝑠(𝛼0) + 𝐾6 ⋅ 𝑠𝑖𝑛(𝛼0)

 
(2.26) 

with  

𝐾1 =
�̂�𝑝 ⋅ 𝐼𝑛
2

⋅ 𝑐𝑜𝑠(𝜃𝑝 − 𝛿𝑛) +
�̂�𝑛 ⋅ 𝐼𝑝
2

⋅ 𝑐𝑜𝑠(𝜃𝑛 − 𝛿𝑝) 

𝐾2 =
�̂�𝑝 ⋅ 𝐼𝑛
2

⋅ 𝑐𝑜𝑠 (𝜃𝑝 − 𝛿𝑛 −
4 ⋅ 𝜋

3
) +

�̂�𝑛 ⋅ 𝐼𝑝
2

⋅ 𝑐𝑜𝑠 (𝜃𝑛 − 𝛿𝑝 +
4 ⋅ 𝜋

3
) 

𝐾3 =
𝐼𝑛
2
⋅ 𝑐𝑜𝑠(𝛿𝑛) +

𝐼𝑝
2
⋅ 𝑐𝑜𝑠(𝛿𝑝) 

𝐾4 =
𝐼𝑛
2
⋅ 𝑠𝑖𝑛(𝛿𝑛) +

𝐼𝑝

2
⋅ 𝑠𝑖𝑛(𝛿𝑝) 

𝐾5 =
𝐼𝑛
2
⋅ 𝑐𝑜𝑠 (𝛿𝑛 +

2 ⋅ 𝜋

3
) +

𝐼𝑝

2
⋅ 𝑐𝑜𝑠 (𝛿𝑝 −

2 ⋅ 𝜋

3
) 

𝐾6 =
𝐼𝑛
2
⋅ 𝑠𝑖𝑛 (𝛿𝑛 +

2 ⋅ 𝜋

3
) +

𝐼𝑝
2
⋅ 𝑠𝑖𝑛 (𝛿𝑝 −

2 ⋅ 𝜋

3
) 

(2.27) 

It is important to note that 𝑃𝑖𝑚𝑏 𝐿𝑖 will be defined by the clusters control and are derived from the 
difference between the arm energies. 

Now, the control scheme of the SSBC in an unbalanced grid can be completed with the clusters control 
as shown in the Figure 2-13. The clusters control contains the ZSVC strategy and generates the zero 

sequence voltage which is added to the arm voltage references 𝑢𝑆𝑀𝐿𝑖
∗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . 
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Figure 2-13 : Control scheme of the SSBC with ZSVC 

The detail of the clusters control is shown on the Figure 2-14. The cluster regulators compare the arm 

energy average of one phase �̅�𝐿𝑖 with the global energy average of the three phases �̅�𝐿. The output of 

the regulators are the power imbalance 𝑃𝑖𝑚𝑏 𝐿𝑖
∗  to generate. Finally, the equations (2.26) and (2.27) are 

used to compute the amplitude and the phase angle of the zero sequence voltage to generate. 

 

Figure 2-14 : Detail of the clusters control with the ZSVC strategy 

2.6.1.1 Operating range of the ZSVC 

The equations (2.26) which permit to compute the amplitude and the phase angle of the zero sequence 
voltage to generate are too complicated to understand on the first view how the results will change 
according to the conditions. The most limiting factor in the zero sequence voltage generation is its 
amplitude. From theses equations, it is noticeable that the amplitude may become infinite if the 
denominator is equal to zero. So it depends on the factors 𝐾3 to 𝐾6 and therefore on the positive and 
negative current amplitude. Thus, it is possible to say that the SSBC is mainly sensitive to the amount 
of positive and negative sequence currents that the converter exchange with the grid. 

To visualise in a simple way, the approach is to compute the amplitude of the zero sequence voltage �̂�0 
according to the amplitude of the positive and negative sequence currents under certain conditions of 
phase difference between the sequence currents. In [6], it is explain that the worst case (largest 
amplitude of the zero sequence voltage) is when 𝛿𝑝 = 𝛿𝑛 = 𝜋/2 and the best case is when 𝛿𝑝 = −𝛿𝑛 =
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𝜋/2. Finally, the unbalanced power references 𝑃𝑖𝑚𝑏 𝐿𝑖
∗  must be fixed at a realistic value. In the Figure 

2-15, 𝑃𝑖𝑚𝑏 𝐿1
∗  is fixed to 0.02 [pu] and  𝑃𝑖𝑚𝑏 𝐿2

∗  is set to 0.01 [pu]. These small values are choose to model 

the small disturbances caused by non-idealities. 

 

Figure 2-15 : Amplitude of the zero sequence voltage in the worst (a) and best (b) case 

In the figure above, it is visible that the amplitude of the zero sequence voltage tends to infinity when 
the positive and negative sequence currents approach the same values. In addition, the amplitude is 
shown until a value of 10 [pu] which is much larger than the converter can deliver. Now, to better 
understand the operating range of the ZSVC, the same figures are flattened and shown in the Figure 
2-16 with a maximum amplitude of 1 [pu]. 

The coloured parts are the amplitudes which are between ±1 [pu]. The white parts are when the 
amplitudes are larger than ±1 [pu] and therefore the converter is not able to operate at these operating 
points. 

 

Figure 2-16 : Amplitude of the zero sequence voltage in the worst (a) and best (b) case (flattened view) 

In the best case, the converter is able to work at a majority of operating points. On the other hand, in 
the worst case, it has a majority of operating points where the converter will not be able to generate the 
correct amplitude of the zero sequence voltage. Note that if the currents are null, it is impossible to 
generate imbalanced power and therefore impossible to (re)balance the cluster voltages. 

As a conclusion for the operating range of the SSBC with the ZSVC strategy, it is important to note that 
according the amplitude and difference of phase of the positive and negative sequence currents, the 
converter will not always be able to work correctly and so not able to (re)balanced the cluster voltages 

𝑢𝑆𝑀𝐿
Σ . 

2.6.2 Negative Sequence Current Control (NSCC) 

The objective of the NSCC is to control the negative sequence current that the STATCOM exchanges 
with the grid to rebalance the cluster voltages. Note that if the negative sequence current is used for the 
rebalanced control, it is logically impossible to do load balancing. 
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From [6], the amplitude and phase angle of the negative sequence current to generate are presented in 
the equation (2.28). 

𝑡𝑎𝑛(𝛿𝑛) =
(𝑃𝑖𝑚𝑏 𝐿2 − 𝐾𝑖2) ⋅ 𝐾𝑖3 − (𝑃𝑖𝑚𝑏 𝐿1 − 𝐾𝑖1) ⋅ 𝐾𝑖5
(𝑃𝑖𝑚𝑏 𝐿1 − 𝐾𝑖1) ⋅ 𝐾𝑖6 − (𝑃𝑖𝑚𝑏 𝐿2 − 𝐾𝑖2) ⋅ 𝐾𝑖4

 

 

𝐼𝑛 =
𝑃𝑖𝑚𝑏 𝐿1 − 𝐾𝑖1

𝐾𝑖3 ⋅ 𝑐𝑜𝑠(𝛿𝑛) + 𝐾𝑖4 ⋅ 𝑠𝑖𝑛(𝛿𝑛)
=

𝑃𝑖𝑚𝑏 𝐿2 − 𝐾𝑖2
𝐾𝑖5 ⋅ 𝑐𝑜𝑠(𝛿𝑛) + 𝐾𝑖6 ⋅ 𝑠𝑖𝑛(𝛿𝑛)

 

(2.28) 

with 

𝐾𝑖1 =
�̂�𝑛 ⋅ 𝐼𝑝
2

⋅ 𝑐𝑜𝑠(𝜃𝑛 − 𝛿𝑝) , 𝐾𝑖2 =
�̂�𝑛 ⋅ 𝐼𝑝
2

⋅ 𝑐𝑜𝑠 (𝜃𝑛 − 𝛿𝑝 +
4 ⋅ 𝜋

3
) 

𝐾𝑖3 =
�̂�𝑝
2
⋅ 𝑐𝑜𝑠(𝜃𝑝) , 𝐾𝑖4 =

�̂�𝑝
2
⋅ 𝑠𝑖𝑛(𝜃𝑝) 

𝐾𝑖5 =
�̂�𝑝
2
⋅ 𝑐𝑜𝑠 (𝜃𝑝 −

4 ⋅ 𝜋

3
) , 𝐾𝑖6 =

�̂�𝑝
2
⋅ 𝑠𝑖𝑛 (𝜃𝑝 −

4 ⋅ 𝜋

3
) 

(2.29) 

The result is of the same form that for the ZSVC strategy. Now, neglecting 𝑃𝑖𝑚𝑏 𝐿𝑖 for simpler analysis, 
the negative sequence current amplitude and phase angle are in a simpler form as shown in equation 
(2.30). 

𝛿𝑛 = −𝛿𝑝 + 𝜃𝑛 + 𝜃𝑝 + 𝜋 

 

𝐼𝑛 =
�̂�𝑛 ⋅ 𝐼𝑝

�̂�𝑝
 

(2.30) 

So, the condition �̂�𝑛 = �̂�𝑝 yields to  𝐼𝑛 = 𝐼𝑝 and this could cause problems in the control. Actually, to 

compensate the system losses, the energy controller will generate a three-phase active power of 
3

2
⋅ �̂�𝑝 ⋅

𝐼𝑝 ⋅ cos(𝜃𝑝 − 𝛿𝑝). Unfortunately, the NSCC will generate three-phase active power of 
3

2
⋅ �̂�𝑛 ⋅ 𝐼𝑛 ⋅

cos(𝜃𝑛 − 𝛿𝑛). Therefore, under this condition, it is possible that the NSCC power generation will cancel 
the power generation demand from the energy controller. So, NSCC must be avoided if the condition 

�̂�𝑛 = �̂�𝑝 is possible to appear. 
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3 SINGLE DELTA BRIDGE-CELLS (SDBC) 

The schematic of the SDBC structures is visible on the Figure 3-1. This topology is interesting because 
it has an internal circulating current which helps the control at zero power exchange. On the other hand, 

this structure need √3 more cells to support the higher voltage. 

This system is suitable to exchange a controlled reactive power and to mitigate the flicker effect. The 
cells in the figure below are the same as for the SSBC structure presented in the chapter 2. 

 

Figure 3-1 : SDBC schematic 

To simplify the analysis, as done for the SSBC, the single-phase schematic as seen on the Figure 3-2 
is used. The analysis being quite the same as this of the SSBC presented in the chapter 2, the 

development is simplified. It is important to note that the voltage that the cells must support are √3 higher 
in this case. 

 

Figure 3-2 : Single phase schematic of the SDBC 
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 SYSTEM MODEL 

Following the same steps as for the SSBC in chapters 2.1 and 2.2, the block diagram of the whole 
system model is shown in Figure 3-3. The only difference with the SSBC structure is value of the grid 
voltage (line voltage instead of the phase voltage). 

 

Figure 3-3 : Block diagram of the SDBC system model 

 CONTROL OF THE SYSTEM 

The complete control scheme of the SDBC is quite the same as for the SSBC and is shown in Figure 
3-4. The differences are not visible on this scheme, they are: 

- If the capacity of each cell is the same as in the SSBC, the energy reference �̅�𝐿
∗ must be 3 times 

higher because the cluster voltages 𝑢𝑆𝑀𝐿𝑖
Σ  are √3 times higher. 

- The Park inverse transformation (dq -> abc) must use a transformation angle of θ + π/6 and an 

amplification factor of √3. 

 

Figure 3-4 : Complete control scheme of the SDBC in a balanced grid 

 UNBALANCED GRID 

As the SSBC, the SDBC has to continue to operate properly even if the grid is unbalanced or if a fault 
occurs in the grid. The same methods are used to do the control. For more details, refer to the section 
2.6. 

3.3.1 Zero Sequence Current Control (ZSCC) 

The objective of the ZSCC is to generate a zero sequence current to compensate the unbalanced phase 
power exchange coming from the unbalanced grid conditions. The basis of the development below 
comes from [4] and [6]. 

Let assume that all the quantities are sinusoidal. The SDBC exchange positive and negative sequence 
currents with the grid. The grid contains positive and negative sequence voltages. Moreover the 
converter generates an internal zero sequence current. These definitions are shown in the equations 
(3.1). 

𝐼 𝐿12 = 𝐼𝑝 ⋅ 𝑒
𝑗⋅𝛿𝑝 + 𝐼𝑛 ⋅ 𝑒

𝑗⋅𝛿𝑛 + 𝐼0 ⋅ 𝑒
𝑗⋅𝛿0 

𝐼 𝐿23 = 𝐼𝑝 ⋅ 𝑒
𝑗⋅(𝛿𝑝−

2⋅𝜋
3
)
+ 𝐼𝑛 ⋅ 𝑒

𝑗⋅(𝛿𝑛+
2⋅𝜋
3
)
+ 𝐼0 ⋅ 𝑒

𝑗⋅𝛿0 
(3.1) 
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𝐼 𝐿31 = 𝐼𝑝 ⋅ 𝑒
𝑗⋅(𝛿𝑝+

2⋅𝜋
3
)
+ 𝐼𝑛 ⋅ 𝑒

𝑗⋅(𝛿𝑛−
2⋅𝜋
3
)
+ 𝐼0 ⋅ 𝑒

𝑗⋅𝛿0 

𝑈 𝑆𝑀𝐿1 = �̂�𝑝 ⋅ 𝑒
𝑗⋅𝜃𝑝 + �̂�𝑛 ⋅ 𝑒

𝑗⋅𝜃𝑛  

𝑈 𝑆𝑀𝐿2 = �̂�𝑝 ⋅ 𝑒
𝑗⋅(𝜃𝑝−

2⋅𝜋
3
)
+ �̂�𝑛 ⋅ 𝑒

𝑗⋅(𝜃𝑛+
2⋅𝜋
3
)
 

𝑈 𝑆𝑀𝐿3 = �̂�𝑝 ⋅ 𝑒
𝑗⋅(𝜃𝑝+

2⋅𝜋
3
)
+ �̂�𝑛 ⋅ 𝑒

𝑗⋅(𝜃𝑛−
2⋅𝜋
3
)
 

The active power in each arm can be calculated by:  

𝑃𝐿𝑖𝑗 = ℜ{𝑆 𝐿𝑖𝑗} = ℜ {𝑈 𝑆𝑀𝐿𝑖 ⋅ 𝐼 𝐿𝑖𝑗
∗ } (3.2) 

Once the development is done and simplified, it is possible to define the zero sequence curent to 
generate (amplitude and phase angle) which will lead to the desired unbalanced phase power exchange 
that will compensate the effects of the unbalanced conditions of the grid. This result is shown in the 
relation (3.3). For more details on the development, see appendix 9.2. 

𝑡𝑎𝑛(𝛿0) =
(𝑃𝑖𝑚𝑏 𝐿23 − 𝐾12) ⋅ 𝐾13 − (𝑃𝑖𝑚𝑏 𝐿12 −𝐾11) ⋅ 𝐾15
(𝑃𝑖𝑚𝑏 𝐿12 − 𝐾11) ⋅ 𝐾16 − (𝑃𝑖𝑚𝑏 𝐿23 −𝐾12) ⋅ 𝐾14

 

𝐼0 =
𝑃𝑖𝑚𝑏 𝐿12 − 𝐾11

𝐾13 ⋅ 𝑐𝑜𝑠(𝛿0) + 𝐾14 ⋅ 𝑠𝑖𝑛(𝛿0)
=

𝑃𝑖𝑚𝑏 𝐿23 − 𝐾12
𝐾15 ⋅ 𝑐𝑜𝑠(𝛿0) + 𝐾16 ⋅ 𝑠𝑖𝑛(𝛿0)

 
(3.3) 

with  

𝐾11 =
�̂�𝑝 ⋅ 𝐼𝑛
2

⋅ 𝑐𝑜𝑠(𝜃𝑝 − 𝛿𝑛) +
�̂�𝑛 ⋅ 𝐼𝑝
2

⋅ 𝑐𝑜𝑠(𝜃𝑛 − 𝛿𝑝) 

𝐾12 =
�̂�𝑝 ⋅ 𝐼𝑛

2
⋅ 𝑐𝑜𝑠 (𝜃𝑝 − 𝛿𝑛 −

4 ⋅ 𝜋

3
) +

�̂�𝑛 ⋅ 𝐼𝑝

2
⋅ 𝑐𝑜𝑠 (𝜃𝑛 − 𝛿𝑝 +

4 ⋅ 𝜋

3
) 

𝐾13 =
�̂�𝑛
2
⋅ 𝑐𝑜𝑠(𝜃𝑛) +

�̂�𝑝
2
⋅ 𝑐𝑜𝑠(𝜃𝑝) 

𝐾14 =
�̂�𝑛
2
⋅ 𝑠𝑖𝑛(𝜃𝑛) +

�̂�𝑝

2
⋅ 𝑠𝑖𝑛(𝜃𝑝) 

𝐾15 =
�̂�𝑛
2
⋅ 𝑐𝑜𝑠 (𝜃𝑛 +

2 ⋅ 𝜋

3
) +

�̂�𝑝
2
⋅ 𝑐𝑜𝑠 (𝜃𝑝 −

2 ⋅ 𝜋

3
) 

𝐾16 =
�̂�𝑛
2
⋅ 𝑠𝑖𝑛 (𝜃𝑛 +

2 ⋅ 𝜋

3
) +

�̂�𝑝
2
⋅ 𝑠𝑖𝑛 (𝜃𝑝 −

2 ⋅ 𝜋

3
) 

(3.4) 

It is important to note that 𝑃𝑖𝑚𝑏 𝐿𝑖𝑗 will be defined by the clusters control and are derived from the 

difference between the arm energies. 

Now, the control scheme of the SDBC in an unbalanced grid can be completed with the clusters control 
as shown in the Figure 3-5. The clusters control contains the ZSCC strategy and generates the zero 
sequence current. It has two principal differences with the SSBC control scheme of the Figure 2-13: 

1. The angle θg and the amplitude in the output generation of the DVCC must take in count the 
fact that it works in a delta configuration. So the angle must be θg + π/6 and the amplitudes must 

be multiplied by √3. 
2. Unlike to ZSVC, the zero sequence cannot directly be added to the output from the DVCC. Here, 

the zero sequence voltage that leads to the desired zero sequence current is generated through 

a proportional controller with a 𝐾𝑖0 gain.  
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Figure 3-5 : Control scheme of the SDBC with ZSCC 

The detail of the clusters control is shown on the Figure 3-6. Its operation is the same as for the SSBC. 
Just the equations to generate the zero sequence current 𝑖0⃗⃗⃗   is different and refer to equations (3.3) and 
(3.4). 

 

Figure 3-6 : Detail of the clusters control with the ZSCC 

3.3.1.1 Operating range of the ZSCC 

The equations (3.3) which permits to compute the amplitude and the phase angle of the zero sequence 
current to generate are too complicated to understand on the first view how the results will change 
according to the conditions. The most limiting factor in the zero sequence current generation is its 
amplitude. From these equations, it is noticeable that the amplitude may become infinite if the 
denominator is equal to zero. So it depends on the factors 𝐾13 to 𝐾16 and therefore on the positive and 
negative sequence voltages amplitude. 

To visualise in a simple way, the approach is to compute the amplitude of the zero sequence current 𝐼0 
according to the amplitude of the positive and negative sequence voltages under certain conditions of 
phase difference between the sequence voltages. In [6], it is explain that the worst case (largest 
amplitude of the zero sequence current) is when 𝜃𝑝 = 𝜃𝑛 = 0 and the best case is when 𝜃𝑝 = 0, 𝜃𝑛 = 𝜋. 

Finally, as for the ZSVC strategy, the unbalanced power references 𝑃𝑖𝑚𝑏 𝐿𝑖𝑗
∗  must be fixed at a realistic 
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value. In the Figure 3-7, 𝑃𝑖𝑚𝑏 𝐿12
∗  is fixed to 0.02 [pu] and 𝑃𝑖𝑚𝑏 𝐿23

∗  is set to 0.01 [pu]. These small values 

are choose to model the small disturbances caused by non-idealities. 

 

Figure 3-7 : Amplitude of the zero sequence current in the worst (a) and best (b) case 

In the figure above, it is visible that the amplitude of the zero sequence current tends to infinity when the 
positive and negative sequence voltages approach the same values. In addition, the amplitude is shown 
until a value of 10 [pu] which is much larger than the converter can deliver. Now, to better understand 
the operating range of the ZSVC, the same figures are flattened and shown in the Figure 3-8 with a 
maximum amplitude of 1 [pu]. 

The coloured parts are the amplitudes which are between ±1 [pu]. The white parts are when the 
amplitudes are larger than ±1 [pu] and therefore the converter is not able to operate at these operating 
points. 

 

Figure 3-8 : Amplitude of the zero sequence current in the worst (a) and best (b) case (flattened view) 

In the best case, the converter is able to work at a majority of operating points. On the other hand, in 
the worst case, it has a majority of operating points where the converter will not be able to generate the 
correct amplitude of the zero sequence current. Note that if the voltages are null, it is impossible to 
generate imbalanced power and therefore impossible to (re)balance the cluster voltages. 

As a conclusion for the operating range of the SDBC with the ZSCC strategy, it is important to note that 
according the amplitude and difference of phase of the positive and negative sequence voltages, the 
converter will not always be able to work correctly and so not able to (re)balanced the cluster voltages 

𝑢𝑆𝑀𝐿
Σ . 

It is also interesting to see that the operating range of the ZSCC is exactly the same as the ZSVC if we 
replace the current sequences by the voltage sequences. 
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3.3.2 Negative Sequence Current Control 

The negative sequence current control works exactly the same as for the SSBC. In [6], the amplitude 
and phase angle of the negative sequence current to generate are presented. In this case, the 
computation is exactly the same as for the SSBC structure. So, refer to the equations (2.28) and (2.29). 

The conclusion presented at the end of the section 2.6.2 is therefore the same here. If �̂�𝑛 = �̂�𝑝, it is 

possible that the NSCC power generation will cancel the power generation demand from the energy 
controller. So, NSCC must be avoided if this condition can appear. 
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4 DOUBLE STAR CHOPPER-CELLS (DSCC) 

Despite its higher number of submodules and thus its lower power density, the circulating current and 
high modularity make this topology interesting to compare with the SDBC and SSBC presented above 
in this report, especially concerning grid unbalanced management and zero power exchange. The 
schematic of the DSCC structures is visible on the Figure 4-1. 

 

Figure 4-1 : DSCC (Double-Star Chopper-Cell) STATCOM schematic with Half-Bridge submodules 

 

 CONVERTER MODELLING 

DSCC topology is analysed to obtain its equivalent block diagram model. This block diagram is used to 
design the control for a STATCOM application in 3-phase balanced grid operation. Given that the system 
is considered balanced, a per phase analysis can be performed. Figure 4-2 shows the new schematic 
used in the next sections. Indexes 1, 2 and 3 are not mentioned anymore to simplify the reading. 
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Figure 4-2: DSCC (Double-Star Chopper-Cell) STATCOM per phase analysis schematic 

4.1.1 Output voltage and current relationship 

Kirchhoff's Current Law (KCL) applied to point B gives relation (3.1).  

 𝑖 = 𝑖𝑢 − 𝑖𝑙  (3.1) 

 

Applying Kirchhoff's Voltage Law (KVL) to upper arm, (3.2) is obtained. 

𝑢𝑔𝑠 = −𝑅𝑔 ∙ 𝑖 − 𝐿𝑔 ∙
𝜕𝑖

𝜕𝑡
− 𝑅𝑎 ∙ 𝑖𝑢 − 𝐿𝑎 ∙

𝜕𝑖𝑢
𝜕𝑡
− 𝑢𝑢 + 𝑈𝑃𝐺  (3.2) 

 

Applying Kirchhoff's Voltage Law (KVL) to lower arm, (3.3) is obtained. 

𝑢𝑔𝑠 = −𝑅𝑔 ∙ 𝑖 − 𝐿𝑔 ∙
𝜕𝑖

𝜕𝑡
+ 𝑅𝑎 ∙ 𝑖𝑙 + 𝐿𝑎 ∙

𝜕𝑖𝑙
𝜕𝑡
+ 𝑢𝑙 − 𝑈𝐺𝑁 (3.3) 

 

Adding (3.2) with (3.3) and considering (3.1) leads to (3.4). 

(3.2) + (3.3) & (3.1)
 
⇒ 𝑢𝑔𝑠 = −(𝑅𝑔 +

𝑅𝑎
2
) ∙ 𝑖 − (𝐿𝑔 +

𝐿𝑎
2
) ∙
𝜕𝑖

𝜕𝑡
+
𝑢𝑙 − 𝑢𝑢
2

+
𝑈𝑃𝐺 − 𝑈𝐺𝑁

2
 (3.4) 

 

One objective of the control is to keep 𝑈𝑃𝑁̅̅ ̅̅ ̅ (average value of 𝑈𝑃𝑁) to a constant value 𝑈𝐷𝐶 by the total 
energy controller. Small ripples still exist but are small compared with mean value. This is why they are 
neglected, leading to (3.5).   

𝑈𝑃𝑁 ≈ 𝑈𝑃𝑁̅̅ ̅̅ ̅ = 𝑈𝐷𝐶  (3.5) 
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With balanced grid operation and considering (3.5), equation (3.6) can be written. 

𝑈𝑃𝐺 ≈ 𝑈𝐺𝑁 ≈
𝑈𝐷𝐶
2

 (3.6) 

 

 In (3.4), 𝑢𝑔 is given by (3.7). 

𝑢𝑔 =
𝑢𝑙 − 𝑢𝑢
2

 (3.7) 

 

Injecting (3.5), (3.6) and (3.7) in (3.4) simplifies to (3.8). 

(3.4)&(3.5) &(3.6)&(3.7) 
 
⇒ 𝑢𝑔𝑠 = −(𝑅𝑔 +

𝑅𝑎
2
) ∙ 𝑖 − (𝐿𝑔 +

𝐿𝑎
2
) ∙
𝜕𝑖

𝜕𝑡
+ 𝑢𝑔 (3.8) 

 

Using Laplace transform on equation (3.8) leads to transfer function linking output current with output 
voltage. This transfer function is shown in Figure 4-3. 

 

Figure 4-3: Outputs block diagram 

4.1.2 Circulating voltage and current relationship 

By subtracting (3.2) to (3.3) considering (3.6) and dividing everything by 2, relation (3.9) is obtained. 

(3.3) − (3.2) & (3.6)
 
⇒ 0 = 𝑅𝑎 ∙

𝑖𝑢 + 𝑖𝑙
2

+ 𝐿𝑎 ∙
𝜕

𝜕𝑡
(
𝑖𝑢 + 𝑖𝑙
2

) +
𝑢𝑢 + 𝑢𝑙
2

−
𝑈𝐷𝐶
2

 (3.9) 

 

Circulating current et voltage are defined in (3.10) and (3.11) respectively. 

𝑖𝑐𝑖𝑟𝑐 =
𝑖𝑢 + 𝑖𝑙
2

 (3.10) 

𝑢𝑐𝑖𝑟𝑐 =
𝑢𝑢 + 𝑢𝑙
2

 (3.11) 

 

Injecting (3.10) and (3.11) in (3.9) gives (3.12). 

 (3.9)&(3.10)&(3.11)
 
⇒ 𝑢𝑐𝑖𝑟𝑐 =

𝑈𝑑𝑐
2
− 𝑅𝑎 ∙ 𝑖𝑐𝑖𝑟𝑐 − 𝐿𝑎 ∙

𝜕𝑖𝑐𝑖𝑟𝑐
𝜕𝑡

 (3.12) 

 

Using Laplace transform on equation (3.12) leads to block diagram linking circulating current with 
circulating voltage, shown in Figure 4-4. 
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Figure 4-4: Circulating block diagram 

4.1.3 Arms voltages and currents 

It is possible to write arm currents as a function of output and circulating currents. (3.13) and (3.14) give 
arm current thanks to (3.1) and (3.10). 

(3.1) & (3.10)
 
⇒ 𝑖𝑢 = 𝑖𝑐𝑖𝑟𝑐 +

𝑖

2
 (3.13) 

(3.1) &(3.10)
 
⇒ 𝑖𝑙 = 𝑖𝑐𝑖𝑟𝑐 −

𝑖

2
 (3.14) 

 

Thanks to (3.7) and (3.11), arm voltages are given as a function of output and circulating voltages in 
(3.15) and (3.16). 

(3.7) & (3.11)
 
⇒ 𝑢𝑢 = 𝑢𝑐𝑖𝑟𝑐 − 𝑢𝑔 (3.15) 

(3.7) & (3.11)
 
⇒𝑢𝑙 = 𝑢𝑐𝑖𝑟𝑐 + 𝑢𝑔 (3.16) 

 

Finally, thanks to equations (3.7), (3.11), (3.13) and (3.14) as well as figures Figure 4-3 and Figure 4-4, 
relationship between arm voltages and arm currents can be modelled by the block diagram in Figure 
4-5

. 
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Figure 4-5: Relationship between arms currents and voltages 

4.1.4 Insertion indices 

As well as for SSBC and SDBC, it is necessary to include insertion indices to complete the modelling of 
the 3-wire DSCC converter. In this topology, submodules consist of half-bridge circuits employing 2 
semiconductors with an anti-parallel-connected diode and a capacitor connected across both 
semiconductors as shown in Figure 4-6. 

 

Figure 4-6: Half bridge submodule 

Submodule insertion index 𝑛𝑢,𝑙
𝑖  can have only 2 values: 0 ou 1. If value is 0, the capacitor 𝐶𝑆𝑀 is 

bypassed, meaning that 𝑆1 is « OFF » and 𝑆2 is « ON » (Figure 4-6). If value is 1, the capacitor 𝐶𝑆𝑀 is 

inserted in the arm circuit, meaning that 𝑆1 is « ON » and 𝑆2 is « OFF » (Figure 4-6). In this case, 
capacitor is charging or discharging, depending on the direction of the arm current. 

Thanks to this insertion index, it is possible to evaluate 𝑢𝑢 and 𝑢𝑙 by the values of 𝑢𝑆𝑀𝑖𝑢,𝑙 which are the 

voltage of each submodule capacitor of one leg. To manage the DSCC control correctly, average voltage 
of each submodule capacitor 𝐶𝑆𝑀 has to be equal. It allows approximation proposed in (3.17). 

𝑢𝑢,𝑙 =∑𝑛𝑢,𝑙
𝑖

𝑁

𝑖=1

∙ 𝑢𝑆𝑀𝑖𝑢,𝑙 ≅∑𝑛𝑢,𝑙
𝑖

𝑁

𝑖=1

∙
𝑢𝑆𝑀𝑢,𝑙
∑  

𝑁
=
𝑢𝑆𝑀𝑢,𝑙
∑  

𝑁
∙∑𝑛𝑢,𝑙

𝑖

𝑁

𝑖=1

 (3.17) 

 

In (3.17), 𝑢𝑆𝑀𝑢,𝑙
∑  

 represents the sum of submodules voltages of one arm when all submodules are 

inserted while N is the total number of submodules by arm. 

(3.18) determines the number of submodules inserted by arm in [p.u.], called arm insertion index. There 
are N+1 possible values between 0 and 1 where 0 means all capacitors are bypassed and 1 means 
they are all inserted. 
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𝑛𝑢,𝑙 =
1

𝑁
∙∑𝑛𝑢,𝑙

𝑖

𝑁

𝑖=1

 (3.18) 

 

This arm insertion index in (3.18) allows to simplify expression (3.17) in (3.19). 

(3.17) &(3.18)
 
⇒𝑢𝑢,𝑙 = 𝑛𝑢,𝑙 ∙ 𝑢𝑆𝑀𝑢,𝑙

∑   (3.19) 

 

Based on the fundamental equation linking current and voltage in a capacitor, (3.20) describes the 

current in a submodule. 𝑛𝑢,𝑙
𝑖  is present because if a capacitor is bypassed, its current is 0 [A]. 

𝑛𝑢,𝑙
𝑖 ∙ 𝑖𝑢,𝑙 = 𝐶𝑆𝑀 ∙

𝜕𝑢𝑆𝑀𝑖𝑢,𝑙

𝜕𝑡
      𝑤𝑖𝑡ℎ 𝑖𝑛𝑑𝑒𝑥  𝑖 = 1,2,… ,𝑁 (3.20) 

 

As DSCC is composed of submodules in series, 𝑖𝑢,𝑙 depends on the number of active submodules. It 

leads to (3.21). 

𝐶𝑆𝑀 ∙∑
𝜕𝑢𝑆𝑀𝑖𝑢,𝑙

𝜕𝑡

𝑁

𝑖=1

= 𝑖𝑢,𝑙 ∙∑𝑛𝑢,𝑙
𝑖

𝑁

𝑖=1

 (3.21) 

 

Using (3.18), it is possible to simplify (3.21) in (3.22). 

(3.18) & (3.21)
 
⇒ 𝐶𝑆𝑀 ∙∑

𝜕𝑢𝑆𝑀𝑖𝑢,𝑙

𝜕𝑡

𝑁

𝑖=1

= 𝑖𝑢,𝑙 ∙ 𝑁 ∙ 𝑛𝑢,𝑙 (3.22) 

 

(3.22) can be simplified in (3.23). 

𝐶𝑆𝑀
𝑁
∙
𝜕𝑢𝑆𝑀𝑢,𝑙

∑  

𝜕𝑡
= 𝑖𝑢,𝑙 ∙ 𝑛𝑢,𝑙 (3.23) 

 

By injecting (3.13) in (3.23), (3.24) is obtained. 

(3.13) & (3.23)
 
⇒
𝐶𝑆𝑀
𝑁
∙
𝜕𝑢𝑆𝑀𝑢

∑  

𝜕𝑡
= 𝑛𝑢 ∙ (𝑖𝑐𝑖𝑟𝑐 +

𝑖

2
) (3.24) 

 

 

 

By injecting (3.14)(3.13) in (3.23), (3.25) is obtained. 

(3.14) & (3.23)
 
⇒
𝐶𝑆𝑀
𝑁
∙
𝜕𝑢𝑆𝑀𝑙

∑  

𝜕𝑡
= 𝑛𝑙 ∙ (𝑖𝑐𝑖𝑟𝑐 −

𝑖

2
) (3.25) 

 

Utilizing (3.19), (3.24), (3.25) and the Figure 4-5, it is possible to establish the total DSCC block diagram 
shown in Figure 4-7. This block diagram is used to design the control of the DSCC. 
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Figure 4-7: DSCC converter complete block diagram 

 CONVERTER CONTROL IN BALANCED GRID 

4.2.1 Overall control in balanced grid 

The purpose of the converter control is to insure a control of reactive power injected in the PCC by 
following the reference 𝑄∗. In the same time, the voltages of the capacitors have to be maintained and 
balanced in each arm, between each arm and between each leg. 

As it can be seen in Figure 4-7, DSCC model is nonlinear. Even if the grid is balanced, DSCC model 
contains relatively complex internal dynamics leading to complex control structure. The overall control 
in balanced grid can be separated into 7 different parts as described in Figure 4-8. 

 

Figure 4-8: DSCC overall control block diagram in balanced grid 

Reactive power reference and total energy reference are defined. The power & total energy controller 
defines output currents references. Then output current controllers give the output voltages references. 
In parallel, internal dynamic is controlled by following the leg energy and arm energy difference 
references. The internal control generates the circulating voltages references. Both output and 
circulating voltage references are used to calculate insertion indices references. Finally, a Phase-Shifted 
PWM (PS-PWM) modulation technique used in sub-modulation associated with a controller for 
balancing each individual capacitor create the gate signals to physically control the converter. 

PLL and Park transformation are additional elements used respectively for converter synchronization 
with the grid and generation of grid voltage and current measurements in dq frame. These elements use 
standard techniques. This is why they are not developed in this report. 

Except from the PLL and Park blocks, all the 5 other blocks in Figure 4-8 will be analysed in the next 
sections from the right to the left. 
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4.2.2 Modulation technique and individual capacitor  balancing 

As already mentioned, the PS-PWM modulation technique is used to convert the 𝑛𝑢,𝑙1,2,3
∗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ into PWM 

signals to control each SM (inserting or bypassing them). This PWM generation technique is the best 
one concerning THD and help to maintain SM balancing in a leg. This leads to better internal dynamics 
management. The principle of the classical PS-PWM for upper arm of leg 1 is explained in Figure 4-9. 

 

Figure 4-9: Classical PS-PWM principle for 𝑙𝑒𝑔1 upper arm with N = 5 submodules 

Each carrier signal shifted equally over one period of commutation is compared with the arm insertion 
index reference. It generates a PWM signal for each SM of the arm. This PWM signal is sent to each 
gate driver which allows the insertion or bypass of the SM. 

To improve the balancing of each capacitor voltage, N individual capacitor voltage balancing controllers 
are added in each arm. Each controller follows the principle shown in Figure 4-10. 

 

 Figure 4-10: 𝑆𝑀1𝑢1 voltage balancing controller 

 

The arm insertion index reference is slightly modified for each capacitor in one arm. Depending on the 
current direction in the arm, SM insertion index reference is slightly higher or lower than the arm insertion 
index reference. SM insertion index reference general equation is written in (3.26). 

𝑛𝑆𝑀𝑖𝑢,𝑙1,2,3
∗ = 𝑠𝑖𝑔𝑛(𝑖𝑢,𝑙1,2,3) ∙ 𝐾𝑝𝑢𝑆𝑀

∙ (
𝑢𝑆𝑀𝑢,𝑙1,2,3
∑  

𝑁
− 𝑢𝑆𝑀𝑖𝑢,𝑙1,2,3) (3.26) 

 

Each 𝑛𝑆𝑀𝑖𝑢,𝑙1,2,3
∗  is now a modulation signal reference for its related carrier signal. The principle of the 

proposed hybrid PS-PWM for 𝑙𝑒𝑔1 upper arm is shown in Figure 4-11. 
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Figure 4-11: PS-PWM & individual capacitor balancing technique for 𝑙𝑒𝑔1 upper arm with N = 5 submodules 

 

4.2.3 Arm insertion index references calculations 

As it can be seen in Figure 4-7 and not considering the modulation, arm insertion index references are 
the inputs of the DSCC converter model. It means that insertion index references need to be calculated 
thanks to other variables which need to be controlled. In this section, a per phase analysis is realized 
for better reading. 

As it can be seen in Figure 4-8, insertion index references are calculated thanks to 𝑢𝑔
∗  and 𝑢𝑐𝑖𝑟𝑐

∗ . 

Indeed, injecting (3.19) in (3.7), leads to (3.27). 

(3.7) & (3.19)
 
⇒ 𝑢𝑔 =

−𝑢𝑢 + 𝑢𝑙
2

=
−𝑛𝑢 ∙ 𝑢𝑆𝑀𝑢

∑  + 𝑛𝑙 ∙ 𝑢𝑆𝑀𝑙
∑  

2
 (3.27) 

 

The same for circulating voltage, by injecting (3.19) in (3.11), leads to (3.28). 

 (3.11)&(3.19)(3.19)
 
⇒ 𝑢𝑐𝑖𝑟𝑐 =

𝑢𝑢 + 𝑢𝑙
2

=
𝑛𝑢 ∙ 𝑢𝑆𝑀𝑢

∑  + 𝑛𝑙 ∙ 𝑢𝑆𝑀𝑙
∑  

2
 (3.28) 

 

By subtracting (3.27) to (3.28) and supposing the delay in voltage control negligible, 𝑛𝑢 relationship 
(3.29) is obtained. 

(3.28) − (3.27) 
 
⇒ 𝑛𝑢 =

𝑢𝑐𝑖𝑟𝑐 − 𝑢𝑔

𝑢𝑆𝑀𝑢
∑  

≈
𝑢𝑐𝑖𝑟𝑐
∗ − 𝑢𝑔

∗

𝑢𝑆𝑀𝑢
∑  

 (3.29) 

 

By adding (3.27) with (3.28) and supposing the delay in voltage control negligible, as for (3.29), 𝑛𝑙 
relationship (3.30)  is obtained. 

(3.27) + (3.28)
 
⇒ 𝑛𝑙 =

𝑢𝑐𝑖𝑟𝑐 + 𝑢𝑔

𝑢𝑆𝑀𝑙
∑  

≈
𝑢𝑐𝑖𝑟𝑐
∗ + 𝑢𝑔

∗

𝑢𝑆𝑀𝑙
∑  

 (3.30) 

 

It is now possible to realize the block diagram of arm insertion index references calculations, shown in 
Figure 4-12. 
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Figure 4-12: Arm insertion index references calculations block diagram 

4.2.4 Output currents regulation 

We now need to calculate the output voltages references 𝑢𝑔1,𝑔2,𝑔3
∗ . With the per phase schematic shown 

in Figure 4-12 and considering the DSCC block diagram in Figure 4-7, it is possible to generate 𝑢𝑔
∗  and 

𝑢𝑐𝑖𝑟𝑐
∗  references as proposed in Figure 4-13. 

 

Figure 4-13: Per phase currents controller block diagram 

There are 4 interesting points to underline in Figure 4-13: 

• Output and circulating currents controls are separated. 

• 𝑢𝑔𝑠
∗  is added as a feed-forward used to counteract grid voltage. 

• Output of the circulating current regulator is inversed considering the sign of circulating voltage 
in Figure 4-7. 

• 
𝑈𝐷𝐶

2
  is added as a feed-forward used for the same reason as from former point. 

As already mentioned, output current control is realized independently from circulating current control. 
In this section, only output current control is presented. Furthermore, considering now the three phases, 
output currents references are generated using space vectors in dq frame. 3-phase output currents 
controller block diagram is shown in Figure 4-14. 
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Figure 4-14: 3-phase output currents controller block diagram 

𝐿𝑒𝑞 is defined in (3.31) while 𝜔𝑔 is the grid angular frequency in [rad/s]. 

𝐿𝑒𝑞 = (𝐿𝑔 +
𝐿𝑎
2
) (3.31) 

Decoupling between 𝑖𝑑
∗  and 𝑖𝑞

∗  is realized. 𝑢𝑔𝑠𝑑
∗  and 𝑢𝑔𝑠𝑞

∗  are added as feed-forward, used to counteract 

grid voltage. As in Figure 4-13, after inverse Park transformation, output voltages references 𝑢𝑔1,𝑔2,𝑔3
∗  

are calculated and used in arm insertion index references calculation. PI controllers with same 
parameters are used for 𝑖𝑑

∗  and 𝑖𝑞
∗ . 

4.2.5 Internal control 

Internal control block, in combination with global energy control and individual capacitor balancing, 
maintain DSCC internal stability. 

Internal control block diagram is shown in Figure 4-15. 

 

Figure 4-15 : Internal control block diagram 

 

Internal control block is composed of 3 principal controllers: 

• 𝑮𝑹𝑬𝒍𝒆𝒈: Leg energy balancing controller which regulates the mean total energy in each leg to 

�̅�∗𝑙𝑒𝑔 =
𝐶𝑆𝑀∙𝑈𝐷𝐶

2

𝑁
 

• 𝑮𝑹𝑬𝜟: Arm energy balancing controller which equals upper arm energy to lower arm energy in 

each leg. 

• 𝑮𝑹𝒊𝒄𝒊𝒓𝒄: Circulating current controller which regulates the circulating current in each leg. 

Furthermore, due to absence of physical DC-link, the sum of circulating current of each leg is zero as 
written in (3.32). 
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𝑖𝑐𝑖𝑟𝑐1 + 𝑖𝑐𝑖𝑟𝑐2 + 𝑖𝑐𝑖𝑟𝑐3 = 0 (3.32) 

The arm energy balancing controller ensures a balanced operation between the upper and lower arm 
by regulating the average energy stored in each of them at the same value. The arm energy difference 
is composed of a DC and a fundamental term. The fundamental component of the energy is directly 
linked with fundamental of the circulating current, which is responsible for exchanging active power 
between the converter’s arms. The controller acts only on the fundamental component of the arm energy 
difference of each leg.  

As already mentioned, circulating currents are coupled by nature in the DSCC. As a result, an injection 
of circulating current fundamental frequency in one arm of the DSCC leg would unavoidably couple with 
the other legs of the converter, if no further action is taken. According to [7], to achieve a decoupled 
control, injection of active current in one phase and reactive currents in the other phases is realized so 
that the average of the capacitor voltages is not shifted. Consequently, the total average energy 
difference remains unaffected. This concept leads to the following decoupling equations (3.33),(3.34) 
and (3.35), taken from [7].   

𝑖𝑐𝑖𝑟𝑐1
1∗ = 𝐸∆1(𝑡)

̅̅ ̅̅ ̅̅ ̅̅ ∙ cos (𝜔1 ∙ 𝑡) +
1

√3
𝐸∆2(𝑡)
̅̅ ̅̅ ̅̅ ̅̅ ∙ cos (𝜔1 ∙ 𝑡 +

𝜋

2
) +

1

√3
𝐸∆3(𝑡)
̅̅ ̅̅ ̅̅ ̅̅ ∙ cos (𝜔1 ∙ 𝑡 −

𝜋

2
) (3.33) 

𝑖𝑐𝑖𝑟𝑐2
1∗ = 𝐸∆2(𝑡)

̅̅ ̅̅ ̅̅ ̅̅ ∙ cos (𝜔1 ∙ 𝑡 −
2𝜋

3
) +

1

√3
𝐸∆1(𝑡)
̅̅ ̅̅ ̅̅ ̅̅ ∙ cos (𝜔1 ∙ 𝑡 −

7𝜋

6
) +

1

√3
𝐸∆3(𝑡)
̅̅ ̅̅ ̅̅ ̅̅ ∙ cos (𝜔1 ∙ 𝑡 −

𝜋

6
) 

(3.34) 

𝑖𝑐𝑖𝑟𝑐3
1∗ = 𝐸∆3(𝑡)

̅̅ ̅̅ ̅̅ ̅̅ ∙ cos (𝜔1 ∙ 𝑡 +
2𝜋

3
) +

1

√3
𝐸∆1(𝑡)
̅̅ ̅̅ ̅̅ ̅̅ ∙ cos (𝜔1 ∙ 𝑡 +

7𝜋

6
) +

1

√3
𝐸∆2(𝑡)
̅̅ ̅̅ ̅̅ ̅̅ ∙ cos (𝜔1 ∙ 𝑡 +

𝜋

6
) 

(3.35) 

The complete principle of arm energy balancing controller works as follows. Energy measurements pass 

through the low pass filter with cutting frequency at 
𝑓1

10
. Then the means are sent to the decoupled 

equations. It is worth to mention that this decoupling gives 3 signals at the fundamental frequency. These 
signals are the fundamental component refences for the circulating current in each leg and allow to 
maintain the balance of energy between arms in each leg. 

The leg energy balancing controller maintains the average energy stored in each leg to a defined value 
given in (3.36). 

�̅�∗𝑙𝑒𝑔 =
𝐶𝑆𝑀 ∙ 𝑈𝐷𝐶

2

𝑁
 (3.36) 

Indeed, as it can be seen in Figure 4-15, each leg energy is measured and passes through a low pass 

filter with cutting frequency at 
2∙𝑓1

10
 to access the mean value. The result is compared with the reference 

value �̅�∗𝑙𝑒𝑔. The difference is regulated to zero by the 𝐺𝑅𝐸𝑙𝑒𝑔  regulator. The reference signal sent by this 

regulator represents the DC component of the circulating current for each leg. 

The circulating current is regulated according to the reference values sent by the energy controllers 
above mentioned. As already expressed, the reference signal to follow is composed of a fundamental 
and DC component. Furthermore, the circulating current of an DSCC presents naturally a second order 
harmonic component when the current of fundamental frequency is controlled. To regulate properly all 
the frequency components of the circulating current, a Proportional Integral Resonant (PIR) controller 

𝐺𝑅𝑖𝑐𝑖𝑟𝑐 with control of fundamental and second harmonic component is used, as in [7]. 

Leg energy balancing controller is a proportional controller while arm energy balancing controller is a 
proportional controller with a sinusoidal component to generate the fundamental component setpoint for 
circulating currents.  

4.2.6 Power and total energy control 

As already mentioned, the purpose of the converter control is first to insure a control of reactive power 
injected in the PCC. This is why reactive power reference is required. Reactive power control is realized 
using the mathematical relationship between power and current in the dq frame. The general relationship 
is given by (3.37).  
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𝑝 + 𝑗𝑞 =  
3

2
∙ (𝑈𝑑 − 𝑗𝑈𝑞) ∙ (𝐼𝑑 + 𝑗𝐼𝑞) (3.37) 

 

Where: 

• 𝑝 is instantaneous active power [W] 

• 𝑞 is instantaneous reactive power [var] 

• (𝑈𝑑 − 𝑗𝑈𝑞) is the conjugate of the voltage space vector in dq rotating frame at grid frequency 

• (𝐼𝑑 + 𝑗𝐼𝑞) is the current space vector in dq rotating frame at grid frequency 

 

Isolating the real and imaginary part of the right-hand side of (3.37) leads to (3.38) and (3.39). 

𝑝 =  
3

2
∙ (𝑈𝑑 ∙ 𝐼𝑑 + 𝑈𝑞 ∙ 𝐼𝑞) (3.38) 

𝑞 =  
3

2
∙ (𝑈𝑑 ∙ 𝐼𝑞 −𝑈𝑞 ∙ 𝐼𝑑) 

(3.39) 

 

Using a PLL synchronized on the grid frequency to set the parameter 𝑈𝑞 to zero leads to (3.40) and 

(3.41). 

𝑝 =  
3

2
∙ 𝑈𝑑 ∙ 𝐼𝑑 (3.40) 

𝑞 =  
3

2
∙ 𝑈𝑑 ∙ 𝐼𝑞 

(3.41) 

 

Thanks to (3.41), the relationship between 𝑄∗ and 𝑖𝑞
∗  is available. Remastering (3.41) putting 𝐼𝑞 as a 

function of 𝑞, it is now possible to generate 𝑖𝑞
∗  setpoint based on the desired 𝑄∗. It is given in (3.42). 

𝑖𝑞
∗ = 𝑄∗ ∙

2

3 ∙ 𝑈𝑑
  

(3.42) 

 

As shown from (3.40), 𝑖𝑑
∗  setpoint is responsible of active power exchange between the converter and 

the grid. In STATCOM application, ideally no active power is exchanged. However, in practice, active 
power is exchanged to cover the converter losses. The losses are not constant over the time. It means 
that a controller has to be set to calculate the real time amount of active power to absorb from or inject 
in the grid. This controller is realized by controlling the real time total energy stored in the DSCC at a 
constant desired value. It allows the DSCC to have the total energy needed to maintain the internal 

dynamics in a stable operation. Furthermore, in steady state conditions, it regulates �̅�𝑃𝑁 to 𝑈𝐷𝐶 (where 

𝑈𝐷𝐶 is the setpoint needed to satisfy the DSCC mathematical modelling exposed above). Indeed, the 
total energy stored in the DSCC is the sum of the 3 leg energies which are regulated as reminded in 
(3.43). 

�̅�∗𝑙𝑒𝑔 =
𝐶𝑆𝑀 ∙ 𝑈𝐷𝐶

2

𝑁
 (3.43) 

It leads to a total energy setpoint 𝐸𝑡𝑜𝑡
∗  in the DSCC given in (3.44). 

𝐸𝑡𝑜𝑡
∗ = 3 ∙ �̅�∗𝑙𝑒𝑔 = 3 ∙

𝐶𝑆𝑀 ∙ 𝑈𝐷𝐶
2

𝑁
 (3.44) 

𝐶𝑆𝑀 and 𝑁 are constant values. Considering that �̅�∗𝑙𝑒𝑔 = �̅�𝑙𝑒𝑔 for each phase, means that 𝐸𝑡𝑜𝑡 = 𝐸𝑡𝑜𝑡
∗  

and finally 𝑈𝐷𝐶 = 𝑈𝑃𝑁. A PI controller is used to control the total energy of the converter. 
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Figure 4-16 shows power and total energy control block diagram. 

 

Figure 4-16: Power and total energy control block diagram 

This last figure completes the description of the DSCC control in balanced grid. 

 CONTROL IN UNBALANCED GRID 

The DSCC control in balanced grid is not sufficient when the grid becomes unbalanced. It leads to grid 
desynchronization and internal divergence of arm voltages. These issues are not acceptable when 
connected to the grid in case of unbalanced. This is why a second control scheme is proposed. 

4.3.1 Overall control in unbalanced grid 

To deal with unbalanced grid, the new overall diagram is given in Figure 4-17. 

 

Figure 4-17: DSCC overall control block diagram in unbalanced grid 

 

It changes a bit the overall control presented in Figure 4-8. As for SSBC in unbalanced grid conditions, 

output voltage references 𝑢𝑔1,𝑔2,𝑔3
∗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   are calculated using PLL, Lyon and Park transformations as 

presented in section 162.6. Internal control block, as well as the insertion indices calculations and gate 
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signal generation blocks are the same blocks used in the balanced control. In the next sections, only 
the new blocks are presented. 

 

4.3.2 DVCC for DSCC 

The DVCC block detailed in Figure 4-18 contains the current regulators for the dq currents of the positive 
and negative sequence. The outputs of the current controllers pass through the inverse Park 

transformation and are summed to give the final output voltage references 𝑢𝑔1,𝑔2,𝑔3
∗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . This decoupling 

between the positive and negative sequences allows to control individually the two sequences. The 
principle is the same as the one of the SSBC and SDBC topologies. 

 

Figure 4-18: DVCC block diagram for DSCC 

Here the CC positive and negative sequences are using the principle shown in Figure 4-14 replacing dq 
components by either the positive or the negative corresponding sequence. 

4.3.3 Power and total energy control in unbalanced grid  

The total energy control is still the same but this time, it generates the 𝑖𝑑
+∗reference. 𝑖𝑞

+∗ is now the output 

of the power calculations in dq frame for 𝑄∗ using 𝑢𝑔𝑠𝑑
+ . It is important to note that during grid unbalanced, 

𝑢𝑔𝑠𝑑
+  is smaller than 𝑢𝑔𝑠𝑑  in balanced grid. It means that 𝑖𝑞

+∗ has to be limited not to exceed the maximum 

power of the STATCOM. Figure 4-19 shows the equivalent block diagram. 

 

Figure 4-19: Power and total energy control block diagram in unbalanced grid 
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5 OPERATING RANGE OF THE PROJECT 

The operating range in this project is well defined. From [1], we know that the current exchanged 
between the STATCOM and the grid is balanced. Furthermore, the grid voltage has a low level of 

unbalance in normal operation but can also have a high degree of unbalance (�̂�𝑛/�̂�𝑝) if a fault occurs in 

the grid. The objective is that the STATCOM continue to operate even during the fault condition. 

In [1], the different faults occurring in the grid are analysed. The results are summarized in the Table 
5-1. 

Substation Boisdavaux Polny 

sc type single-phase two-phase single-phase two-phase 

 Amplitude 
[pu] 

Phase 
[rad] 

amplitude 
[pu] 

phase 
[rad] 

amplitude 
[pu] 

phase 
[rad] 

amplitude 
[pu] 

phase 
[rad] 

𝑈𝑝 0.986 2.624 0.492 -2.094 0.987 -2.211 0.640 -0.259 

𝑈𝑛 0.006 2.405 0.492 2.094 0.005 -2.524 0.352 -2.213 

𝑈0 0.992 -0.519 0.492 0.000 0.996 0.923 0.493 1.915 

Table 5-1 : Grid voltage at “Boisdavaux” substation sequences when a fault occurs in the grid 

The grid defaults are a single-phase or a two-phase to earth short-circuit. These defaults could appear 
at the “Boisdavaux” or “Polny” substations. When the fault occurred, the temporal voltages at the PCC 
of the STATCOM are simulated and transformed in the positive, negative and zero sequences. Their 
amplitude are expressed in per unit and the phase in radian gives the phase of the phasor A. Obviously, 
the phasors B and C have a phase difference of ±2π/3 with the phasor A. Finally, the zero sequence 
voltage are in phase for the A, B and C phasors. 

From the results presented in the Table 5-1, three cases can be defined: 

1. Single-phase short-circuit: no matter in which substation the default occurs, the positive and 
zero sequences are near 1 pu and the negative sequence is near 0 pu. 

2. Two-phase short-circuit in Boisdavaux: the three sequences have the same amplitude. It gives 
a high degree of unbalance 𝑈𝑛/𝑈𝑝= 1. 

3. Two-phase short-circuit in Polny: the three sequences have different amplitude. The degree of 
unbalance is smaller than in the previous case, 𝑈𝑛/𝑈𝑝= 0.55. 

One important thing which is the same in the three cases is that the zero sequence in the grid voltages 
will not be seen by the STATCOM. Indeed, because the STATCOM is not referenced (linked) to the 
neutral line of the grid, the system can be considered as floating and thus it will not be affected by the 
zero sequence voltage of the grid. 

Concerning the current exchanged between the STATCOM and the grid, it is supposed that it is 
balanced in each case. The amplitude is equal to 1 pu and the majority is given by the reactive power 
(90° phase-shift current compared to the PCC voltage). A little amount of the current is given by the 
active power (in phase current) to compensate the losses in the STATCOM. 

Each STATCOM topology work well on a balanced grid without any fault. So, the effectiveness 
evaluation of each STATCOM topology is done on its capability to operate properly when a fault occurs 
in the grid. The three STATCOM structures are evaluated here under: 

- SSBC: as explain in the section 2.6.1.1, the ZSVC strategy control is sensitive to the degree of 
current unbalance 𝐼𝑛/𝐼𝑝 and support well unbalanced voltage. The Figure 2-15 shows that if  

𝐼𝑛/𝐼𝑝 = 1, the zero sequence voltage to generate tends to infinity. But, as explained above, the 

currents are well balanced, thus the ZSVC strategy seems to be a good solution for the different 
operating points. On the contrary, the NSCC strategy cannot be used when it has a two-phase 
short-circuit at the substation “Boisdavaux” because 𝑈𝑛/𝑈𝑝= 1 (see explication in the section 

2.6.2). 
- SDBC: as explain in the section 3.3.1.1Erreur ! Source du renvoi introuvable., the ZSCC 

strategy control is sensitive to the degree of voltage unbalance 𝑈𝑛/𝑈𝑝 and support well 

unbalanced current. The Figure 3-7 shows that if 𝑈𝑛/𝑈𝑝 = 1, the zero sequence current to 

generate tends to infinity. This degree of voltage unbalance 𝑈𝑛/𝑈𝑝 = 1 is reach when it has a 

two-phase short-circuit at the substation “Boisdavaux”. Due to this, the ZSCC strategy cannot 
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be used at this operating point. It is the same conclusion for the NSCC strategy as explain in 
the SSBC structure. 

- DSCC: According to state of the art presented in [1], DSCC topology, having more degree of 
freedom than SSBC and SDBC and with a suitable control, is able to work with every type of 
unbalance. The single-phase short-circuit is managed correctly with the control proposed in 
section 4.3 (verified by simulations). However for two-phase short-circuit, in the literature, this 
control has never been tested and in the current state of the simulation analyses, it appears that 
DSCC internal dynamics is not stable for all types of reactive power exchanged. To verify this 
case, an entire operating range of the DSCC was not found in the literature and has to be 
calculated. HEIG-VD team needs more time to realize this study and draw a conclusion on this 
case. 

As a conclusion, from the analysis here above, the SSBC topology with the ZSVC strategy is selected 
for the simulation analysis because it seems to work well in all the operating points of the project. On 
the contrary, the SDBC structure will not be more simulated because it was demonstrated that it cannot 
work in the case of a two-phase short-circuit at the “Boisdavaux” substation. 

For the DSCC, the question is still open and need further investigations. An additional report presenting 
the results will be sent later on. 
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6 SIMULATION RESULTS 

In the previous chapters (2, 3 and 4), three topologies were presented and analysed. They are the 
SSBC, the SDBC and the DSCC. Furthermore, in the chapter 5, the operating range of the project, and 
in particular when a fault occurs in the grid, shows that the SDBC cannot works properly in all operating 
points of the project. So, only the SSBC and the DSCC will be simulated in more details. The simulations 
are done in the simulation software PLECS. 

For each STATCOM structure, the first part of simulations proves the well operation of the system on a 

balanced grid with unbalanced cluster voltages 𝑢𝑆𝑀𝐿
Σ  (for SSBC) or 𝑢𝑆𝑀𝑢,𝑙

∑  
 (for DSCC). The control 

strategy must rebalance the cluster voltages when it is activated. 

The second part of simulations proves the well operation of the STATCOM in case of an unbalanced 
system due to a fault in the grid. The three possible operating points with a fault in the grid are defined 
in the chapter 0. 

 SSBC SIMULATIONS 

As a reminder, the Figure 2-1 represents the schematic of the converter. The simulation parameters are 
defined in the Table 6-1. 

Parameter Value Parameter Value 

𝑈𝑔𝑠 400/√3 [V] 𝐶𝑠𝑚 3.63 [mF] 

𝑓𝑔 50 [Hz] 𝑆1𝑝𝑢 5 [kVA] 

𝐿𝑔 10 [µH] 𝑢𝑆𝑀𝐿
Σ  425 [V] 

𝑅𝑔 10 [mΩ] 𝑓𝑠𝑤 1 [kHz] 

𝐿𝑎 15 [mH] 𝑡𝑑𝑒𝑎𝑑𝑏𝑎𝑛𝑑 1 [µs] 

𝑅𝑎 200 [mΩ] 𝑓𝑠𝑎𝑚𝑝𝑙𝑒 5 [kHz] 

𝑁𝑠𝑚 5 [-]   

Table 6-1 : simulation parameters for the SSBC simulations 

𝑆1𝑝𝑢 is the nominal apparent power of the converter. 𝑢𝑆𝑀𝐿
Σ  is the nominal value for the cluster voltage. 

Each submodule switch at a frequency of 𝑓𝑠𝑤 with a dead-band time of 𝑡𝑑𝑒𝑎𝑑𝑏𝑎𝑛𝑑. Finally, the sampling 

of each measure is done at 𝑓𝑠𝑎𝑚𝑝𝑙𝑒 (𝑓𝑠𝑤 ⋅ 𝑁𝑠𝑚). 

6.1.1 Rebalancing of the cluster voltage 

In this simulation, the STATCOM exchanges the nominal reactive power with positive sequence current. 
At the beginning, the ZSVC control strategy is deactivated. At 0.2 [s], a negative sequence current is 

generates to unbalance the cluster voltages 𝑢𝑆𝑀𝐿
Σ . At 0.25 [s], the negative sequence current is removed 

and it remains only the positive sequence. Finally, at 0.3 [s], the ZSVC control strategy is activated. The 
Figure 6-1 shows the more interesting quantities of the simulation. 
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Figure 6-1 : SSBC, rebalancing of the cluster voltage simulation 

Each part of time is analysed here below. Keep in mind that the voltage at the PCC are balanced during 
all this simulation: 

- 0.15 [s] < t < 0.2 [s]: the grid currents are balanced and so the cluster voltages remain well 
balanced. 

- 0.2 [s] < t < 0.25 [s]: the grid currents are unbalanced, because the ZSVC control strategy is not 
activated, the cluster voltages derived from their stable average value. 

- 0.25 [s] < t < 0.3 [s]: the grid currents are balanced again. The cluster voltages stay at their 
unbalanced values. 

- 0.3 [s] < t < 0.5 [s]: the ZSVC control strategy is activated as it is visible on the last graph (𝑢0
∗ ≠

0). The cluster voltages present a transient and are rebalanced. 

Note that the currents grid have a THD of 0.4% at 0.5 [s]. This THD increase only of 0.1% when the 
cluster voltages are unbalanced and the ZSVC is activated. 

This simulation demonstrates that when the grid voltage at the PCC are balanced and the cluster 
voltages are unbalanced, the ZSVC is able to rebalance the cluster voltages thanks to the generation 
of the zero sequence voltage. 

6.1.2 One-phase short-circuit 

Now, it is checked that the STATCOM is able to continue to operate when a one-phase short-circuit 
occurs in the grid. As explain in the chapter 5, wherever the short-circuit appears, the PCC voltages 
seen by the STATCOM is quiet the same. 

In this simulation, the STATCOM exchanges the nominal reactive power with positive sequence current 
before the fault occurs. Once the fault appears at 0.2033 [s], the objective of the converter is to continue 
to exchange the same amount of current as before the fault apparition. The Figure 6-2 shows the more 
interesting quantities of the simulation. 
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Figure 6-2 : SSBC, one-phase short-circuit simulation 

The grid currents and the cluster voltages do not change between before and after the default apparition. 
More, the ZSVC control strategy does not seem to change its behaviour when the fault occurs. As 
explain in the chapter Erreur ! Source du renvoi introuvable. , this is because the converter is not 
influenced by the zero sequence voltage of the grid. So it sees only the positive sequence and a very 
little negative sequence voltage. Note that if the ZSVC control strategy is removed, the little amount of 

negative sequence voltage will drift softly the cluster voltages 𝑢𝑆𝑀𝐿𝑖
Σ . So the ZSVC control strategy must 

be implemented to have a good operation of the converter. Finally, the grid currents present, as the 
previous point, a THD of 0.4%. 

 

6.1.3 Two-phase short-circuit 

In this section, it is checked that the STATCOM is able to continue to operate when a two-phase short-
circuit occurs in the grid. From the chapter 5, it has two interesting substations where the short-circuit is 
done. Boisdavaux and Polny. 

In this simulation, the STATCOM exchanges the nominal reactive power with positive sequence current 
before the fault occurs. Once the fault appears at 0.2033 [s], the objective of the converter is to continue 
to exchange the same amount of current as before the fault apparition. The Figure 6-3 shows the more 
interesting quantities of the simulation for the short-circuit at Boisdavaux substation. 
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Figure 6-3 : SSBC, two-phase short-circuit at Boisdavaux simulation 

It is important to note that the cluster voltages 𝑢𝑆𝑀𝐿𝑖
Σ  had to be increased in order to be able to generate 

the zero sequence voltage with a high amplitude (about 200 [V]). So, the average cluster voltages were 
increased from 425 [V] to 560 [V] (+32%). 

When the fault appears, the ZSVC control strategy generates a zero sequence voltage about 200 [V] 
amplitude. The control makes possible to limit the unbalance of the cluster voltage and even to 
rebalance them. If the ZSVC control strategy is removed, the cluster voltages reached quickly the 
physical values for a well operation of the converter. Finally, the grid currents present a THD of 0.6%. 
Compare to the previous section, this is half more and is due to the increase of the cluster voltage which 
allow to generate larger output voltage but with a lower resolution since the number of cells has not 
changed (NSM = 5). 

The Figure 6-4 shows the results of the simulation for the short-circuit at Polny substation. Here, the 
same analysis can be done as for the short-circuit at Boisdavaux substation. It can ben noted that the 
zero sequence voltage amplitude is lower than for two-phase short-circuit at Boisdavaux. The short-
circuit in Polny is then less critical than the one directly at the Boisdavaux substation. 
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Figure 6-4 : SSBC, two-phase short-circuit at Polny simulation 

 

 DSCC SIMULATIONS 

As a reminder, the Figure 4-1 represents the schematic of the converter. The simulation parameters are 
defined in the Table 6-2. 

Parameter Value Parameter Value 

𝑈𝑔𝑠 400/√3 [V] 𝐶𝑠𝑚 3.3 [mF] 

𝑓𝑔 50 [Hz] 𝑆1𝑝𝑢 5 [kVA] 

𝐿𝑔 3 [mH] 𝑢𝑆𝑀𝑢,𝑙
Σ  800 [V] 

𝑅𝑔 100 [mΩ] 𝑓𝑠𝑤 1 [kHz] 

𝐿𝑎 6 [mH] 𝑡𝑑𝑒𝑎𝑑𝑏𝑎𝑛𝑑 1 [µs] 

𝑅𝑎 200 [mΩ] 𝑓𝑠𝑎𝑚𝑝𝑙𝑒 5 [kHz] 

𝑁𝑠𝑚 5 [-] (by arm)   

Table 6-2 : simulation parameters for the SSBC simulations 

𝑆1𝑝𝑢 is the nominal apparent power of the converter. 𝑢𝑆𝑀𝑢,𝑙
Σ  is the nominal value for the cluster voltage 

(by arm). Each submodule switch at a frequency of 𝑓𝑠𝑤 with a dead-band time of 𝑡𝑑𝑒𝑎𝑑𝑏𝑎𝑛𝑑. Finally, the 

sampling of each measure is done at 𝑓𝑠𝑎𝑚𝑝𝑙𝑒 (𝑓𝑠𝑤 ⋅ 𝑁𝑠𝑚), as for the SSBC. 

6.2.1 Rebalancing of the internal voltages 

In this simulation, the STATCOM exchanges the nominal reactive power with positive sequence current. 
Before 0.4 [s], overall DSCC control is activated. At 0.4 [s], a negative sequence current is generated 
and internal as well as total energy controllers are deactivated to unbalance the leg cluster voltages 

𝑢𝑆𝑀𝐿𝑒𝑔
Σ  and the arm cluster voltages 𝑢𝑆𝑀𝑢

Σ  and 𝑢𝑆𝑀𝑙
Σ  within one leg. At 0.45 [s], the negative sequence 

current is removed and it remains only the positive sequence. Finally, at 0.5 [s], the overall control is 
activated. The Figure 6-5 shows the more interesting quantities of the simulation. 
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Figure 6-5: DSCC rebalancing of internal voltages simulation 

Each part of time is analysed here below. Keep in mind that the voltage at the PCC are balanced during 
all this simulation: 

- 0.35 [s] < t < 0.4 [s]: the grid currents are balanced and so all the internal cluster voltages remain 
well balanced (thanks to internal control). 

- 0.4 [s] < t < 0.45 [s]: the grid currents are unbalanced and because the internal controls are not 
activated, the leg and arm cluster voltages derived from their stable average value (each one in 

a different way). It can be seen that 𝑢𝑆𝑀𝑢1
Σ  (in blue) arm cluster voltage and thus the 𝑢𝑆𝑀𝑙𝑒𝑔1

Σ  (in 

blue) leg cluster voltage are the most affected. 
- 0.45 [s] < t < 0.5 [s]: the grid currents are balanced again without the internal controls. The 

cluster voltages stay globally at their unbalanced values. 
- 0.5 [s] < t < 0.7 [s]: all internal controls are activated. The leg and arm cluster voltages present 

a transient and are rebalanced. 

Note that the grid currents have a THD of 0.9 [%] at 0.7 [s]. This THD is 1.2% higher during the rebalance 
at 0.55 [s]. This is also a good THD given that this case is a case that shouldn’t appear in reality. Indeed, 
internal controls are always activated preventing this kind of internal unbalance. 

This simulation demonstrates that when the grid voltage at the PCC are balanced and the cluster 
voltages are unbalanced, the internal control is able to rebalance the cluster voltages. 

6.2.2 One-phase short-circuit 

Now, it is checked that the DSCC is able to continue to operate when a one-phase short-circuit occurs 
in the grid. As already explained in the previous chapters, wherever the short-circuit appears, the PCC 
voltages see by the STATCOM is quiet the same. 

In this simulation, the DSCC exchanges the nominal reactive power with positive sequence current 
before the fault occurs. Once the fault appears at 0.3888 [s], the objective of the converter is to continue 
to exchange the same amount of current as before the fault apparition. The Figure 6-6 shows the more 
interesting quantities of the simulation 
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Figure 6-6: DSCC one-phase short-circuit simulation results 

The grid currents and the internal cluster voltages stay the same before and after the default apparition. 
Even during the short circuit (here during 0.4 [s]), the right amount of current is exchanged and the 
internal cluster voltages stay balanced around the nominal value. It validates the correct operation of 
DSCC during one-phase short-circuit in the grid. As explained for the SSBC, this is because the 
converter is not influenced by the zero sequence voltage of the grid. It sees only the positive sequence 
and a very little negative sequence voltage. To confirm the results, THD before and after is measured. 
Grid currents THD is 0.9 [%] at t = 0.35 [s] and 1.0 [%] at t = 0.7 [s]. THD is not affected during the short-
circuit. 

6.2.3 Two-phase short-circuit 

This section does not contain any simulation results because these results are not conclusive. 

As mentioned in the section 5, according to state of the art presented in [1], DSCC topology has more 
degree of freedom than SSBC and SDBC. Therefore, with a suitable control, DSCC should be able to 
work with every type of unbalance. However, for two-phase short-circuit, in the current state of the 
simulation analyses, it appears that DSCC internal dynamics is not stable and internal cluster voltages 
drift until impossible values. As a consequence, grid current exchanged is also greatly distorted with a 
THD of around 20%. All these elements are not acceptable. 

In order to see if this control and topology are able to work in such default case, the entire operating 
range of the DSCC has to be calculated in the same way as for other topologies. No information for this 
was found in the literature. HEIG-VD team needs more time to realize this study and draw a conclusion 
on this case. Another report will be provided later on to present the results of this part. 
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7 CONCLUSION 

This report presents the theory analysis of three different converter topologies: the SSBC, the SDBC 
and the DSCC. The operating range of each topology was studied. In parallel, several operating points 
of the grid in this project were taken from the analysis done in [1]. By comparing the different operating 
range/points, the SDBC topology has been removed from the potential solutions since it cannot operate 
properly when the condition 𝑈𝑛/𝑈𝑝 = 1 is reached. This condition of large degree of unbalance of the 

grid voltage can appear when it has a two-phase short-circuit. 

Finally, the SSBC topology with the ZSVC strategy has demonstrated that the converter is able to 
continue to operate even when a one-phase or a two-phase short-circuit occurs in the grid. It was proven 
that the currents continue to be generated with a low THD and that the cluster voltages stay balanced 
thanks to the ZSVC control strategy. 

Concerning DSCC topology control strategy presented, results are conclusive for one-phase short-
circuits appearing in the grid. However, additional time is needed to analyse more in details if two-phase 
short-circuit are possible to manage with this topology and control. Another report will be provided later 
on to present the results of this part. 
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9 APPENDIX 

 ZSVC DEVELOPMENT 

Let assume that all the quantities are sinusoidal. The SSBC will generate positive, negative and zero 

sequences arm voltages 𝑢𝑆𝑀𝐿𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . These definitions are shown in the equations (9.1). 

𝐼 𝐿1 = 𝐼𝑝 ⋅ 𝑒
𝑗⋅𝛿𝑝 + 𝐼𝑛 ⋅ 𝑒

𝑗⋅𝛿𝑛 

𝐼 𝐿2 = 𝐼𝑝 ⋅ 𝑒
𝑗⋅(𝛿𝑝−

2⋅𝜋
3
)
+ 𝐼𝑛 ⋅ 𝑒

𝑗⋅(𝛿𝑛+
2⋅𝜋
3
)
 

𝐼 𝐿3 = 𝐼𝑝 ⋅ 𝑒
𝑗⋅(𝛿𝑝+

2⋅𝜋
3
)
+ 𝐼𝑛 ⋅ 𝑒

𝑗⋅(𝛿𝑛−
2⋅𝜋
3
)
 

𝑈 𝑆𝑀𝐿1 = �̂�𝑝 ⋅ 𝑒
𝑗⋅𝜃𝑝 + �̂�𝑛 ⋅ 𝑒

𝑗⋅𝜃𝑛 + �̂�0 ⋅ 𝑒
𝑗⋅𝛼0 

𝑈 𝑆𝑀𝐿2 = �̂�𝑝 ⋅ 𝑒
𝑗⋅(𝜃𝑝−

2⋅𝜋
3
)
+ �̂�𝑛 ⋅ 𝑒

𝑗⋅(𝜃𝑛+
2⋅𝜋
3
)
+ �̂�0 ⋅ 𝑒

𝑗⋅𝛼0 

𝑈 𝑆𝑀𝐿3 = �̂�𝑝 ⋅ 𝑒
𝑗⋅(𝜃𝑝+

2⋅𝜋
3
)
+ �̂�𝑛 ⋅ 𝑒

𝑗⋅(𝜃𝑛−
2⋅𝜋
3
)
+ �̂�0 ⋅ 𝑒

𝑗⋅𝛼0 

(9.1) 

The active power in each phase can be calculated by:  

𝑃𝐿𝑖 = ℜ{𝑆 𝐿𝑖} = ℜ{𝑈 𝑆𝑀𝐿𝑖 ⋅ 𝐼 𝐿𝑖
∗ } = 𝑃𝑐𝑜𝑚 + 𝑃𝑖𝑚𝑏 𝐿𝑖 (9.2) 

with:  

𝑃𝑐𝑜𝑚 =
�̂�𝑝 ⋅ 𝐼𝑝

2
⋅ 𝑐𝑜𝑠(𝜃𝑝 − 𝛿𝑝) +

�̂�𝑛 ⋅ 𝐼𝑛
2

⋅ 𝑐𝑜𝑠(𝜃𝑛 − 𝛿𝑛) =
𝑃3𝛷
3

 (9.3) 

and 

𝑃𝑖𝑚𝑏 𝐿1 =
�̂�𝑝 ⋅ 𝐼𝑛

2
⋅ 𝑐𝑜𝑠(𝜃𝑝 − 𝛿𝑛) +

�̂�𝑛 ⋅ 𝐼𝑝

2
⋅ 𝑐𝑜𝑠(𝜃𝑛 − 𝛿𝑝)⏟                              

𝐾1

+
�̂�0 ⋅ 𝐼𝑛
2

⋅ 𝑐𝑜𝑠(𝛼0 − 𝛿𝑛)

+
�̂�0 ⋅ 𝐼𝑝

2
⋅ 𝑐𝑜𝑠(𝛼0 − 𝛿𝑝) 

𝑃𝑖𝑚𝑏 𝐿2 =
�̂�𝑝 ⋅ 𝐼𝑛
2

⋅ 𝑐𝑜𝑠 (𝜃𝑝 − 𝛿𝑛 −
4 ⋅ 𝜋

3
) +

�̂�𝑛 ⋅ 𝐼𝑝
2

⋅ 𝑐𝑜𝑠 (𝜃𝑛 − 𝛿𝑝 +
4 ⋅ 𝜋

3
)

⏟                                        
𝐾2

+
�̂�0 ⋅ 𝐼𝑛
2

⋅ 𝑐𝑜𝑠 (𝛼0 − 𝛿𝑛 −
2 ⋅ 𝜋

3
) +

�̂�0 ⋅ 𝐼𝑝

2
⋅ 𝑐𝑜𝑠 (𝛼0 − 𝛿𝑝 +

2 ⋅ 𝜋

3
) 

(9.4) 

Using the trigonometric relation cos(𝛼 + 𝛽) = cos(𝛼) ⋅ cos(𝛽) − sin(𝛼) ⋅ sin(𝛽) and doing simplifications, 
equations (9.4) becomes: 

𝑃𝑖𝑚𝑏 𝐿1 = 𝐾1 + �̂�0 ⋅ 𝑐𝑜𝑠(𝛼0) ⋅ [
𝐼𝑛
2
⋅ 𝑐𝑜𝑠(𝛿𝑛) +

𝐼𝑝

2
⋅ 𝑐𝑜𝑠(𝛿𝑝)]

⏟                  

𝐾3=
1
2
⋅ℜ{𝐼 𝐿1}

+ �̂�0 ⋅ 𝑠𝑖𝑛(𝛼0)

⋅ [
𝐼𝑛
2
⋅ 𝑠𝑖𝑛(𝛿𝑛) +

𝐼𝑝

2
⋅ 𝑠𝑖𝑛(𝛿𝑝)]

⏟                  

𝐾4=
1
2
⋅ℑ{𝐼 𝐿1}

 
(9.5) 
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𝑃𝑖𝑚𝑏 𝐿2 = 𝐾2 + �̂�0 ⋅ 𝑐𝑜𝑠(𝛼0) ⋅ [
𝐼𝑛
2
⋅ 𝑐𝑜𝑠 (𝛿𝑛 +

2 ⋅ 𝜋

3
) +

𝐼𝑝

2
⋅ 𝑐𝑜𝑠 (𝛿𝑝 −

2 ⋅ 𝜋

3
)]

⏟                            

𝐾5=
1
2
⋅ℜ{𝐼 𝐿2}

+ 

+�̂�0 ⋅ 𝑠𝑖𝑛(𝛼0) ⋅ [
𝐼𝑛
2
⋅ 𝑠𝑖𝑛 (𝛿𝑛 +

2 ⋅ 𝜋

3
) +

𝐼𝑝

2
⋅ 𝑠𝑖𝑛 (𝛿𝑝 −

2 ⋅ 𝜋

3
)]

⏟                            

𝐾6=
1
2
⋅ℑ{𝐼 𝐿2}

 

This equations can be modified to the next ones:  

𝑃𝑖𝑚𝑏 𝐿1 − 𝐾1
𝑐𝑜𝑠(𝛼0)

= �̂�0 ⋅ 𝐾3 + �̂�0 ⋅ 𝐾4 ⋅ 𝑡𝑎𝑛(𝛼0) 

𝑃𝑖𝑚𝑏 𝐿2 −𝐾2
𝑐𝑜𝑠(𝛼0)

= �̂�0 ⋅ 𝐾5 + �̂�0 ⋅ 𝐾6 ⋅ 𝑡𝑎𝑛(𝛼0) 

(9.6) 

Dividing the first one by the second one: 

𝑃𝑖𝑚𝑏 𝐿1 − 𝐾1
𝑃𝑖𝑚𝑏 𝐿2 − 𝐾2

=
𝐾3 + 𝐾4 ⋅ 𝑡𝑎𝑛(𝛼0)

𝐾5 + 𝐾6 ⋅ 𝑡𝑎𝑛(𝛼0)
 (9.7) 

Now it is possible to isolate the 𝑡𝑎𝑛(𝛼0) as shown in equation (9.8). 

tan(𝛼0) =
(𝑃𝑖𝑚𝑏 𝐿2 − 𝐾2) ⋅ 𝐾3 − (𝑃𝑖𝑚𝑏 𝐿1 − 𝐾1) ⋅ 𝐾5
(𝑃𝑖𝑚𝑏 𝐿1 − 𝐾1) ⋅ 𝐾6 − (𝑃𝑖𝑚𝑏 𝐿2 − 𝐾2) ⋅ 𝐾4

 (9.8) 

Injecting (9.8) in (9.6), the amplitude of the zero sequence voltage can be evaluated.  

�̂�0 =
𝑃𝑖𝑚𝑏 𝐿1 − 𝐾1

𝐾3 ⋅ 𝑐𝑜𝑠(𝛼0) + 𝐾4 ⋅ 𝑠𝑖𝑛(𝛼0)
=

𝑃𝑖𝑚𝑏 𝐿2 − 𝐾2
𝐾5 ⋅ 𝑐𝑜𝑠(𝛼0) + 𝐾6 ⋅ 𝑠𝑖𝑛(𝛼0)

 (9.9) 

The equation (9.9) shows 2 different ways to compute the amplitude of the zero sequence voltage. It is 
recommended to use the one that has the biggest denominator. 

Note that the different variables 𝐾1 to 𝐾6 are define here below. 

𝐾1 =
�̂�𝑝 ⋅ 𝐼𝑛
2

⋅ 𝑐𝑜𝑠(𝜃𝑝 − 𝛿𝑛) +
�̂�𝑛 ⋅ 𝐼𝑝
2

⋅ 𝑐𝑜𝑠(𝜃𝑛 − 𝛿𝑝) 

𝐾2 =
�̂�𝑝 ⋅ 𝐼𝑛
2

⋅ 𝑐𝑜𝑠 (𝜃𝑝 − 𝛿𝑛 −
4 ⋅ 𝜋

3
) +

�̂�𝑛 ⋅ 𝐼𝑝
2

⋅ 𝑐𝑜𝑠 (𝜃𝑛 − 𝛿𝑝 +
4 ⋅ 𝜋

3
) 

𝐾3 =
𝐼𝑛
2
⋅ 𝑐𝑜𝑠(𝛿𝑛) +

𝐼𝑝
2
⋅ 𝑐𝑜𝑠(𝛿𝑝) 

𝐾4 =
𝐼𝑛
2
⋅ 𝑠𝑖𝑛(𝛿𝑛) +

𝐼𝑝
2
⋅ 𝑠𝑖𝑛(𝛿𝑝) 

𝐾5 =
𝐼𝑛
2
⋅ 𝑐𝑜𝑠 (𝛿𝑛 +

2 ⋅ 𝜋

3
) +

𝐼𝑝
2
⋅ 𝑐𝑜𝑠 (𝛿𝑝 −

2 ⋅ 𝜋

3
) 

𝐾6 =
𝐼𝑛
2
⋅ 𝑠𝑖𝑛 (𝛿𝑛 +

2 ⋅ 𝜋

3
) +

𝐼𝑝
2
⋅ 𝑠𝑖𝑛 (𝛿𝑝 −

2 ⋅ 𝜋

3
) 

(9.10) 

To evaluate the different quantities in the variables 𝐾1 to 𝐾6, the equations (9.11) are used.  

𝐼𝑝 = √𝑖𝑑
+2 + 𝑖𝑞

+2,   𝛿𝑝 = 𝑎𝑡𝑎𝑛2(
𝑖𝑞
+

𝑖𝑑
+) ,   𝐼𝑛 = √𝑖𝑑

−2 + 𝑖𝑞
−2,   𝛿𝑛 = −𝑎𝑡𝑎𝑛2(

𝑖𝑞
−

𝑖𝑑
−) (9.11) 
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�̂�𝑝 = √𝑢𝑑
+2 + 𝑢𝑞

+2,   𝜃𝑝 = 𝑎𝑡𝑎𝑛2(
𝑢𝑞
+

𝑢𝑑
+) ,   �̂�𝑛 = √𝑢𝑑

−2 + 𝑢𝑞
−2,   𝜃𝑛 = −𝑎𝑡𝑎𝑛2(

𝑢𝑞
−

𝑢𝑑
−) 

 ZSCC DEVELOPMENT 

Let assume that all the quantities are sinusoidal. The SDBC exchange positive and negative sequence 
currents with the grid. The grid contains positive and negative sequence voltages. Moreover the 
converter generates an internal zero sequence current. These definitions are shown in the equations 
(9.12). 

𝐼 𝐿12 = 𝐼𝑝 ⋅ 𝑒
𝑗⋅𝛿𝑝 + 𝐼𝑛 ⋅ 𝑒

𝑗⋅𝛿𝑛 + 𝐼0 ⋅ 𝑒
𝑗⋅𝛿0 

𝐼 𝐿23 = 𝐼𝑝 ⋅ 𝑒
𝑗⋅(𝛿𝑝−

2⋅𝜋
3
)
+ 𝐼𝑛 ⋅ 𝑒

𝑗⋅(𝛿𝑛+
2⋅𝜋
3
)
+ 𝐼0 ⋅ 𝑒

𝑗⋅𝛿0 

𝐼 𝐿31 = 𝐼𝑝 ⋅ 𝑒
𝑗⋅(𝛿𝑝+

2⋅𝜋
3
)
+ 𝐼𝑛 ⋅ 𝑒

𝑗⋅(𝛿𝑛−
2⋅𝜋
3
)
+ 𝐼0 ⋅ 𝑒

𝑗⋅𝛿0 

𝑈 𝑆𝑀𝐿1 = �̂�𝑝 ⋅ 𝑒
𝑗⋅𝜃𝑝 + �̂�𝑛 ⋅ 𝑒

𝑗⋅𝜃𝑛  

𝑈 𝑆𝑀𝐿2 = �̂�𝑝 ⋅ 𝑒
𝑗⋅(𝜃𝑝−

2⋅𝜋
3
)
+ �̂�𝑛 ⋅ 𝑒

𝑗⋅(𝜃𝑛+
2⋅𝜋
3
)
 

𝑈 𝑆𝑀𝐿3 = �̂�𝑝 ⋅ 𝑒
𝑗⋅(𝜃𝑝+

2⋅𝜋
3
)
+ �̂�𝑛 ⋅ 𝑒

𝑗⋅(𝜃𝑛−
2⋅𝜋
3
)
 

(9.12) 

The active power in each phase can be calculated by:  

𝑃𝐿𝑖𝑗 = ℜ{𝑆 𝐿𝑖𝑗} = ℜ {𝑈 𝑆𝑀𝐿𝑖 ⋅ 𝐼 𝐿𝑖𝑗
∗ } = 𝑃𝑐𝑜𝑚 + 𝑃𝑖𝑚𝑏 𝐿𝑖𝑗 (9.13) 

with:  

𝑃𝑐𝑜𝑚 =
�̂�𝑝 ⋅ 𝐼𝑝
2

⋅ 𝑐𝑜𝑠(𝜃𝑝 − 𝛿𝑝) +
�̂�𝑛 ⋅ 𝐼𝑛
2

⋅ 𝑐𝑜𝑠(𝜃𝑛 − 𝛿𝑛) =
𝑃3𝛷
3

 (9.14) 

and 

𝑃𝑖𝑚𝑏 𝐿12 =
�̂�𝑝 ⋅ 𝐼𝑛

2
⋅ 𝑐𝑜𝑠(𝜃𝑝 − 𝛿𝑛) +

�̂�𝑛 ⋅ 𝐼𝑝

2
⋅ 𝑐𝑜𝑠(𝜃𝑛 − 𝛿𝑝)⏟                              

𝐾11

+
�̂�𝑝 ⋅ 𝐼0

2
⋅ 𝑐𝑜𝑠(𝜃𝑝 − 𝛿0)

+
�̂�𝑛 ⋅ 𝐼0
2

⋅ 𝑐𝑜𝑠(𝜃𝑛 − 𝛿0) 

𝑃𝑖𝑚𝑏 𝐿23 =
�̂�𝑝 ⋅ 𝐼𝑛

2
⋅ 𝑐𝑜𝑠 (𝜃𝑝 − 𝛿𝑛 −

4 ⋅ 𝜋

3
) +

�̂�𝑛 ⋅ 𝐼𝑝

2
⋅ 𝑐𝑜𝑠 (𝜃𝑛 − 𝛿𝑝 +

4 ⋅ 𝜋

3
)

⏟                                        
𝐾2

+
�̂�𝑝 ⋅ 𝐼0

2

⋅ 𝑐𝑜𝑠 (𝜃𝑝 − 𝛿0 −
2 ⋅ 𝜋

3
) +

�̂�𝑛 ⋅ 𝐼0
2

⋅ 𝑐𝑜𝑠 (𝜃𝑛 − 𝛿0 +
2 ⋅ 𝜋

3
) 

(9.15) 

Using the trigonometric relation cos(𝛼 + 𝛽) = cos(𝛼) ⋅ cos(𝛽) − sin(𝛼) ⋅ sin(𝛽) and doing simplifications, 
equations (9.15) becomes: 
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𝑃𝑖𝑚𝑏 𝐿12 = 𝐾11 + 𝐼0 ⋅ 𝑐𝑜𝑠(𝛿0) ⋅ [
�̂�𝑛
2
⋅ 𝑐𝑜𝑠(𝜃𝑛) +

�̂�𝑝
2
⋅ 𝑐𝑜𝑠(𝜃𝑝)]

⏟                  

𝐾13=
1
2
⋅ℜ{𝑈 𝑆𝑀𝐿1}

+ 𝐼0 ⋅ 𝑠𝑖𝑛(𝛿0)

⋅ [
�̂�𝑛
2
⋅ 𝑠𝑖𝑛(𝜃𝑛) +

�̂�𝑝

2
⋅ 𝑠𝑖𝑛(𝜃𝑝)]

⏟                  

𝐾14=
1
2
⋅ℑ{𝑈 𝑆𝑀𝐿1

}

 

𝑃𝑖𝑚𝑏 𝐿23 = 𝐾12 + 𝐼0 ⋅ 𝑐𝑜𝑠(𝛿0) ⋅ [
�̂�𝑛
2
⋅ 𝑐𝑜𝑠 (𝜃𝑛 +

2 ⋅ 𝜋

3
) +

�̂�𝑝
2
⋅ 𝑐𝑜𝑠 (𝜃𝑝 −

2 ⋅ 𝜋

3
)]

⏟                              

𝐾15=
1
2
⋅ℜ{𝑈 𝑆𝑀𝐿2}

+ 

+𝐼0 ⋅ 𝑠𝑖𝑛(𝛿0) ⋅ [
�̂�𝑛
2
⋅ 𝑠𝑖𝑛 (𝜃𝑛 +

2 ⋅ 𝜋

3
) +

�̂�𝑝
2
⋅ 𝑠𝑖𝑛 (𝜃𝑝 −

2 ⋅ 𝜋

3
)]

⏟                              

𝐾16=
1
2
⋅ℑ{𝑈 𝑆𝑀𝐿2}

 

(9.16) 

This equations can be modified to the next ones:  

𝑃𝑖𝑚𝑏 𝐿12 −𝐾11
𝑐𝑜𝑠(𝛿0)

= 𝐼0 ⋅ 𝐾13 + 𝐼0 ⋅ 𝐾14 ⋅ 𝑡𝑎𝑛(𝛿0) 

𝑃𝑖𝑚𝑏 𝐿23 −𝐾12
𝑐𝑜𝑠(𝛿0)

= 𝐼0 ⋅ 𝐾15 + 𝐼0 ⋅ 𝐾16 ⋅ 𝑡𝑎𝑛(𝛿0) 

(9.17) 

Dividing the first one by the second one: 

𝑃𝑖𝑚𝑏 𝐿12 − 𝐾11
𝑃𝑖𝑚𝑏 𝐿23 − 𝐾12

=
𝐾13 +𝐾14 ⋅ 𝑡𝑎𝑛(𝛿0)

𝐾15 +𝐾16 ⋅ 𝑡𝑎𝑛(𝛿0)
 (9.18) 

Now it is possible to isolate the 𝑡𝑎𝑛(𝛼0) as shown in equation (9.19). 

𝑡𝑎𝑛(𝛿0) =
(𝑃𝑖𝑚𝑏 𝐿23 − 𝐾12) ⋅ 𝐾13 − (𝑃𝑖𝑚𝑏 𝐿12 −𝐾11) ⋅ 𝐾15
(𝑃𝑖𝑚𝑏 𝐿12 − 𝐾11) ⋅ 𝐾16 − (𝑃𝑖𝑚𝑏 𝐿23 −𝐾12) ⋅ 𝐾14

 (9.19) 

Injecting (9.19) in (9.17), the amplitude of the zero sequence current can be evaluated.  

𝐼0 =
𝑃𝑖𝑚𝑏 𝐿12 − 𝐾11

𝐾13 ⋅ 𝑐𝑜𝑠(𝛿0) + 𝐾14 ⋅ 𝑠𝑖𝑛(𝛿0)
=

𝑃𝑖𝑚𝑏 𝐿23 − 𝐾12
𝐾15 ⋅ 𝑐𝑜𝑠(𝛿0) + 𝐾16 ⋅ 𝑠𝑖𝑛(𝛿0)

 (9.20) 

The equation (9.20) shows 2 different ways to compute the amplitude of the zero sequence current. It 
is recommended to use the one that has the biggest denominator. 

Note that the different variables 𝐾11 to 𝐾16 are define here below. 

𝐾11 =
�̂�𝑝 ⋅ 𝐼𝑛
2

⋅ 𝑐𝑜𝑠(𝜃𝑝 − 𝛿𝑛) +
�̂�𝑛 ⋅ 𝐼𝑝
2

⋅ 𝑐𝑜𝑠(𝜃𝑛 − 𝛿𝑝) 

𝐾12 =
�̂�𝑝 ⋅ 𝐼𝑛

2
⋅ 𝑐𝑜𝑠 (𝜃𝑝 − 𝛿𝑛 −

4 ⋅ 𝜋

3
) +

�̂�𝑛 ⋅ 𝐼𝑝

2
⋅ 𝑐𝑜𝑠 (𝜃𝑛 − 𝛿𝑝 +

4 ⋅ 𝜋

3
) 

𝐾13 =
�̂�𝑛
2
⋅ 𝑐𝑜𝑠(𝜃𝑛) +

�̂�𝑝
2
⋅ 𝑐𝑜𝑠(𝜃𝑝) 

𝐾14 =
�̂�𝑛
2
⋅ 𝑠𝑖𝑛(𝜃𝑛) +

�̂�𝑝
2
⋅ 𝑠𝑖𝑛(𝜃𝑝) 

𝐾15 =
�̂�𝑛
2
⋅ 𝑐𝑜𝑠 (𝜃𝑛 +

2 ⋅ 𝜋

3
) +

�̂�𝑝
2
⋅ 𝑐𝑜𝑠 (𝜃𝑝 −

2 ⋅ 𝜋

3
) 

(9.21) 
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𝐾16 =
�̂�𝑛
2
⋅ 𝑠𝑖𝑛 (𝜃𝑛 +

2 ⋅ 𝜋

3
) +

�̂�𝑝

2
⋅ 𝑠𝑖𝑛 (𝜃𝑝 −

2 ⋅ 𝜋

3
) 

 


