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Summary

Distribution networks are rapidly becoming "active", as accurate control over electricity generation
sources and loads make them partially dispatchable. This flexibility, when correctly identified and ag-
gregated, could be used by the Distribution System Operators (DSO) to optimize local grid efficiency
and, if possible, to offer services to third parties, thereby providing an additional revenue stream. Fur-
thermore, correctly quantifying the available flexibility would enable an equitable exchange of energy
data and could expand the conventional and currently restricted exchanges between customer, the
DSO and the Transmission System Operator (TSO).

This project aims to develop a general but practical dynamic flexibility model that helps the DSO make
informed decisions on optimally controlling its flexibility to reach a techno-economic optimum. At first, a
mechanism to assess the impact of flexibility actuation on the DSO load curve, which can estimate the
amount of flexibility from day zero without relying on historical observations, is presented. We achieve
this by simulating the flexible devices, starting from publicly available metadata, and learning their re-
sponse to a random control signal using a non-parametric global forecasting model. This forecasting
model can be used to characterize flexibility, including rebound effects, answering questions such as:
how the controlled device mix influences flexibility? How many kWh, at which power level, could be de-
ferred? This model is then used to define an optimal control policy that can be used to maximize the
savings of the DSO. A method to control heat pumps without violating the end-users’ thermal comfort,
relying on the estimation of the energy signature for the controlled buildings, is presented and inte-
grated in the control loop. We then show how we can estimate the cost-saving potential under differ-
ent penetration scenarios for the controlled devices for the use case of a specific DSO. In the consid-
ered case study of the Azienda Multiservizi di Bellinzona, the data-driven forecaster estimated an an-
nual cost reduction of 640 kCHF, equivalent to a reduction of the overall energy and peak expenses of
about 1.4 %, under the participation of the maximum considered penetration of heat pumps and elec-
tric heaters.

Secondly, we propose a long-term scenario assessment of the evolution and impact of flexibility in the
distribution grid based on a System Dynamics approach. This model can be used to estimate the evo-
lution of the cost-saving potential, its impact on the penetration of flexible devices, and future economic
benefits for the end users. A replicability analysis of the methodology is proposed on a second use-
case, using data from the Services industriels de Genève (SIG).

A potential way to ensure scalability could be to seek not only savings derived from the DSO-TSO
energy and peak power tariff scheme but also revenues by offering the aggregated flexibility to third
parties or directly accessing ancillary markets, and including other energivouros devices in the control
loop.

Sommario

Le reti di distribuzione stanno rapidamente diventando "attive", ed un controllo accurato delle fonti di
generazione elettrica e dei carichi le rende parzialmente dispacciabili. Questa flessibilità, se corret-
tamente identificata e aggregata, potrebbe essere utilizzata dai gestori dei sistemi di distribuzione o
trasmissione per ottimizzare l’efficienza della rete locale e, se possibile, per offrire servizi a terzi, for-
nendo così un ulteriore flusso di entrate. Inoltre, la corretta quantificazione della flessibilità disponibile
consentirebbe uno scambio di dati energetici e potrebbe ampliare gli scambi convenzionali e attual-
mente limitati tra cliente, gestori di distribuzione e gestori di trasmissione.

Questo progetto mira a sviluppare un modello di flessibilità dinamica generale ma pratico, che aiuti il
gestore di distribuzione a prendere decisioni informate sul controllo ottimale della propria flessibilità per
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raggiungere un optimum tecno-economico. In primo luogo, viene presentato un meccanismo per val-
utare l’impatto dell’attivazione della flessibilità sulla curva di carico del gestore di distribuzione, in grado
di stimare la quantità di flessibilità a partire dal giorno zero senza basarsi su osservazioni storiche. Per
ottenere questo risultato, abbiamo simulato i dispositivi flessibili, partendo da metadati pubblicamente
disponibili, imparando la loro risposta a un segnale di controllo casuale utilizzando un modello di pre-
visione globale non parametrico. Questo modello di previsione può essere utilizzato per caratterizzare
la flessibilità, compresi gli effetti di rebound, rispondendo a domande quali: come il mix di dispositivi
controllati influisce sulla flessibilità? Quanti kWh, a quale livello di potenza, possono essere spostati?
Questo modello viene poi utilizzato per definire una politica di controllo ottimale che può essere uti-
lizzata per massimizzare i risparmi del DSO. Viene presentato un metodo per controllare le pompe di
calore senza violare il comfort termico degli utenti finali, basato sulla stima della firma energetica degli
edifici controllati e integrato nel circuito di controllo. Mostriamo poi come sia possibile stimare il poten-
ziale di risparmio dei costi in diversi scenari di penetrazione dei dispositivi controllati per il caso d’uso
di uno specifico DSO. Nel caso di studio considerato dell’Azienda Multiservizi di Bellinzona, il previ-
sore ha stimato una riduzione dei costi annuali di 640 kCHF, equivalente a una riduzione delle spese
complessive per l’energia e dei picchi di circa l’1,4 %, nel caso di massima penetrazione considerata di
pompe di calore e riscaldatori elettrici.

In secondo luogo, proponiamo una valutazione dello scenario a lungo termine dell’evoluzione e dell’impatto
della flessibilità nella rete di distribuzione basata su un approccio System Dynamics. Questo modello
può essere utilizzato per stimare l’evoluzione del potenziale di risparmio, il suo impatto sulla pene-
trazione dei dispositivi flessibili e i futuri benefici economici per gli utenti finali. Viene proposta un’analisi
di replicabilità della metodologia su un secondo caso d’uso, utilizzando i dati del Services industriels
de Genève (SIG).

Un modo per garantire la scalabilità del metodo presentato potrebbe essere quello di ricercare non
solo i risparmi derivanti dallo schema tariffario del gestore di distribuzione-trasmissione per l’energia e
i picchi di potenza, ma anche i ricavi derivanti dall’offerta della flessibilità aggregata a terzi, e includere
nel controllo altri carichi energivori.
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1 Introduction

Distribution networks are rapidly becoming "active", as accurate control over electricity generation
sources and loads make them partially dispatchable. Such flexibility, when correctly identified and ag-
gregated, could be used by the Distribution System Operator (DSO) to optimize local grid efficiency
and, if possible, to offer services to third parties, thereby providing an additional revenue stream. This
project aims to develop a general but practical dynamic flexibility model that helps the DSO to make
informed decisions on how optimally control its flexibility, such as to reach a techno-economic optimum.

Our work builds on two different concepts in the field of flexibility studies: simulation-based flexibility
assessment and inverse optimization of price signals. The first concept has been explored in [1], where
authors assessed the energy flexibility potential of a pool of residential smart-grid-ready heat pumps
(i.e., with an internal controller reacting to a discrete signal indicating if they have to consume more,
less or shut down) by means of bottom-up simulations. Other studies tried to assess the energy flexi-
bility of residential buildings using simulations, like [2] and [3]; however, they start from the hypothesis
of being able to directly control flexible devices. In particular, in [2], the authors wanted to provide to
an aggregator with an index describing the additional energy used for a desired change in power con-
sumption, using simulation and MPC. Unfortunately, the analysis is of little use since this relation also
depends on the time of flexibility activation, as pointed out in [4].

Inverse optimization of price signals has been first introduced in [5]. The idea is that it is possible to op-
timize scheduling of a price signal to optimize the objective of an aggregator, knowing that some sort
of price-dependent controller optimizes flexible loads. To show this, authors fit an (invertible) online FIR
model to forecast the consumption of a group of buildings as a function of a price signal and derive an
analytic solution for an associated closed-loop controller. The concept is then demonstrated by means
of simulations on 20 heat-pump-equipped households. The authors of [6] use the same concept pre-
sented in [5] to fit a linear model linking prices and the load of a cluster of price-sensitive buildings. The
authors then propose to characterize flexibility extracting parameters from the model response. They
also propose to estimate the expected saving of a given building by simulating its model twice, with
and without a price-reacting control. A similar approach was proposed in [7], where authors identified a
general stochastic nonlinear model for the prediction of energy flexibility coming from a water tower op-
erated by an unknown control strategy. The fitted model is then used in an optimization loop to design
price signals for the optimal exploitation of flexibility. Authors in [8] used the same method to find price
signals to best meet flexibility requests using an iterative method.

The System Dynamics model, whose purpose is to assess the long-term adoption of flexible devices
and the share of these that are put at the disposal of the DSO, builds on theories of non-linear dynam-
ics and feedback loops developed in mathematics, physics, and engineering [9] [10] [11]; System Dy-
namics was chosen for this study as it has been suggested and applied several times for the study of
socio-technical transition processes (see [12] for a comprehensive review).

1.1 Background information and current situation

As a proof of concept, ODIS focuses on the coordination between the DSO Azienda Multiservizi Bellinzona
(AMB) and the Azienda Elettrica Ticinese (AET), which serves as a Transmission System Operator
(TSO) for Ticino. During the meetings with the project partners, the following conditions were defined
for the proof of concept:

1. The original project proposed to consider grid constraints as a boundary condition to the opti-
mization problem. Since AMB re-wires substations several times for maintenance reasons and
these activities cannot be known in advance (nor do records exists of such a process), we shifted
the focus from grid constraints to thermal comfort constraints for the end users. This doesn’t im-
pact the control methods and approaches developed in the project; grid constraints can be easily
considered for other use cases where the information on grid topology and measurements of grid
re-configurations are available.
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2. Analyzing the different business models with the project partners, we agreed to focus the use
case on the day ahead cost optimization and on peak price optimization. The latter is of particu-
lar interest for DSO-TSO coordination since this cost is paid by the DSO to the TSO.

1.2 Purpose of the project

Coordinated exploitation of flexibilities in the distribution or transmission grid can potentially be used to
increase grid resilience, reduce maintenance costs, lower distribution losses, increase the predictability
of the demand profile, and shift consumption in the function of tariff structures and energy supply pat-
terns. Yet, this requires the aggregation of flexible customers into "pools" that reach a critical mass.
In most cases, aggregation requires control over heterogeneous types of devices, as well as differ-
ent types of controllers, (e.g., rule or heuristic-based, model predictive control, etc.). Currently, this
condition restricts the viable control methods for pooling flexibility to ripple control, a method using
frequency-sensitive relays to shut down flexible devices. The other most commonly considered type
of control is indirect and uses tariff structures; however, the effectiveness of this second method de-
pends on the capacity and willingness of the asset owner to respond to the signal, either manually or
conditional to the presence of smart devices which can optimize energy use based on the price signal,
the latter being currently not widespread in most distribution grids. Most often, the activation of flexi-
bility has ripple effects on the load curve following the control action. This "rebound effect" could have
negative consequences for the DSOs and collaborating third parties and must be considered during
the optimization.

1.3 Objectives

We aim to demonstrate a data-driven methodology to characterize and control flexibility in terms of the
power system response to a given broadcasted control signal. The aim of the characterization is to ob-
tain an oracle or forecaster able to capture the change in demand in different regions of the grid based
on the number and type of flexible loads. This forecaster can then be used to simulate the rebound
effect and include this knowledge in an optimization loop. Our objectives can be summarized in the fol-
lowing:

• Simulate flexible loads’ response to a ripple control signal using public available data for a given
DSO’s grid.

• Learn from simulated data a characterization of flexibility (how many kWh can be deferred, with
which power, for how long?) through a non-parametric regressor, or oracle, which is able to gen-
eralize beyond control action seen during simulations.

• Integrate the regressor into an optimization loop to optimally control available flexibility

• Use this method to estimate the cost-saving potential for a given DSO and generate what-if anal-
ysis under different future penetration of flexible and controllable devices.

• Use these economic results as inputs of a System Dynamics model, which can be used to esti-
mate the evolution of the cost-saving potential, its impact on the penetration of flexible devices,
and future economic benefits for the end users

• Perform a replicability analysis applying the whole methodology to a different case study
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2 Procedures and methodology

2.1 Modeling and simulation of flexibility

To demonstrate our methodology, we have simulated the available flexibility in the grid of a local Swiss
DSO, AMB. We restricted the study to two flexible devices, Heat Pumps (HPs), and Electric Heaters
(EHs). We simulated the following heating system configurations:

• HP: in this configuration, both space heating and domestic hot water (DHW) are provided by the
HP. The heating system is modeled using the STASH 6 standard, which describes the most com-
mon heating configuration in Switzerland. A detailed mathematical description of the building
thermal model, stratified water tanks, HP and heating system model is provided in the annex C.

• EH: in this case, the EH is just used to provide DHW, while the space heating is not modeled, the
latter being considered to be fueled by gas or oil (which is still common in Switzerland).

2.1.1 Metadata retrieval

To faithfully simulate the flexibility potential of a region when HPs and EHs are connected to a ripple-
control system, for each building we need to estimate the presence of an HP or EH, the number of
dwellers (influencing DHW consumption) and the equivalent thermal resistance R [KW−1] and ca-
pacity C [kWh/K] of the building. Since we can’t retrieve this information without incurring in privacy
issues, we instead cross-referenced available statistical information for Ticino’s residential buildings:

1. We retrieve the percentage of buildings equipped with an HP or an EH in a given region using
data from [13], based on the Federal Statistical Office’s 2014 Buildings and Dwellings Statis-
tics [14]. This dataset is divided into squares with a side of 90 meters. This information must be
cross-referenced with the Federal Register of Buildings and Dwellings (RBD) always from [13] to
retrieve the total number of HPs in a given region. An incomplete summary of this information is
shown in figure 1.

2. To estimate which particular building is equipped with an HP, we used information on the build-
ing’s scope of use and year of construction class in RBD’s catalog of buildings. We then use
statistics on the probability for single and multi-family house buildings to have an HP or an Elec-
tric heating system, from [15] and reported in figure 2. Once we have estimated the probability
of a given building having an HP, we randomly assign HPs within a 90x90 meters area until the
expected total number of buildings with an HP in the area is met. The same process is used to
assign EHs.

3. We then combine this information with the following, summarized in figure 3:

• the average number of m2 per person for buildings of a given construction age, from the
Swiss Federal Statistical Office [14], which allows us to have an estimate of the number of
dwellers. This information is then used to retrieve a water consumption profile and to size
the heating source and buffer volume for the DHW.

• the total annual consumption per square meter and construction age of buildings in Ticino,
from [16], and the heating reference surface (HRS) from RBD, which are then used to esti-
mate the equivalent building’s thermal resistance R, as explained later.

A summary of the final set of parameters, the conditioning factors, and the sources used to retrieve
them is reported in table 2.
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parameter conditional on sources
R [KW−1] construction period, location, class of building [13, 16]
C [kWh/K] - [17]

Prob(HP EH) construction period, location, class of building [13, 15]
occupants construction period, location, class of building [13, 14]

Table 2: Simulation parameters and their sources
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Figure 1: Statistics from RBD. Left: frequency of destination of use among the building in the AMB dis-
tricts. Right: distributions of squared meters per building, conditional on being residential or not.

2.1.2 Component sizing

The final simulated devices have been sized starting from the available metadata as described in the
following. For the region of interest, we identified around 3000 buildings having either an installed HP
or an EH and a total installed nominal power of 12.5 MW and 7.7 MW for the two classes of devices.
These numbers are in line with the figures that the DSO provided us with. The final distributions over
the whole set of considered buildings, for some of the key metadata and device parameters, are shown
in figure 4.

Building thermal resistance The building’s equivalent thermal resistance could be assessed start-
ing from the total building yearly consumption, which we previously estimated for each building from
[16, 13]. Considering the following equation for a one-state RC thermal equivalent circuit:

∂T

dt
= R−1(Text − T ) + kI +Qint (1)

where Text is the external temperature, I is the global horizontal irradiance, Qint are internal heat gains
and k a coefficient. Assuming stationarity, we could retrieve an estimated thermal resistance averaging
over one year:

R−1 =
kI + Ey

∆T
(2)

where the average quantities for irradiance I and temperature difference are obtained by integrating
over the data of the simulated year, and Ey is the total yearly heating consumption from [16] times the
heating reference surface, expressed in kWh. In our case, however, the stationarity assumption is not a
good one, since we assumed changing setpoints for the internal temperature of the buildings depend-
ing on the hour of the day, as is common practice. This makes the internal temperature subject to vari-
ations during the day, which results in (2) being a poor approximation for R−1. To better approximate it,
we simulated one year of operations for each building using a simple surrogate model and optimized
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Figure 2: Probability for a building to have an HP and EH installed, conditional to the class of construc-
tion year and building destination of use.
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Figure 3: Representative values of m2/person (Switzerland) and kWh/m2/year (Switzerland, canton
Ticino) for buildings, conditional to the class of construction year.

the value of R via gradient descent to match the annual energy consumption Ey. The detailed descrip-
tion of this procedure is reported in annex C.4.

Building thermal capacity While it was possible to estimate the total equivalent resistance by cross-
referencing different sources, we didn’t find any statistical source for the characterization of the build-
ing’s equivalent thermal capacity. As for the thermal resistance, when using an RC equivalent system
to simulate the thermal dynamics of a building, the C factor is usually either estimated from temporal
data or in a white box fashion, starting from buildings’ stratigraphies. However, while there is a clear
dependence between R and the year of construction, as shown in figure 3, due to energy-saving poli-
cies, there is no such trend for the thermal capacity. For this reason, we chose equivalent capacity fac-
tors uniformly sampling from a uniform distribution with a mean value of 2.5 MJ/m2/K and cutoff values
of 1 and 5 MJ/m2/K, as these are the reference values indicated in the Swiss Society of Engineers and
architects (SIA) norm 380/1 [17] for lightweight and high inertia buildings.

EH sizing The nominal power for the EH is chosen using the following formula:

qEH = qDHW = rvno (3)
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Figure 4: Final distributions of some key parameters for the simulation for the 3000 considered house-
holds

power [kWh/person] volume [m3/person]

lower bound upper bound lower bound upper bound

1 2 0.08 0.12

Table 3: Upper and lower bounds for the uniform distribution for the sizing of the EH

where rv is a random variable drawn from the uniform distribution with limits reported in table 3, repre-
senting the kWh per person needed for heating the DHW. The variable no = A/a(p, d) is the estimated
number of occupants, derived from the total building area A, where a(p, d) is the specific area per per-
son and destination of use, p and d respectively, from [14] (depicted left in figure 3). The volume of the
water tank is modeled similarly with the uniform distribution limits reported in 3.

HP sizing For HP sizing, we have assumed -4 and 20 C as outdoor and indoor reference tempera-
tures, respectively. The final nominal power for the HP is then chosen using the following formula:

qHP = maximum
(
R−1∆Tref + qDHW , 2

)
(4)

where R is the previously determined equivalent thermal resistance, ∆Tref is 24 and qDHW is the
nominal power for the domestic hot water. As previously stated, in this case, the HP is also the heat-
ing source for the DHW, which is sized as per equation (3).

2.1.3 building thermal model validation

The thermal model of the building, whose parameters have been selected with the procedure explained
in section 2.1.2, has been validated by means of annual energy consumption. The results are reported
in figure 5. It can be seen how the simulated consumption is always slightly higher than the expected
one (which is the annual consumption for heating from [16] multiplied by the building’s total area). This
is due to the fact that the optimization procedure to tune the R parameter does not include thermal
losses from the heating system, and the heating system logic of the surrogate model is more reac-
tive than the one implemented in the full simulation model, where the heating is due to serpentine. The
mean relative error on the yearly energy consumption is about 5% while 90% of the simulated buildings
have a discrepancy lower than 9%.

2.2 Energy oracle for flexibility modeling and optimization

2.2.1 Problem statement and methodology

We are interested in learning the aggregated power response of a group of HPs and EHs, conditional
to the number of devices and a control signal, from simulations. The scope is twofold: characteriz-
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Figure 5: Validation of thermodynamic simulations by means of comparison of annual heating energy
consumption for 800 randomly sampled buildings. Top: scatter plot between expected and simulated
consumption. Bottom: kernel density estimation of relative error.

ing the flexibility potential beyond simulated conditions and using the learned response to optimally
craft the force-off control signal. Called xt ∈ Rnf a set of nf features for a given simulated opera-
tional condition and a given group of devices, yft ∈ RH their aggregated power profile for the next
H steps ahead, we can define a dataset of features and targets, D = (xt, y

f
t )

N
t=1. The energy oracle

f(x, θ) : xt → ŷft forecasts the power consumption of a group of flexible devices starting from the fea-
tures contained in xt. Since we want to retrieve a prediction conditional to the control action, xt also
contains information on past and future values of the control signal s, which is applied to the devices.
In order to learn the system response conditional to the value of the control, one could think to craft a
dataset with tuples of simulations differing only in one of them having a zero control signal, all the other
conditions being the same. However, it is difficult to build such a dataset, as the energy consumption
of the controlled devices is also influenced by the past values of the control signal, and eliminating this
dependence could require simulating several days for each pair of rows of the final dataset D. Instead
of building a dataset of controlled and uncontrolled tuples, we just simulated a controlled year and an
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uncontrolled one, leaving to the oracle f(xt, θ) the task of modeling the causal relation between the
control signal s and the system response.

2.2.2 Dataset generation

In our case, s is a binary signal encoding the force-off of the ripple control. This signal is not allowed to
change randomly through the day but must respect some conditions, such as a minimum time in which
the state must be kept fixed and a maximum number of daily activations. The simulated force-off sig-
nal has been obtained by generating all feasible force-off signals compatible with conditions reported
in table 4. In figure 6, we can see a sample of the resulting force-off signals, the ratio of scenarios in
which the force-off is active as a function of time-step, and the distribution of the total steps in which
the force-off signal is on. It is not possible to generate all the possible combinations of binary signals
and then filter them for conditions in 4, since using a 15-minute time-step will require generating ex-
ante 296 signals. For this reason, we used a dynamic programming approach, filtering out incompatible
scenarios on the run, as they are sequentially generated. We report in table 4 the criteria used to craft
the evaluated scenarios.
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Figure 6: Left: a random sample of daily scenarios for the force-off signal. Center: ratio of active sig-
nals for a given time-step of the day. Left: distribution of number of active time-steps among all possi-
ble scenarios.

parameter value description
tariff length 96 length of the force off signal

min segment length 8 (2H) min constant period
max changes 6 max number of switches in the force

max high 24 (6H) max steps when force off is on
off period 20 (5H) nightly uncontrolled period

Table 4: Parameters used to generate all possible daily force-off signals

One purpose of the oracle is to be able to predict the response of buildings in different portions of the
distribution grid. Instead of training several oracles based on the number of buildings equipped with
an HP or an EH, we follow suggestions from forecasting literature, where global models are effectively
trained to predict time series coming from different sources. Following this approach, we introduce
penetration scenarios in the training dataset using the following procedure:

1. Run two full-year simulations for the whole set of modeled buildings; the first year is subject to the
daily force-off scenarios sampled at random out of the possible ones, while the second year is
simulated without controlling the devices.

2. Build penetration scenarios, grouping a subset of the simulated buildings, from which the aggre-
gated power, yft is retrieved. For each penetration scenario, a dataset is then built, picking at ran-
dom k% observations from the simulated years. We sampled a total of 100 penetration scenarios
and used k = 20, for a total length of the dataset of 40 equivalent years.

3. Retrieve metadata describing the pool of buildings for each penetration scenario. Metadata in-
cludes the total number of each kind of device, the mean thermal equivalent transmittance (U) of
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penetration scenario features temporal features
p_nom_tot, p_q_10, p_q_90,

n_hp, n_eh, device_ratio,
U_mean, U_q_10, U_q_90,
C_mean, C_q_10, C_q_90

hour, day of week,
minuteofday

Table 5: Metadata used as features in the training set. Penetration scenario features describe the char-
acteristics of the pool of simulated buildings and devices, while temporal features refer to the time of
the prediction.

signals transformation lags

force off mean(15m)
mean(1h)

-2,-1 , 1..96
-12..-1

pft , meteo mean(15m)
mean(1h)

-4,..-1
-168..-144, -24...-1

meteo mean(1h) 1..24

Table 6: Continuous variables, transformations and lags passed as features to the oracle. Meteorologi-
cal information consists of temperature and global horizontal irradiance measurements.

the sampled buildings, and other parameters reported in table 5. We further augment the dataset
with time features such as the hour, the day of the week, and the minute of the day of the predic-
tion time.

4. Augment each penetration scenario dataset through transformations and lags of the original fea-
tures, as reported in table 6, to obtain Ds.

5. Retrieve the final dataset by stacking the penetration scenario datasets D = [Ds]1:ns

2.2.3 Model description

The energy oracle is a collection of multiple-input single-output (MISO) models, each of which is a
LightGBM regressor [18] predicting pft at a different step-ahead. The alternative to a collection of MISO
models is training just one MISO model after augmentation of the dataset with a categorical variable in-
dicating the step ahead being predicted. This option was discarded due to both memory and computa-
tional time restrictions. For our dataset, this strategy requires more than 30 GB of RAM. Furthermore,
the training of a single tree for the whole dataset requires more computational time than training a set
of MISO predictors in parallel (on a dataset that is 96 times smaller).

We recall that the final dataset is composed of 100 scenarios differing in the set of buildings compos-
ing the aggregated response to be predicted. This means that removing observations at random when
performing a train-test split would give the oracle the possibility to see the same meteorological con-
ditions present in the training set. To overcome this, the training set was formed by removing the last
20% of the yearly observations from each penetration scenario dataset Ds. That is, the training-test
split is done such that the training set contains only observations relative to the first 292 days of the
yearly simulation.

A hyper-parameter optimization is then run on a three-fold cross-validation over the training set; this
means that each fold of the hyper-parameter optimization contains roughly 53% of D. The tuned hyper-
parameters are just the learning rate and the number of estimators for the LightGBM regressors; the
parameters are kept fixed for all 96 models predicting the various step-ahead. We used a fixed-budget
strategy with 40 samples, using the optuna python package [19] implementation of the tree-structured
Parzen estimator [20] as a sequential sampler. An example of loss landscape for the hyper-parameter
optimization is shown in figure 7.
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Figure 7: Loss landscape for the hyper-parameter tuning in 3 folds cross-validation for the base energy
oracle with random sampling strategy.

2.2.4 Ablation studies

We performed an ablation study on the model in order to see the effectiveness of different sampling
strategies for the dataset formation and model variations.

Sampling schemes We tested two different sampling schemes for producing the penetration scenar-
ios, described in point 2 of section 2.2.2, for the generation of the final dataset. In the first strategy, the
total number of controllable devices is increased linearly, picking randomly between households with
an HP or an EH. In the second strategy, the number of controllable devices is increased independently,
co-varying the number of HPs and EHs, in a Cartesian fashion.
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Figure 8: Sampling strategies for building the final training set. Left: the total number of controllable de-
vices is increased linearly, picking randomly between households with an HP or an EH. Left: the num-
ber of controllable devices is increased independently, co-varying the number of HPs and EHs.
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Energy unbalance awareness One physical insight that could help increasing the accuracy of the
power oracle, is the energy unbalance. The idea is the following: we can use the oracle to predict twice
the response of the system: once with the actual control signal s and once with the control signals
equal to sref (which correspond to a zeroed force-off signal in the case of ripple control). We can then
subtract the two responses to get an "energy debt" of the system for each time-step. It is reasonable
to think that, under well calibrated controllers, the energy debt will balance out on a long enough pre-
diction horizon. Even if this is not the case, having the information about the energy debt in which the
system occurred at each time step could be helpful in predicting the successive ones. For this reason
we tested a second model, in which at first a set of regressors predict the system response for all the
steps ahead with and without the future force-off signals zeroed out. The two predictions are then sub-
tracted to obtain the energy unbalance and this information is used to augment the training set. Finally,
another set of regressor is trained on this new dataset. The same strategy is deployed at prediction
time.

In total, we compared four models:

• A set of 96 independent LightGBM models, predicting the 96 steps ahead independently, trained
using a random or a grid sampling in terms of HP and EH

• An energy-aware set of 96 LightGBM models, linked by the energy unbalance previously de-
scribed, trained using a random or a grid sampling in terms of HP and EH

To have an idea of the oracle performances, in figure 9 we plotted 9 random examples with different
numbers of controlled HPs and electric heaters out of the test set for the energy-aware oracle trained
using the grid sampling strategy. In the subfigure 9a, we plotted only examples in which the force-off
signal was activated at least once during the day, while in subfigure 9b we randomly selected only ex-
amples in which the devices were left uncontrolled.

To understand the dependence of the errors from different influencing factors, we plotted a heatmap of
the normalized mean absolute error (MAE) as a function of the total nominal power of the of predicted
samples and the step-ahead, shown in figure 10. We can see that there is a strong dependence of the
oracle accuracy as a function of aggregated loads, as is expected, since aggregation has a regulariza-
tion effect which helps increasing the forecastability of pagg. The normalized MAE assumes values as
low as 0.12 for the first step-ahead while increasing up to 0.28 when the nominal power is between 2
and 5 MW. No significant differences are shown among the four different models. In order to study the
accuracy with respect to the prediction time, we performed a similar aggregation, shown in figure 11.
It can be seen how the models are better at predicting nighttime hours, while the normalized MAE in-
creases at peak times. Also in this case no relevant differences can be seen among the different mod-
els.

Models performances can be better compared when plotting the mean normalized MAE as a function
of step ahead, as done in figure 12. The grid sampling scheme did indeed help in increasing the ac-
curacy of the predictions w.r.t. the random sampling scheme for both the LightGBM models. Including
the information about energy unbalances at each step ahead shows some benefits for both sampling
strategies at the expense of a more complex overall model. The improvement in accuracy has an im-
pact only on controlled scenarios, as demonstrated by a comparison of the second and third panels in
figure 12. These panels show the scores obtained for instances where the force off signal was either
activated at least once or never activated, respectively. This result aligns with our expectations. As an
additional analysis, we studied the energy unbalance over the prediction horizon. For this analysis we
considered just the controlled cases in the test set. We define two relative energy unbalance measures
as:

∆relEd =

∑96
t=1 ŷt(s)−

∑96
t=1 yt∑96

t=1 yt
(5)

∆noctrl
rel Ed =

∑96
t=1 ŷt(s)−

∑96
t=1 ŷt(s0)∑96

t=1 yt
(6)
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(a) Random example of day-ahead power oracle predictions for different num-
bers of HPs and EHs, where the force off was activated at least once.
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bers of HPs and EHs, where the force off was not active.

Figure 9: Examples of oracle predictions
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Figure 10: Normalized MAE for the four tested models for the power oracle, as a function of step-
ahead and total nominal power of predicted samples.
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Figure 11: Normalized MAE for the four tested models for the power oracle, as a function of step-
ahead and time of prediction.

where yt is the simulated power, ŷ(s) is the power predicted by the oracle with the control used in the
simulation, and ŷ(s0) is the power predicted by the oracle using a zero force off. We can interpret ∆relEd

and ∆noctrl
rel Ed as the relative error in the total energy need w.r.t. the simulation and the change in the

energy consumption estimated by the oracle if the pool of flexible devices were not controlled. We re-
moved from the comparison all the instances in which the force-off signal was activated in the last 5
hours of the day. In this case, part of the consumption will be deferred outside the prediction horizon,
making the comparison meaningless.

Looking at the of first row of figure 13, we see how the empirical ECDFs of ∆relEd and its absolute
value (left and right panels) are closer to zero when the model considers information on the energy un-
balance. Also, applying the grid sampling strategy helps in having a more precise prediction in terms of
used energy over the prediction horizon. For all 4 models, 80 % of the time the relative deviation in the
horizon energy prediction lies below 20%. The second row of figure 13 reports the change in the fore-
cast energy consumed within the prediction horizon with and without control. It is reasonable to think
also in this case the consumption should approximately match, since the force off usually just defers
the consumption. Also, in this case, the energy-aware models present a lower difference in the con-
sumed energy.
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Figure 12: Performances for the four tested models for the power oracle, in terms of normalized MAE
as a function of the step ahead.
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Figure 13: Left: cumulative un-normalized distribution of the relative energy unbalance error. Right:
inverse cumulative function of the absolute normalized energy unbalance.

2.2.5 Characterization of the rebound effect

We finally used the energy unbalance aware model in combination with the grid sampling strategy to
visualize rebound effects for different numbers of HPs and EHs. Figure 14 shows three extreme exam-
ples of the characterization: the penetration scenario with the maximum number of EHs and zero HPs,
the converse, and the scenario where both penetrations are at their maximum value. The rebound is
shown in terms of energy unbalance from the test set, such that they have a force-off signal turning
off at the fifteenth plotted step. It can be noticed how different observations can start to show a neg-
ative energy unbalance at different time steps; this is due to the fact that force-off signals can have
different lengths, as shown in figure 6. The upper left quadrant show the energy unbalance predicted
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by the oracle in the case of maximum number of EHs and no HPs. Comparing it with the lower right
quadrant, where the sample just contains HPs, we see a much smaller tau; that is, the rebound effect
has a quicker decay, being close to zero after only 10 steps (corresponding to 1 and a half hour). The
lower right quadrant shows a much slower decay of the rebound effect; this is due to the different heat-
ing logic and time constants of the systems heated by EHs and HPs. The EHs are used only for DHW
heating, their activation is regulated by an hysteresis using two temperature sensors placed at differ-
ent height of the water tank. On the contrary, the HPs are used for both DHW and space heating, and
their activation is regulated by the temperature of the hydronic circuit decoupling the HP and the build-
ing heating elements (serpentine). This means that the activation of the HPs is influenced by a system
with much higher heating capacity compared with the one of the DHW tank alone: the one of the build-
ing. The responses in figure 6 were colored by the seven days average of the ambient temperature. As
expected, the EHs responses are not dependent on the average external temperature, while a slight
effect can be seen for the HPs, where higher average temperatures correspond to faster decay of the
response.
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Figure 14: Example of system response in terms of deviations from expected response (prediction
where control signal features referring to feature time-steps are zeroed), dependent on the number of
HPs and EHs.

2.3 Integrating the energy oracle in the optimization loop

In this section we describe how the energy oracle can be integrated into the optimization loop, starting
from the optimization of a single group of flexibility. We identified as most interesting for both the DSO
and TSO perspectives, the joint minimization of the day ahead costs (paid by the DSO on the spot
market) and of the peak tariff (paid by the DSO to the TSO). The latter is proportional to the monthly
maximum peak over a 15 minutes interval. This cost is much more difficult to optimize with respect to
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the day-ahead cost since it involves solving an optimization problem over one month; over such long
periods of time power forecasts cannot be accurate. As a heuristic, we solve this problem day by day:
if the DSO reduces systematically its peak each day of the month, the monthly peak will be reduced.
This leads to the following optimization problem:

s∗ = argmin
s

L(ŷ(s)) (7)

= argmin
s

(
H∑

h=1

pshŷh(s)

)
+ pp max

h
ŷh(s) (8)

where h refers to the step ahead, ps ∈ RT is the day-ahead spot price and pp is the price for the monthly
peak in CHF/kW . This is not trivial to minimize, since it’s a function of a non-parametric regressor, the
energy oracle. However, the parameters reported in table 4 produce a total of 62482 control scenarios;
this allows us to evaluate (7) using a brute-force approach, finding the exact minimizer s∗. This is done
through the following steps:

1. Forecast the total power of the DSO: ŷtot = ftot(xt, θtot). An example of forecast values on the
training set can be seen in figure 15.

2. Forecast the baseline consumption of flexible devices, ŷf (s0) = f(xt, s0, θ), using the energy
oracle with the control signal s = s0 set to zero (corresponding to not controlling the devices).

3. Forecast the response of flexible devices under a given control scenario s for the next day. This is
always done using the energy oracle: ŷf (s) = f(xt, s, θ).

4. The objective function is evaluated on ŷt(s) = ŷtot − ŷf (s0) + ŷf (s) for all the possible plausible
control scenarios; the optimal control scenario s∗ minimizing the total costs is returned.

Figure 15: Example of prediction of ŷtot, obtained using the forecaster trained by Hive Power. Blue line:
realized power. Thin lines: quantiles from 0.01 to 0.99.

Figure 16 shows an example of the results of the described control process. The upper panel shows
the total forecasted power of AMB, ŷtot colored in blue, the optimal proposed power profile ŷ(s∗), and
the other two scenarios with the closest costs among all the evaluated ones.

2.3.1 Dynamic grouping strategies

As shown in the previous section, it is convenient to divide flexible devices into more than one group.
In this way comfort constraints of different users can be easier respected; secondly, it is possible to
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Figure 16: Example of optimized control action using the energy oracle. Top: the day ahead forecasted
power profile of AMB (blue) and the three most profitable scenarios (dashed lines). Middle: the three
most profitable scenarios in terms of force-off signals among the considered ones. Bottom: day-ahead
price on the spot market.

exploit the flexible characteristics of different types of devices. For example, electric heaters can be
turned off for longer periods of time w.r.t. HPs. Problem (7) can be reformulated as:

s∗ = argmin
[sg ]Gg=1

H∑
h=1

psh

(
ŷtoth −

G∑
g=1

ŷfh,g(s0) +

G∑
g=1

ŷfh,g(sg)

)
+ (9)

pp max
h

H∑
h=1

(
ŷtott −

G∑
g=1

ŷfh,g(s0) +

G∑
g=1

ŷfh,g(sg)

)
(10)

where G is the total number of groups and sg is the control signal sent to the gth group. Problem (9) is
a combinatorial problem; to reduce its complexity, we have used a sequential heuristic: the first group
of devices optimizes on the uncontrolled power profile ŷtott . Once their optimal control for the first group
is found, the second group it’s optimally scheduled on ytott − ŷft,1(s0) + ŷft,1(s), where the second sub-
script in ŷt,1 refers to the control group.

An example of such sequential optimization is shown in figure 18, where the scheduling of two groups
of devices is shown side by side. At first, a group containing only electric heaters is scheduled, and the
second group of HPs is optimized afterward. Figure 19 shows another example of sequential optimiza-
tion for the same day. In this case, we used a second set of force-off scenarios for the group of electric
heaters, this time allowing for longer force-off periods.

2.3.2 Grouping strategies for HPs

For HPs, we chose a grouping strategy based on the energy signature of the controlled buildings. In
buildings heated by a thermo-electric device, such as an HP, the energy consumption is strongly (in-
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versely) correlated with the external temperature. The energy signature refers to a linear fit between
the daily energy consumption of the building and the average daily external temperature Td. Since an
increasing number of households have an installed PV power plant, we also include a daily average of
the global horizontal irradiance Id as a feature in the energy signature fit; high values of Id could lower
the daily energy consumption if a PV plant is present, but this effect cannot be imputed to the action of
temperature. Without including Id in the regression, the daily energy consumption as a function of tem-
perature could be underestimated. The final energy signature e(Td, Id) is a piecewise linear function of
the external temperature and Id. An example of an estimated energy signature is shown in figure 17.
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Figure 17: Energy signature example. The average daily consumption for a household is estimated
with a (piece-wise) linear function of temperature and solar irradiance. Gray dots: original observa-
tions. Crosses: fit results, colored by Id

Finally, to retrieve the total number of activation hours h, we simply divide the energy signature with the
nominal power:

h(Td, Id) =
e(Td, Id)

pnom
(11)

The following steps describe our procedure to generate and control HPs groups based on their esti-
mated activation time:

1. Estimate the energy signatures of all the buildings with an installed HP ei(Td, Id)

2. Estimate their reference activation time href,i for worst-case conditions, that is, for Td = 0 and
Id = 0.

3. Households are grouped together based on their reference activation time: G control groups are
defined based on linearly spaced quantiles of href .

4. At control time, do a day-ahead estimation of activation times for all the HPs, hi(T̂d, Îd) using a
day-ahead forecast of Td and Id. Use the within-group maximum values of the needed activation
time, hmax,g = maxi∈G hg,i(T̂d, Îd) to filter out control scenarios having more than hmax,g force-off
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steps. This process guarantees that all HPs are allowed on for a sufficient time, given the temper-
ature and irradiance conditions.
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Figure 18: Example of sequential control. The first group of flexibilities (boilers) is optimally scheduled
(left) and the second one (HPs) is optimized considering the power profile from the first optimization
(right).
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Figure 19: Another example of sequential control for the same day is shown in figure 18, but allow-
ing the force off signal to stay on for a longer number of hours for the group of electric heaters (g00).
Top: power profiles predicted by the energy oracle for the boilers and the HPs groups. Middle: the fore-
casted baseline ŷtot and the optimized profile ŷ(s). Bottom: price profile.
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2.4 Energy oracle operational and closed loop accuracy

For testing operational and closed-loop accuracy, we simulated 8 months of optimized operations in the
grid of AMB, in the case in which 66% of the available flexibilities are controlled. We used a total of 3
control groups: 1 containing only EHs, which can be forced off for a longer period of time, and 2 groups
of HPs, obtained and controlled as explained in the previous section.

The prediction error accuracy was already studied in the sections 2, where we tested the oracle on a
test set of simulations. In that case, the force-off included in the dataset were random, as we couldn’t
already optimize them. We further tested the performance of the energy oracle when predicting the op-
timized force-off. The difference is that the actual optimal force-off is more correlated than the random
ones observed during training, and the performance could be different. Besides this, we also assessed
the accuracy of the oracle in terms of economic results, in closed-loop; that is, we retrieve the errors on
the economic KPIs when the simulation is completely bypassed and the oracle is used for both optimiz-
ing and emulating the behaviour of the controlled devices.

Open loop operational accuracy At first, operational accuracy was assessed in terms of predic-
tions, comparing the aggregated controlled power profile with sum of the individually simulated (con-
trolled) devices. Figure 20 shows the normalized daily time series of the prediction error during the ac-
tual optimization process. This is defined as:

nϵd =
yd − ŷd

yd
(12)

where yd, ŷd ∈ R96 are the aggregated simulated power profiles and their day ahead predictions, re-
spectively.

We see that for all the observed error paths we just have sporadic deviations above 10%. To have a
more general understanding of the oracle performance, in the second panel of 20 we plotted the his-
togram of the mean daily error, defined as 1

96

∑96
i=1 nEd,i. This shows that the energy oracle is usu-

ally under-predicting, or over-smoothing, the true response from the simulation, which is in general the
expected behaviour of a forecaster trained minimizing the sum of squares loss. The fact that this dis-
tribution is contained in the -2%-3% interval, which is much narrower than in the maximum observed
discrepancies in the daily error traces, confirms that high error deviations in the day ahead predictions
are just sporadic.
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Figure 20: Performance of the oracle in the open-loop simulations. Left: daily relative errors plotted as
time series. Right: distribution of the daily means of the relative error.
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Closed loop economic performances We cannot directly assess the closed-loop performances of
the oracle in terms of prediction errors. This is due to the fact that, when simulating in closed-loop, the
predictions of the oracle are then fed to itself in a recurrent fashion. This could result in slightly different
starting conditions for each day; furthermore, the comparison of the sampled paths is not our final goal.
A more significant comparison is in terms of economic returns. We compared these approaches:

1. Simulation: we run the optimization and fully simulate the system’s response. In this setting, the
oracle is just used to obtain the optimal control signal to be applied day ahead. The controlled
devices are then simulated, subject to the optimal control signal. The costs are then computed
based on the simulations.

2. Forecast: for each day, the optimal predictions used for the optimization are used to estimate the
cost. We anyways simulate the controlled devices; this process is repeated the next day. This
approach gives us an understanding of how the operational prediction errors shown in figure 20
impact on the estimation of the costs.

3. Closed-loop oracle: the simulations are completely bypassed. The oracle is used for both opti-
mizing the control signal and generating the next-day responses for the controlled devices.

It should be clear that, if the third approach gives comparable results in terms of costs, we could then
just use the energy oracle for both the control task and its evaluation. This would significantly speed
up the simulation loop: we won’t have to simulate the thermodynamic behavior of thousands of house-
holds, but just evaluate the trained oracle, which evaluation is almost instantaneous. This could seem
unlikely to reach the same accuracy produced by a detailed simulation, but this can be justified by the
fact that we’re only interested in an aggregated power profile, whose dimensionality is just a tiny frac-
tion of all the simulated signals needed to produce it.
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Figure 21: Deviations of different objectives from the simulated results, using the energy oracle to op-
timize and forecast the power profiles (blue) or to completely bypass the simulation (orange). Left: ob-
jectives computed on the aggregated profile y. Right: objectives computed on total power of flexible
households only, yf .

In figure 21, we reported the relative discrepancies from economic KPIs retrieved by the simulation us-
ing the two aforementioned approaches. As an additional KPI, we also reported the estimated tons of
produced CO2. While the CO2 emissions are not directly optimized for, minimizing the energy costs
also have a positive impact on the emissions, since energy prices correlate with the CO2 intensity in
the energy mix. The emitted CO2 tons are estimated as:

MC02 =

T∑
t=1

Ctyt (13)

where Ct is the carbon intensity in the national energy mix in gCO2

kWh . The right panel refers to the costs
that would generate just considering the aggregated power profile of flexible households, yf . In our
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case study, the controlled group of devices is just a small fraction of the total energy delivered by the
DSO; to estimate the oracle’s performance it’s thus important to evaluate only costs generated by con-
trolled devices. The blue columns show the relative deviations of the KPIs computed using the energy
oracle’s forecasts: for both the energy costs and the CO2 we have a relative error below the 4% w.r.t.
the value obtained by the simulation. For the closed-loop case, corresponding to the orange columns,
we have a higher deviation but limited to 6%. These discrepancies can still be considered reasonable
to perform A/B testing in simulation.

simulated rel. diff. forecasts rel.diff. closed loop

Energy cost 1.27E+7 2.95E-3 4.58E-3
Peak cost 2.68E+6 -7.23E-4 5.28E-3
Total cost 1.54E+7 2.31E-3 4.7E-3
CO2[ton] 32816.9 3.63E-3 5.31E-3

Table 7: First column: costs of energy, peak, total costs and CO2 emissions from the controlled sim-
ulation. Second column: relative differences from the simulated costs when they are evaluated using
the day-ahead predictions from the oracle. Third column: relative differences from the simulated costs
using the oracle to emulate the system. Data refers to the case in which 66% of the available HPs and
boilers were controlled.

simulated rel. diff. forecasts rel.diff. closed loop

Energy cost 9.62E+5 3.81E-2 5.91E-2
Peak cost 6.00E+5 -1.07E-2 3.42E-2
Total cost 1.56E+6 1.93E-2 2.34E-2
CO2[ton] 3058.2 3.82E-2 5.59E-2

Table 8: First column: costs of energy, peak, total costs and CO2 emissions from the controlled simu-
lation, considering only simulated devices. Second and third columns as for table 7

The left panel shows discrepancies for actual costs faced by the DSO, computed using the total power
profile y. In this case, we have roughly a ten-fold reduction in the relative error w.r.t. the simulations.
This is not a surprise, since as anticipated, the controllable devices constitute only a fraction in terms
of energy supplied by the DSO. Nevertheless, this is the quantity we are interested in. For complete-
ness, the relative deviations and absolute costs for the simulated case relative to figure 21 are reported
in tables 7 and 8 for the total and flexible device profiles, respectively.

2.5 Impact of dynamic tariffs in the activation of flexibility

In this section, we consider the possibility of modeling and including the effect of indirect control, i.e.
a dynamic energy tariff, on the aggregated power profile. We expect in general such an effect to be
smaller than the one achievable by direct control; the research question we tried to answer is whether
or not the measured effect was statistically significant and keen to be modeled using a data-driven ap-
proach. AMB offers a dynamic tariff to its clients since 2021 and 350 users opted in as March 2022.
The dynamic tariff is a bi-level tariff, communicated a day ahead to the clients. The purpose of the tariff
is to try to steer the demand away from the hours of peak demand; that is, based on the forecast ag-
gregated power profile of AMB, the periods of high prices are placed where the daily peak demand is
more likely to happen. Since all the users see the same tariff, users’ power and the tariff can be treated
as being statistically independent. We analyzed the data from the group of users who opted-in to the
dynamic tariff in the period going from March 2021 to March 2022. In order to see any effect induced
by the dynamic tariff, we defined a control group. This is composed by 1500 residential meters with
similar power consumption from the municipality of Claro. A comparison in terms of profiles and quan-
tiles of the time series of the two groups can be seen in figure 22. Since some households from Claro
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signed in for the dynamic tariff, they were removed from the control group.

We applied a basic variant of regression discontinuity [21], to see if being in the dynamic tariff influ-
ences the consumption of the end users. Briefly speaking, we compared the average consumption
of the end users between periods of high and low tariffs. If the dynamic tariff has the intended effect,
that is, shifting consumption from periods of high tariffs to periods of low tariffs, we should see a lower
power consumption during periods of high tariff from users who adopted the dynamic tariff when com-
paring them with the control group. Figure 23 shows an example of the computation of the mean con-
sumption under high and low tariff periods for a single user in a random day. Formally, we compared
two groups in terms of the following quantity:

∆pu =
1

nlow

∑
t∈Tlow

pu,t −
1

nhigh

∑
t∈Thigh

pu,t (14)

where u stands for the uth user, Tlow and Thigh stand for the set of times in which the tariff is low and
high, respectively, and nlow and nhigh are the cardinalities of the two sets. Called D and C the groups
of users who adopted the dynamic tariff and the control group, the dynamic tariff has the intended ef-
fect if the difference in consumption between low and high tariff periods is higher in expectation for the
users who adopted the dynamic tariff, ED∆p ≥ EC∆p.

Figure 22: Left: households using the dynamic tariff. Right: households from the control group of
Claro. Top: time series. Bottom: quantiles.

Figure 24 shows the distribution of ∆p for the two groups of users. We can see a slight shift towards
higher values for the users in the dynamic group. The difference can be better appreciated by look-
ing at the boxplots of the two distributions, plotted in figure 25. We can see that the mean of ∆p for the
control group is below zero. This is expected since the dynamic tariff is designed to be high in periods
of higher consumption. Similarly, the distribution of ∆p for the D group being centered on zero doesn’t
mean that the dynamic tariff had no effect on this group. To investigate whether the difference in the
two distributions is statistically significant, we run a two-sample Kolmogorov-Smirnov test. The two dis-
tributions are different with high confidence (p-value = 1.44e-15); dynamic control group meters have
higher values on average than the control group with high confidence (p-value = 8.70e-16). We can
further investigate the effect of the dynamic tariff on users’ consumption by plotting the two distribu-
tions as a function of the hour of the day, as done in figure 26. We can see that the two groups differ
the most during daytime; at the same time, both groups show higher positive values between 11 a.m.
and 18 a.m., meaning in these hours, they are more likely to consume more during low-tariff periods.

The results of the analysis show that the dynamic tariff seems to have a slight effect on the distribution
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Figure 23: Example of computation of the mean average consumption in periods of high and low tariff.
The green line depicts the average power for the low tariff period, while the red line represents the av-
erage power for high tariff periods.
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Figure 24: Distributions of ∆p for the group of users adopting the dynamic tariff (blue) and for the con-
trol group (green).

of meters’ power consumption when compared with a control group. In other words, there is a statisti-
cally significant difference in the distribution of consumption, but this is not statistically meaningful; the
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Figure 25: Boxplots of ∆p for the group of users adopting the dynamic tariff (blue) and for the control
group (green).
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Figure 26: Boxplots of ∆p for the group of users adopting the dynamic tariff (blue) and for the control
group (green), as a function of the hour of the day.

influence of the tariff on consumption is not strong enough to be modeled by a regressor more com-
plex than the mean prediction. Furthermore, we cannot rule out a selection bias effect: since the tariff
is opt-in, the users choosing the dynamic tariff could be more prone to change their consumption due
to the change in the tariff. This means that the seen change in consumption could be different if the
tariff is applied to all the customers of AMB. This makes it difficult to extrapolate the results in roll-out
scenarios of increasing dynamic tariff acceptance. Since, as expected, the effect of indirect control is
anyway much lower than the effects of direct control, we didn’t include these in the scalability scenar-
ios. However, the effect of the dynamic tariff on aggregate power consumption can surely increase by
introducing smart algorithms, automatically forcing off “big” power loads as a function of the tariff.
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2.6 Retrieval of costs for the scalability analysis

Given the energy oracle accuracy assessment summarized in figure 21, we can conclude that the en-
ergy oracle can be effectively used to approximate the simulation results in terms of total system costs.
This allowed us to simulate a matrix of different penetrations, systematically changing the number of
controlled HPs and EHs.

In the first step, we simulated four levels of penetration for both types of devices, resulting in 16 to-
tal yearly simulations. For all these combinations, we retrieve the energy costs, peak costs, and CO2

tons. Since we obtained a regular pattern for these costs, we upsampled the results using an 11x11
grid in terms of the number of devices. The results in terms of total economic costs, as a function of
controllable devices, are presented in figure 47. The matrix spans on order of magnitude in terms of
avoided costs, w.r.t. the case in which no devices are controlled. The least profitable case is the one in
which we just control 779 electric boilers; in this case we estimate an annual saving of 19k CHF. The
most profitable case is the one in which we control all the considered devices, that is, 7790 EHs and
12517 HPs respectively. This case results in annual savings of 640 kCHF. Of this saving, only 58 kCHF
comes from the optimization of peak tariff. Always referring to the maximum HPs and EHs penetration,
we estimated 470 tons of avoided CO2. The full matrices for the different penetration scenarios for en-
ergy costs, peak costs and avoided emissions are reported in the annex B.

Figure 27: Total cost matrix for different combinations of total controlled HPs and electric boilers.
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2.7 Long-term evolution of flexibility and System Dynamics

The following will describe in detail the components of the System Dynamics (SD) model, whose pur-
pose is to assess the long-term adoption of flexible devices and the share of these that are put at the
disposal of the DSO. The SD methodology builds on theories of non-linear dynamics and feedback
loops developed in mathematics, physics, and engineering [9] [10] [11], and was chosen for this study
as it has been suggested and applied several times for the study of socio-technical transition processes
(see [12] for a comprehensive review).

Reference Concept (RC) New Concept (NC) Flexible Concept (FC)

Name Explanation Name Explanation Name Explanation

Oil Boiler SH & DHW Heat Pump Both SH & DHW Heat Pump flex Both SH & DHW

Gas Boiler SH & DHW Oil & HP Oil: 75%(SH & DHW) 1 Oil & HP flex Oil: 75%(SH & DHW)

HP: 25%(SH & DHW) HP: 25%(SH & DHW)

Wood Boiler SH & DHW Gas & HP Gas: 75%(SH & DHW) Gas & HP flex Gas: 75%(SH & DHW)

HP: 25%(SH & DHW) HP: 25%(SH & DHW)

EH SH & DHW HP & ST HP: SH HP & ST flex HP: SH

ST: DHW ST: DHW

Oil & EH Oil: SH Oil & ST Oil: SH EH flex SH & DHW

ST: DHW ST: DHW

Gas & EH Gas: SH Gas & ST Gas: SH Oil & EH flex Oil: SH

EH: DHW ST: DHW EH: DHW

Wood & EH Wood: SH Pellet & ST Pellet: SH Gas & EH flex Gas: SH

EH: DHW ST: DHW EH: DHW

Pellet Both SH & DHW Wood & EH flex Wood: SH

EH: DHW

Table 9: Heating concepts used in the SD model

The SD model has been developed to assess the diffusion in the next decades of different heating
technologies and PV systems in the residential sector. In Table 9 are reported the types of residential
heating technologies considered in the model and their categorization in three concept groups: “Ref-
erence Concept” (RC), “New Concept” (NC) and “Flexible Concept” (FC). In the Reference Concept
category are grouped the heating technologies that, as indicated in the "Model energy requirements of
the cantons" (MoPEC), can’t be installed anymore, as this would result in more than 90% of the build-
ing heating energy to be produced by fossil fuel or direct electric heating. In the New Concept category
are the heating technologies that respect the MoPEC restrictions, which are taken from the MoPEC
Standard Solutions [22]. In the Flexible Concept group, buildings providing flexibility to the DSO are
collected; it comprehends electricity-based heating solutions that are either compliant with the MoPEC
or not.

Figure 28 illustrates the possible changes that, according to the developed model, the different actors
can make with regard to their heating technology. The actors (people with decision power on the con-
sidered building) in RC can choose to change their heating technology and adopt one of the solutions

1it is the Standard Solution 10, where it is suggested to have a fossil based heating technology for base load (covering 75 %
of demand) and a HP for the rest.
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Figure 28: Possible concepts adoption paths

in the NC or FC groups. In the model, the adoption of a NC or FC concept can happen for one of two
reasons: the end of the lifetime of the present technology or spontaneous adoption due to an advan-
tageous perceived utility. As can be seen from the arrow direction in the figure, it is further assumed
that once an actor has adopted a NC or FC technology, he cannot revert back to the previous concept
group. At the same time, each actor in all three heating technology groups can spontaneously choose
to install a PV panel, as better represented in Figure 29.

In Figure 29 is seen a Causal Loop Diagram (CLD) which represents a sample of the ODIS SD model
with regards to the Heat Pump, Heat Pump flex, and PV adoption. A CLD is a visual representation of
the relations between the main variables involved in the considered systems [23]. In a CLD there are
arrows with a “+” or a “-”, where the “+” sign indicates that the increase of the causal variable leads to
an increase of the effect variable, while the “-” sign indicates an inverse proportion between the causal
and effect variable. When the arrows link variable that form a circle, a causal loop is formed; it is indi-
cated with a clockwise arrow containing a “R” or a “B”. The “R” indicated a reinforcing loop, meaning
that the increase of one variable leads to the change of a second variable, whose change leads to the
increase of the first variable considered; the “B” indicates a balancing loop, meaning that the increase
of one variable finally brings to the decrease of the same variable, leading to system stability. CLDs are
useful to qualitatively comprehend how the most important variables in the modelled system interact,
capturing their nonlinear behavior and feedback loops.

Loops R1, R2 and R3 represent the reinforcing loops due to peer effect, which is an indication of the
social attractiveness of a given technology: the higher number of actors that have already adopted a
given solution, the higher the social attractiveness for possible new adopters. Reinforcing loops R4 and
R5 capture the dependence between the amount of flexibility providers and the total economic and
GHG savings, that will increase perceived economic and green utility of Heat Pump flex. Reinforcing
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Figure 29: Causal Loop Diagram (CLD) of the SD model

loops R6 and R7 are two slides of the same coin, representing how the diffusion of electricity-based
technology affects the electricity price. R6 is known as the “Death Spiral” [24]: the higher the PV adop-
tion, the lower the electricity demand from the DSO, whose costs remain, on the other hand, almost
constant; so, the DSO is forced to increase the final electricity price, making the PV adoption choice
more economically attractive. R7 represent the same mechanism translated to heat pumps adoption,
which finally brings a decrease to the electricity price. Feedback loops B1 and R8 represent the other
long-term effects of massive HP and PV adoption; a high penetration of these technologies will force
the DSO to act on the grid to reinforce it [25], and consequently increase the electricity price, which
decreased the HP economic attractiveness and increases PV economic attractiveness. B2 simply rep-
resents a boundary condition, being the total share of roofs suitable for PV installation constant, the
higher the number of PV installed, the lower the probability of the remaining roofs to be adequate for
future PV adoption. B3 and B4 capture the relation between the size of the flexibility pool and the in-
cremental economic and environmental gains it provides; when increasing the total actors in Flexible
Concept, the economic and GHG savings due to the single actor decrease, which leads to lower eco-
nomic and green attractiveness.

2.7.1 Data Acquisition

The data used to model the initial condition of the building stock is all publicly available. Data from
three different sources are collected for all residential buildings in the AMB area:

• Data from [26]: this database contains information on currently installed PV plants. For each
plant, the nominal power is provided, as well as the year of installation.
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• Data from [27]: this database is used to estimate the PV potential in the area considered. For
each building, the roof is divided into sub-surfaces, which are classified based on their adequacy
for PV installation. There are five different categories, which go from 1, the lowest adequacy, to
5, the highest. As later explained, the PV potential will be expressed as the share of the roof area
with a score equal to or higher than 3.

• Data from the Register of Buildings and Dwellings (RBD) [28]: this database provides the heating
technology, construction period, size, and type of a building.

These databases are used to for the categorization of the different building archetypes, as reported in
Table 10.

Size [m2] Type PV Presence Construction Period

< 60 (A) Single Family House (SFH) PV yes < 1920
60-120 (B) Dual Family House (DFH) PV no 1920 - 1945
> 120 (C) Multi Family House (MFH) 1945 - 1960

1961 - 1970
1971 - 1980
1981 - 1990
1991 - 2000
2001 - 2010

> 2010

Table 10: Categories that define the single building archetype

In order to compute the space heating demand for each building archetype, the study [16] is used. It
is a study of the building stock of Canton Ticino, that correlates the specific annual space heating con-
sumption of buildings, expressed in kWh/m2y, with the building construction period. In the model, four
levels of specific space heating loads are used to represent the building stock energy efficiency:

• Very Low – the weighted average of the specific space heating demand of residences built before
1960 is 145 kWh/m2y.

• Low – the weighted average of the specific space heating demand of residences built between
1960 and 1985 is 105 kWh/m2y.

• Moderate – the weighted average of the specific space heating demand of residences built be-
tween 1985 and 2010 is 65 kWh/m2y.

• High – the weighted average of the specific space heating demand of residences built after 2010
is 15 kWh/m2y.

Based on this categorization, the residential stock of the municipalities served by AMB is represented
in Figure 30. Moreover, the space heating demand is adjusted with the coefficients in Table 11, which
take into account the presence of common areas in different building types.

The residential building stock evolves due to the renovation of existing buildings, demolition of old build-
ings, and construction of new ones, as illustrated in Figure 31. The average values for Switzerland are
assumed in this study: a renovation rate of 1% [29], and a demolition rate of 0.4% [30], while the con-
struction rate is computed considering the total residential stock evolution of the last ten years [31] and
the demolition rate. For the sake of simplicity, it is assumed that the buildings in Very Low category
are demolished first, and only if there are no more Very Low buildings, the Low and Moderate are de-
molished. Moreover, only evolution towards more efficient construction is considered, and newly con-
structed buildings fall all under the High category.
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Figure 30: AMB residential stock (number of buildings on the x-axis) in 2023 categorized by Size, Type,
Energy Efficiency, and PV presence (PVno on the left, PVyes on the right)

Figure 31: Construction, demolition, and renovation mechanisms in the modelled building stock

In order to estimate the initial state of building stock by Size and Type in the new construction, data
from RBD is used, and Figure 32 shows the evolution of the new constructions based on their Size and
Type; it is assumed that the trend represented in the figure will continue in the following decades. The
annual hot water demand is computed for each building archetype considering the average hot water
consumption of 40 l/day/person, average occupants per dwelling (Table 12), and the average number
of 6.4 dwellings in the MFH of Canton Ticino [32]. Finally, the annual appliances’ demand considered
for each dwelling is 1400 kWh/y [33], while light load density is 8.3 kWh/m2y [34].

2.7.2 Model driving equations

As illustrated in the CLD in Figure 29, there are many factors considered in the SD model to compute
the adoption of a given heating technology. In fact, the adoption of NC is dependent not only on the
building characteristics, meaning, as explained in Section 2.7.1, its Thermal Efficiency, Size, Type and
whether it has a PV installed (all these characteristics define what will be called building “archetype”),



39/63

Figure 32: Building categorised by Size and Type shares evolution

but also the economic, environmental and social attractiveness of the possible new heating technology.
The adoption of a New Concept n, for each building archetype i, and from each Reference Concept rc,
is computed as:

an,rc,i = (Crc,i − CNCn,rc,i)× SPn,rc,i × PRMn,i (15)

Where Crc,i are the consumers in each rc and building archetype; CNCn,rc,i are the consumers in
each rc and building archetype not willing to change their present heating technology, computed as:

CNCn,rc,i = Crc,i × (1− un,rc,i) (16)

Where un,rc,i is the perceived utility of switching from concept rc to n. SPn,rc,i is the share of prefer-
ences:

SPn,rc,i =
1

1 + e−β(un,rc,i−urcrc,i)
(17)

urcrc,i =
1

N

N∑
n=1

un,rc,i (18)

where N is the total number of concepts that can be adopted starting from rc, and urcrc,i is the av-
erage utility of the New Concept for each Reference Concept and building archetype. PRMn,i is the
probability of roof match and it is different from one just for the HT comprehending solar thermal col-
lectors. It is computed starting from the share of suitable roofs (ssr) (Table 13), obtained from the data
collected as reported in Section 2.7.1, as the ratio between the total roofs area that have a “Good” (cat-
egory 3 in the database) or higher adequacy to solar installations. The ssr is then subtracted from the
share of buildings that have already installed a PV or ST collector.

PRMn,i = ssr − Buildings with PV or STi

Buildingsi
(19)

The utility of each possible choice is computed as:
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un,rc,i = euw × eun,rc,i + guw × gun,rc,i + pec× pen (20)

Where euw, guw and pec are the economic utility weight, the green utility weight and the peer effect co-
efficient, respectively, which are all found in the model calibration process with historical data. The peer
effect pen is a representation of the perceived social utility of a possible choice and is computed as the
ratio between the buildings that have already adopted the considered New Concept and the total resi-
dential buildings.

pen =
Buildingsn

Total buildings
(21)

The perceived economic utility of the consumers in each building archetype is expressed as a func-
tion of the Net Present Value divided by the number of dwellings in that building type (di), consider-
ing the total variable costs of both the Reference Concept (TRCV Crc,i) and the New Concept one
(TCNV Cn,i), the installation costs of the NC (ICn,i) and its initial grant (IGn,i):

eun,rc,i = (TRCV Crc,i − TCNV Cn,i − ICn,i + IGn,i)/di (22)

Each NC or RC concept is a combination of one or two heating technologies (t), whose data are col-
lected in Table 17. So, the installation cost is computed as the sum of the cost per kW installed (Ct)
times the capacity installed (Capt,i,n) per each technology used, while the initial grant is computed
considering both the initial absolute grant (IAGt) and the grant per kW installed (Gt):

ICn,i =
∑
t

Ct × Capt,i,n (23)

IGn,i =
∑
t

(Gt × Capt,i,n + IAGt) (24)

Where the capacity installed for each technology used in a new concept is given by the ratio of the
demand for that technology in the considered building archetype (Dt,i,n) and the equivalent full load
hours of that technology (EFLHt):

Capt,i,n =
Dt,i,n

EFLHt
(25)

TRCV Crc,i and TCNV Cn,i are computed considering the efficiency of the technology used (Efft),
the cost of the carrier used by that technology (CCt), its annual operation and maintenance costs (OMt)
and its lifetime (Lifetimet), so that the present value is computed considering the interest rate (r):

TCNV Cn,i =
∑
t

((
Dt,i,n

Efft
× CCt +OMt × Capt,i,n

)
×

1− 1
(1+r)Lifetimet

r

)
(26)

TRCV Crc,i =
∑
t

((
Dt,i,rc

Efft
× CCt +OMt × Capt,i,rc

)
×

1− 1
(1+r)Lifetimet

r

)
(27)

It is important to notice that the carrier used can also be electricity, whose cost changes endogenously
in the model, as explained in more detail in Section 2.4. Moreover, since in the building archetypes the
presence of PV is considered, if the considered building already has a PV installed, solutions such as
Heat Pump and HP & ST will have a higher economic utility, being part of the electricity available by
self-consumption at no cost.

The green utility is computed with a similar procedure, as a function of the Total Global Warming Po-
tential (GWP) of the possible New Concept adoption compared to the Reference Concept one:
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gun,rc,i = (TRCV Erc,i − TCNV En,i − IEn,i)/di (28)

TCNV Cn,i =
∑
t

(
Dt,i,n

Efft
× CEt × Lifetimet

)
(29)

TRCV Crc,i =
∑
t

(
Dt,i,rc

Efft
× CEt × Lifetimet

)
(30)

IEn,i =
∑
t

Et × Capt,i,n (31)

Where Et and CEt are the emissions related to the capacity installed of the selected technology and
the ones related to its carrier, respectively.

The process to compute the consumers adopting a PV (apvh,i) plant is similar to the one for heating
concepts. In this case it is dependent on the building archetype and its heat source (h) which classi-
fies the buildings based on the amount of heating demand coming from electricity-driven technologies
(Table 9). So, as the adoption of a given heating concept is affected by the presence of a PV, also the
possible PV adoption is affected by the actual heating concept, since the higher the electricity demand,
the higher the PV Net Present Value.

apvh,i = (Ch,i − CNCh,i)× SPh,i × PRMh,i (32)

Ch,i and CNCh,i represent the total consumers and the consumers not willing to adopt PV in a build-
ing archetype and heating source, respectively. SPh,i and PRMh,i are the share of preference and
the probability of roof match, computed as explained above for Solar Thermal installations. In order to
compute the NPV and the GWP of the possible PV installation, the PV size is computed based on the
following assumptions. The average portion of roof suited for PV installation is equal to 0.7 for SFH and
0.7*0.6 for DFH and MFH [35]. Then, from the data collected as reported in Section 2.7.1, the average
roof size is computed for each building archetype (Table 14). Considering the square meters needed
to install 1 kWp and an annual energy production of 1160 kWh/kWp [36], the maximum kWp of PV in-
stalled is computed for each building archetype. Moreover, it is assumed that the installed capacity is
also a function of the electricity demand of the building considered, so a minimum Self-Consumption
(SC) degree of 15% is adopted; this is the value that allows to have the total kWp installed (computed
in the model) equal to the real value (taken from [27]) for the year 2023. Starting from this data and the
annual electricity demand of each building (computed considering the light and appliances demand,
and the electricity demand for heating based on the building heat source) the capacity installed corre-
sponding to the minimum SC is computed, using [37] and considering no storage. So:

• If the capacity corresponding to the minimum SC degree is higher than the maximum capacity
based on the roof size, PV covering all the available roofs is installed, and a new (higher) SC de-
gree is computed for the building considered.

• If the capacity corresponding to the minimum SC degree is lower than the maximum capacity
based on the roof size, that capacity is installed, and not all the area available on the roof is ex-
ploited.

In this way, it is possible to compute the PV economic utility, considering the electricity price and incen-
tives for PV, reported in Tables 15 and 17; while, regarding the green utility, the GHG emissions saved
are computed considering the average emissions for electricity from the grid (see Table 17).

As for the previous two adoption processes, the Flexible Concept adoption for each building archetype
is computed with the equation:

aff,i = (Cf,i − CNCf,i)× SPf,i (33)
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Where Cf,i and CNCf,i represent, respectively, the potential buildings that can provide flexibility and
buildings not willing to provide it, categorized on the heating technology to be controlled by the DSO
(f ) and the building archetype (i). The perceived utility is computed considering not only economic and
environmental importance but also the utility associated to the flexibility contract duration with the DSO
[38], here assumed to be of 1 year.

uf,i = (euwf × euff,i + guwf × guff,i + cuwf × cuff,i)× pef × pec (34)

Where the economic utility weight (euwf ), the contract utility weight (cuw) and the green utility weight
for flexibility (guwf ) are taken from [38]. In this case the peer effect for flexibility is computed consid-
ering all the buildings providing flexibility, independently from the heating technology controlled by the
DSO.

The green utility (guff,i) represent the total GHG saved due to the controlled device of the building
considered. It is computed from the results of the optimization described in Section 2.4, where the to-
tal GHG saved are expressed as a function of the total power controlled from HPs and EHs; the total
emissions saved are divided between all the buildings providing flexibility proportionally to the installed
power of the controlled device. From the optimization process, also the total DSO savings are com-
puted. In this case, it is assumed that just part of these savings is used as an incentive to attract new
flexibility providers, while the remaining part is redistributed to all the DSO consumers, reducing the
electricity price. So, the money offered to new flexibility providers is computed in terms of monthly CHF
per kW provided to DSO control. Finally, Figure 33 and Figure 34 represent the perceived economic
and contract utility corresponding to the CHF/month offered and the contract duration, readapted from
[38].

Figure 33: Perceived economic utility Figure 34: Perceived contract utility

Moreover, the electricity price for the final consumer is computed endogenously in the model, as a
function of different parameters:

p = ep + cTSO + cDSO + tc + tf (35)

Where ep, cTSO, tc and tf represent the cost due to energy production, the TSO charge, the cantonal
tax and the federal tax respectively; these values, reported in Table 16, are kept constant and equal to
the values of 2023 in the future. On the other hand, it is assumed that the DSO charge (cDSO) changes
as a function of the total DSO costs and the total final demand.

cDSO =
DSO Costs

Total F inal Demand
(36)

The total DSO costs are computed for the year 2023 considering the DSO charge and total final de-
mand of the same year. Moreover, this cost is updated in the model considering the increasing costs
for the DSO necessary to upgrade the grid because of heat pumps and PV penetration (CGU ), and
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the savings due to final consumers providing flexibility (Sflex). It is assumed that half of the savings
due to flexibility is used to reduce the electricity price, while the other half is redistributed to flexibility
providers. The CGU are computed considering the HP and PV capacity installations, the average cost
per kW installed taken from [25] and the classification of cities in the AMB district from [39].

DSO Costs2023 = cDSO,2023 × Total F inal Demand2023 (37)

DSO Costs = DSO Costs2023 + CGU − 0.5× Sflex (38)

2.7.3 Model Calibration

(a) Heat Pump (b) Pellet

(c) PV panel

Figure 35: Results of the calibration process for the total HP, Pellet and PV capacity

Before evaluating how the system considered to evolve until 2050, it is necessary to capture the sys-
tem’s behavior. With this as a goal, a fundamental step in building this system dynamics model is its
calibration with historical data of the AMB serviced area. The calibrated variables are the different co-
efficients involved in the adoption decision of both heating technologies and PV panels, namely euw,
guw, pec, euwPV , guwPV and pecPV . The historical data used for the calibration are:

• Total PV installed capacity [kW]: these values are collected from [26], where the installation year
of the PV plant and its nominal capacity is provided.

• Total heat pump installed capacity [kWth]: these values aren’t directly available in the Residential
Buildings and Dwellings database, so the values of the yearly HP sold [40] is used to scale back
the 2023 data for the AMB serviced area.

• Total pellet boiler installed capacity [kWth]: these values aren’t directly available in the Residen-
tial Buildings and Dwellings database, so the values of the overall Swiss pellet capacity installed
in the residential sector [41] is used to scale back the 2023 data for the AMB serviced area.
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During the calibration process, the variables mentioned above are changed to find the values that mini-
mize the Normalized Root Mean Square Deviation (NRMSD) between the historical data and the same
parameters computed in the model. In order to ensure the convergence of the calibration process, rea-
sonable bounds for each utility weight are considered so that each variable cannot reach a null value.
This means that after initializing the model with data from 2016, the following seven years (until 2023)
of the simulation have a resemblance with the historical data that was deemed sufficient. It can also
be noted that the objective of the model is to provide basic insights into the possible mid-to-long-term
evolution of the system and its resulting flexibility potential rather than quantitatively predicting the an-
nual fluctuations (inclines and declines) for each year until 2050. That is to say that the objective of the
calibration process was to resemble as much as possible the historical data, while prioritizing the repli-
cation of the overall trend, rather than specific annual fluctuations. Figure 35 shows the results of the
calibration process.

3 Results and discussion

Figure 36: AMB residential stock in (number of buildings on the x-axis) 2050 categorized by Size, Type,
Energy Efficiency and PV presence (PVno on the left, PVyes on the right)

Figure 36 shows the final heating technology for each building archetype. Compared to the residential
building situation in 2023, shown in Figure 30, the first important difference is the higher presence of
energy efficient buildings; this is affected by three factors: the renovation rate of 1%, the assumption
that the new constructions are in the High category and the assumption that the demolished building
are from the Very Low category.

Two technologies are dominant in the 2050 results: heat pumps and pellet boilers. In fact, the New
Concept solutions that are based on these technologies, namely Heat Pump, Pellet, HP & ST and
Pellet & ST, are the most convenient from all the three dimensions involved in the decision process.
Moreover, heat pumps have a significantly higher economic and social attractiveness: this results in
a final share of solutions based on heat pumps of 76%, followed by the share of solutions based on
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pellet boilers (10.5%). It is important to notice that this model does not pretend to predict the future
and that its presented results are based on the assumption that the current incentive scheme will not
change, which is a scenario that may or may not occur.

Following the current installation trend, the number of buildings with a PV installed continues to in-
crease until 2050, with a final share of buildings equipped with PV of 34%, which is significantly higher
than the 6.5% of 2023. Moreover, there are differences in final heating technologies shares between
prosumers (PVyes) and consumers (PVno): in the SD model the choice to install a PV and the choice
of the heating technology are affected by the heating technology already installed and the presence
of PV, respectively. Because of the higher electricity consumption, consumers with a heat pump have
a higher economic incentive to install PV panels, and, because of the free electricity available from
their own plant, prosumers have a higher economic incentive to install a heat pump. For these reasons,
36% of buildings with a heat pump also have a PV installed, while just 28% of building heated with pel-
let boilers have.

Figure 37: Total installed capacities Figure 38

Figure 37 represents the total installed capacities in the AMB serviced area for the three technologies
of interest: heat pumps, pellet boilers, and PV. There is a clear difference in the adoption speed be-
tween heating technologies and PV. This is because, following the line of the MoPEC, consumers that
install a new heating system are forced to adopt one of the New Concept solutions. So, in the model,
once heating technologies in a Reference Concept reach the end of their lifetime, they are substituted
most of the time with heating systems based on heat pumps and pellet boilers. On the other hand,
the penetration of solar PV is just based on the spontaneous adoption of consumers, which, consid-
ering that the actual incentive scheme will remain unchanged in the future, will continue without abrupt
changes such as the ones in the heating technologies penetration.

Figure 39

In Figure 39 is shown the evolution of electricity price, which changes in the model according to the
description in Section 2.7.2. Its trend is affected by two mechanisms:

• The total final electricity bought from the grid is the first important factor: considering constant
fixed costs for the grid, if it increases the final electricity price for the residential sector decreases.
In the model, the demand increase due to HP penetration and the demand decrease due to PV



46/63

penetration counterbalance each other. These factors can be seen in Figure 38 and represent
the feedback loops R7 and R6 in Figure 29.

• The costs for the DSO related to the grid upgrading due to the higher HP and PV penetration
shown in Figure 37. These costs are considered from 2028, affecting the electricity price mainly
after 2030.

(a) Total capacity controlled by the DSO (b) Total DSO savings related to HT control

(c) Peer effect flexibility (d) Money offered by the DSO to the flexibility providers

(e) Confidence intervals

Figure 40: Main results related to flexibility providers.

Figure 40 shows the main results in terms of flexibility provided to the DSO and its monetary implica-
tions. To evaluate how the compensation offered to flexibility providers affects the total final adoption,
the simulation is repeated, varying the percentage of savings used to decrease the final consumer
electricity price, with this parameter varied between 35% and 65% in a Monte Carlo simulation. If this
percentage increases, the savings used to attract new flexibility providers decreases.

In Figure 40a and 40b are represented the total HPs capacity controlled by the DSO and its savings,
respectively. Both variables have a clear s-shaped trend, which reflects the results reported in Section
2.4. Initially, the savings for the DSO increase linearly with the total capacity controlled, but between
2030 and 2035 the capacity controlled is high enough to have a decrease in the marginal savings, so
that the economic incentive offered to flexibility providers decreases, bringing a lower Flexible Concept
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adoption. The final annual savings for the DSO are estimated using the results represented in Figure
47 and vary between 480 kCHF and 550 kCHF.

Figure 40c shows how these changes affect the peer effect of flexibility: in 2050, the total percentage
of buildings providing flexibility varies between 8.5% and 15%, when the share of savings redistributed
to all is set to 65% and 35%, respectively. This corresponds to an annual amount of avoided emissions
due to flexibility control varying between 350 and 440 tons of CO2, evaluated with the results reported
in Figure 48. Instead, in Figure 40d is represented the evolution of the offered compensation per kW
controlled by the DSO. When the share of savings redistributed to all is higher, the offer for the final
consumer is lower, leading to a lower flexibility adoption. Figure 40d is also representative of the de-
crease in the marginal savings for the DSO once the total controlled capacity reaches an enough high
value. Finally, due to the low impact of DSO savings compared to the overall annual DSO expenses
computed in the model, the final electricity price doesn’t change significantly.

The analysis just described allowed to identify one key leverage point that affects deeply the way the
system considered will evolve. This element is the minimum self-consumption. As described in Sec-
tion 2.7.2, the minimum self-consumption was set to 15%, which is the value that allows to have the
total kWp installed (computed in the model) equal to the real value. In fact, a high PV penetration, be-
sides helping to reduce the overall greenhouse gas production from the electricity sector, could also
bring problems to the grid, such as significant over-voltage and over-loading issues and changes in the
reactive power balance. For these reasons, it is not excluded that in the future years a norm with the
aim of increasing the self-consumption for new PV installations will be enacted. In this case study, it
is considered that in the year 2030 a new law will act in this direction, and, in order to understand how
the system considered could react to such a change, a Monte Carlo analysis is performed, varying the
minimum SC between 10% and 30% from the year 2030.

(a) Total PV capacity installed in MC analysis (b) Electricity price variation in MC analysis

(c) Confidence intervals

Figure 41

As can be seen in Figure 41a, the main parameter affected by this change is the total PV installed ca-
pacity in the considered area: if the minimum self-consumption is set to a higher value, being the elec-
tricity demand constant over the years for each building archetype, the installed capacity will be lower.
The DSO costs to upgrade the grid due to the higher PV penetration will change accordingly with the
PV installed capacity and also the electricity price will be affected by such change in the law scheme,
as shown in Figure 41b.
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Figure 42: Geneve residential stock (number of buildings on the x-axis) in 2023 categorized by Size,
Type, Energy Efficiency and PV presence (PVno on the left, PVyes on the right)

3.1 Replicability analysis

The techno-economically optimized savings for AMB, found through a data-driven approach and the
development of a flexibility oracle, were implemented in the SD model in order to test the redistribution
scheme remunerating the flexibility providers as well as reducing the electricity price for all residen-
tial customers. The SD model was also used to evaluate if the same business model could be repli-
cated by another DSO, and how the adoption process of flexibility is affected by initial input conditions
such as building archetype shares and policy schemes. To this end, the model developed for the AMB
case study was used with new input data representing the state of the residential sector serviced by
Services industriels de Genève (SIG), and a comparison between the results for the two DSOs is con-
ducted. The data for Geneva buildings are collected following the procedure described in Section 2.7.1,
while a summary of the existing policies for heating technologies and PV panels is presented in Table
17.

Figure 42 shows the building archetype shares at the beginning of 2023. Notably, there are two main
differences compared to the initial AMB data (Figure 30): firstly, the initial share of buildings equipped
with Gas Boiler is higher in Geneva, whereas there are fewer buildings with heating systems based
on direct electric heaters, heat pumps, wood boilers, and pellet boilers. Secondly, Geneva has a much
higher share of MFH (34%) compared to AMB (16%), due to its higher population density.

As illustrated in Figure 43, the final number of buildings with a heating technology based on heat pumps
is higher in Geneva (80%) compared to the AMB area. This is attributed to the policy scheme imple-
mented in the Geneva Canton, which is more stringent compared to Ticino. In particular, only heating
systems fully based on renewable sources can be installed, meaning that only Heat Pump, HP & ST,
Pellet and Pellet & ST are considered among the New Concept solutions modeled [42]. Furthermore,
as reported in Table 17, the incentives guaranteed for pellet boilers are lower in Geneva than in Canton
Ticino, resulting in a higher relative utility of Heat Pump and HP & ST concepts.

The policy scheme in the Geneva Canton also has a positive effect on the final PV adoption. Although
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Figure 43: Geneve residential stock (number of buildings on the x-axis) in 2050 categorized by Size,
Type, Energy Efficiency and PV presence (PVno on the left, PVyes on the right)

the incentives for PV installation are the same in the two Cantons, the feed-in tariff is higher in the
Geneva case (see Table 15), leading to a higher economic utility and, consequently, a higher adop-
tion. This higher feed-in tariff compensates for the fact that the economic utility is, on average, lower
for MFH (as shown in Figure 44), even though the total NPV for MFH is higher since, in the model, the
NPV is divided by the average number of dwellings per building type. For the same reason, also the
total number of spontaneous adoptions of heating solutions in New Concept differs between the two
case studies: the AMB serviced area has a higher share of SFH, resulting in a 11% higher share of
spontaneous adoptions over total adoptions of new heating technology.

Figure 44: Average economic utility for PV adoption by House Type

The difference in the perceived economic utility between SFH and MFH also has a significant impact
on the final share of consumers providing flexibility. Assuming the same share of savings due to flexi-
bility providers used to attract new people allowing the DSO to control their heating device (50%), the
amount of CHF offered monthly per kW controlled is the same for the two case studies. However, the
average kW controlled for each dwelling of an MFH is lower compared to the power controlled in an
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SFH, leading to a lower economic utility. Consequently, the final share of buildings with a controllable
heating technology providing flexibility is 16% for the AMB serviced area and 13% for Geneva. As a re-
sult, the impact of electricity cost reduction due to flexibility providers is even lower in the Geneva case
study than in the AMB one.

4 Conclusions

The ODIS project investigated how flexibility could be activated such as to reach a techno-economic
optimum. Using a data-driven methodology to characterize and control flexibility in terms of the power
system response to a given broadcasted control signal, the optimization of the energy purchased from
the TSO leads to savings. In the considered case study of AMB, the data-driven forecaster demon-
strated that there is economic potential for the DSO, where under the participation of the maximum
considered penetration of HPs and EHs an annual cost reduction of 640 kCHF was generated, equiva-
lent to a reduction of the overall energy and peak expenses of about 1.4 %.

However, careful attention needs to be paid to the redistribution of these economic gains as the amount
of flexibility activated depends on the capacity and willingness of the device owners to put them un-
der the control of the DSO. As can be seen from the SD model results, there is a tradeoff between
the choice of using these savings to decrease the electricity price and using it to attract new flexibility
providers, increasing the "flexibility pool". If the flexibility providers are compensated with a higher por-
tion of these savings, the utility of adhering to a flexibility program grows, leading to a faster increase
of the "flexibility pool". However, as the "flexibility pool" grows, a saturation point is likely to occur, af-
ter which additional flexible devices do not provide any more marginal savings (this is particularly true
for the reduction in power peak costs, where the marginal efforts in terms of kWh to lower the monthly
peaks increases as the peak decreases). At the same time, under the principles of fairness, the DSO
should design a flexibility retribution scheme that is accessible to all flexibility device owners and might
not deny participation even if such a saturation point has been reached. In this case, a potential way to
ensure scalability and maintain the appeal to the flexible device owners could be to seek not only sav-
ings derived from the DSO-TSO energy and peak power tariff scheme but also revenues by offering
the aggregated flexibility to third parties or directly accessing ancillary markets.

In addition, there are other important factors that affect the growth of the “flexibility pool”, such as the
initial building stock characteristics and the policy approved by Cantonal and Federal governments to
foster technologies based on renewable energy, which can’t be directly controlled by the DSO deci-
sions based on its business plan. Nevertheless, these factors play a significant role in the ODIS Sys-
tem dynamics model results, as described in Section 3.1. In the Geneve case study, even though the
initial share of heat pumps and pellet boilers is lower compared to the initial AMB situation, the final
penetration of these technologies is higher due to the stricter law on new heating technologies instal-
lations in force in the Geneva Canton. At the same time, even though the final heat pump adoption is
higher in Geneve, due to the higher MFH share, the share of buildings taking part in the “flexibility pool”
is lower, resulting in lower DSO total savings.

5 Outlook and next steps

The ODIS project provides DSOs with a methodology to quantify economic benefits enabled by op-
timally controlling flexibility in their grid and how these could evolve over time, given a profit redistri-
bution scheme for consumers. For the considered case study of AMB, under the maximum consid-
ered penetration of HPs and EHs scenarios, we have estimated an annual cost reduction of 640 kCHF,
which is just a small portion of the overall energy and peak expenses (around 15 MCHF). The savings
could be likely incremented considering control mechanisms other than ripple control. We envisage the
following extension of the study:
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• Considering smart-grid ready HPs. In this setting, we could steer HPs to both decrease and in-
crease the consumption. This would increase the DSO’s ability to shift consumption during low-
tariff periods.

• Considering other flexible devices, such as EVs.

6 National and international cooperation

The project actively involves the sovra-regional DSO Azienda Elettrica Ticinese, the Azienda Multi-
servizi di Bellinzona and Hive Power. Some of the methods developed in ODIS will be tested in the
ORCHESTRA 55136.1 IP-EE innosuisse project. The project outcomes also provided inputs to the in-
ternational forum of the IEA EBC - Annex 82 - Energy Flexible Buildings Towards Resilient Low Carbon
Energy Systems.

7 Publications

We are planning to publish an article on the flexibility estimation methodology and the evaluation of
the control scheme. We also intend to publish an article on the factors influencing the growth of the
flexibility pool.
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A Tables

SFH DFH MFH

1.15 1.2 1.2

Table 11: Correction factor by Type [35]

SFH DFH MFH

A 1.9 1.4 1.4
B 2.4 2.1 2.1
C 2.8 2.6 2.6

Table 12: Occupants per dwelling by Size & Type
[43]

% SFH DFH MFH

A 63.85 53.61 73.87
B 78.47 77.83 76.54
C 82.9 85.93 89.22

Table 13: Share of suitable roofs [27]

m2 SFH DFH MFH

A 81.9 104.1 106.3
B 127.4 142.9 166.9
C 183 204.9 321.1

Table 14: Average roof size by Size and Type [28]

Rp/kWh 2015 2016 2017 2018 2019 2020 2021 2022 2023 2

AMB [44] 7.154 5.92 7.113 8.086 6.439 5.146 11.032 22.47 9.21
GE [45] 13.64 12 8.54 10.97 12.21 12.98 13.25 18.97 13.13

Table 15: Compensation for electricity sold to the grid

Rp/kWh 2016 2017 2018 2019 2020 2021 2022 2023

ep 6.59 6.59 6.59 6.98 7.26 7.26 7.49 8.46
cTSO 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56
cDSO 5.83 5.83 5.83 6.28 6.6 6.9 6.95 7.56
tf 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3
tc 2.15 2.15 2.15 2.17 2.21 2.25 2.19 2.13

p 18.43 18.43 18.43 19.29 19.93 20.27 20.49 21.9

Table 16: Electricity price in AMB serviced area [46]

2Computed as the average of the other years
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B Avoided Costs

Figure 45: Total cost matrix for different combinations of total controlled HPs and electric boilers.
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Figure 46: Peak cost matrix for different combinations of total controlled HPs and electric boilers.

Figure 47: Energy cost matrix for different combinations of total controlled HPs and electric boilers.
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Figure 48: Avoided emission matrix for different combinations of total controlled HPs and electric boil-
ers.

C Thermal models

C.1 Control logic of heating systems

The heat pump control logic is based on two temperature sensors placed at different heights of the wa-
ter tank, while the circulation pump connecting the tank with the building’s heating element is controlled
by an hysteresis on the temperature measure by a sensor placed inside the house.
We describe the control logic in a sequential way, following the heating components of the system. The
first decision is taken by the building central controller, which decides its working mode, that is, if the
building needs to be cooled or heated, based on a moving average of the historical data of the external
temperature: 

wmt = −1 if Tma,t > Tmax,ma

wmt = 1 if Tma,t < Tmin,ma

wmt = 0 otherwise

(39)

where the working mode wmt is negative when the building requires to be cooled, positive when heat-
ing is required, and 0 when no actions are needed.Tmax,ma and Tmin,ma represent the maximum and
minimum values of the external temperature’s moving average, which is based on the past 7 days. The
actual activation of the heating element is controlled by the hysteresis on the internal temperature of
the building, Tz. If the working mode is positive, this is given by:

shy,t = 1 if ( Tz < Tmin,hy −∆T/2)

or (Tz < Tmin,hy +∆T/2 and shy,t−1)

shy = 0 otherwise

(40)

where shy,t is the state of the hysteresis at time t, 1 meaning that the circulation pump of the heating
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element must be activated, and ∆T was chosen to be equal to 1◦C. For completeness, we report also
the control logic when the building is in cooling mode:

shy,t = 1 if ( Tz > Tmax,hy +∆T/2)

or (Tz > Tmax,hy −∆T/2 and shy,t−1)

shy = 0 otherwise

(41)

The incoming water temperature in the heating element is then modulated linearly through a 3-way
valve between a maximum and minimum value, based on the external temperature, both in the heat-
ing and cooling modes. When operative, the heating element requests hot or cold water to the water
tank, which control logic is based on two temperature sensors located in two different layers. When
the building is in heating mode, the control logic is a simple hysteresis based on the temperature of the
sensor in the uppermost layer, which is identical to the one in (40). When in cooling mode, the control
logic is the following:

shy,t = −1 if ( Tup > T c
max +∆T/2)

or Tlow > T c
max +∆T/2

shy,t = 0 if ( Tlow < T c
min) or (Tup < T c

max −∆T/2)

shy,t = shy,t−1 otherwise

(42)

where Tup and Tlow are the temperature measured by the upper and lower sensors, respectively, and
T c
min and T c

max are the minimum and maximum desired temperatures of the water in the tank while in
cooling mode.
The value of shy,t is then communicated to the HP. In the case in which the HP is also used for the do-
mestic hot water (DHW), the DHW tank is always served with priority by the HP.

C.2 Heat distribution system

Floor heating was modeled starting from first principles. Considering a fixed and uniform temperature
for the ground and the building internal temperature at each time-step and stationary conditions, we
can retrieve the analytical expression of the temperature profile along the pipe, through the energy bal-
ance on an infinitesimal element of the pipe. This can be expressed as:

∂cTx

∂t
= Φx − Φx+∂x + q̇up + q̇down (43)

where c is the heat capacity in J/K, x is the distance from the pipe entrance, Tx is the temperature of
the water inside the pipe at x, Φ are enthalpy flows at the entrance and exit of the considered infinites-
imal volume, q̇up and q̇down are the heating powers from the building and from the ground. Expressing
the latter through equivalent resistance taking into account convective and conductive effects, the bal-
ance in steady state can be rewritten as:

ṁcp
ρ∗

∂Tx

∂x
=

RdownTz +RupTg

Rdown +Rup
− Tx = T a − Tx (44)

where T a is the asymptotic temperature and where:

Rdown =
1

hinw
+

1

hu,eqw
+Ru (45)

Rup =
1

hinw
+Rg (46)

ρ∗ =
Rup +Rdown

RupRdown
(47)

where w is the diameter of the tube, hin is the internal coefficient of heat transfer, which can be re-
trieved using available empirical relation for fully developed flow with fixed temperature at the boundary
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conditions [62], hu,eq is the heat transfer coefficient between the floor and the building air including both
the effect for natural convection and radiation. The values of hu,eq can be found in the literature [63].
The value of the thermal resistances Ru and Rg, towards the floor and the ground, can be found in the
literature as well. We can reformulate (44), making it a-dimensional through a change of variable:

∂Θ

∂X
= −Θ (48)

from which solution we can retrieve the temperature profile of the water inside the pipe:

Tx = T a + (T0 − T a)e
−xρ∗
ṁcp (49)

where T0 is the temperature of the water at the pipe inlet. We can use (49) to retrieve the heating power
flowing into the building, integrating q̇up(x) along the pipe.

Q̇up =

∫ L

0

q̇up(x)dx =

∫ L

0

T (x)− Tz

Rup
dx (50)

where L is the length of the serpentine. Integrating, we obtain

Q̇up =
(T a − Tz)L− (TL − T0)

ṁcp
ρ∗

Rup
(51)

where TL is the temperature of the water at the outlet of the serpentine. Note that the equation (51)
tends to (TL − T0)ṁcp when Rdown increase and Rup is kept fixed.
The nominal mass flow of the heating system and the length of the serpentine are found as the solu-
tion of the following optimization problem:

argmin
L,ṁ

(
Q̇up(L)− Q̇nom

)2
+ 10−3 (ṁ− ṁnom)

2 (52)

where ṁnom is a reference mass flow, equal to 0.1 [kg/s] and Q̇nom is the power required to keep the
building internal temperature constant under reference conditions (we used an external temperature of
-4◦C and a desired internal temperature of 20 ◦C):

Q̇nom =
∆Tref

R
(53)

where R is the resistance of an equivalent RC circuit describing the heating dynamics of the building.

C.3 Water tank model

The dynamic equation describing the evolution of the temperature of the tank’s layers is the following:

C
∂Ti

∂t
= Q̇u

buo,i + Q̇d
buo,i + Q̇h,i + Q̇loss,i + Q̇u

cond,i + Q̇d
cond,i + cpṁ(Ti−1 − Ti) (54)

where Ti is the temperature of the ith layer, Qu
buo,Qd

buo,Qu
cond,Qu

cond are the thermal powers due to buoy-
ancy and conduction, from the lower and upper layer, respectively. The last term represents the en-
thalpy flow due to mass exchange, while C is the thermal capacity of the layer, in [J/K] and Qh,i is the
thermal power due to an electric resistance (for the boiler) or an heat exchange (for the heating system
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buffer). The expression for the above thermal power are the following:

Q̇u
buo,i = k max(Ti+1 − Ti, 0)N, 0 for i = N (55)

Q̇d
buo,i = k max(Ti−1 − Ti, 0)N, 0 for i = 1 (56)

Q̇u
cond,i = uamb(Ti+1 − Ti), 0 for i = N (57)

Q̇d
cond,i = uamb(Ti−1 − Ti), 0 for i = 1 (58)

Q̇loss,i = uamb(Text − Ti) (59)

Q̇h,i = Q̇tot/nh if i ∈ I (60)
(61)

where N is the number of layers, uamb is the equivalent thermal loss coefficient with the ambient and I
is the set of the nh layers heated by the heat exchange (or electric resistance). The buoyancy model is
the one proposed in the IDEAS library [3]. Detailed description of the parameters for the boiler model
can be found in

C.4 Fitting of equivalent thermal resistance

For each building we can solve the following optimization problem:

R∗ = argmin
R

(Ey − Esim(θ,R, Text, I))
2 (62)

where θ are all the simulation’s parameters, including the parameters for the heating system control
logic. Solving this problem for all the buildings is impractical, since each evaluation of the objective
function requires a yearly simulation for each building, which requires several minutes. As a first ap-
proximation, we can solve (62) replacing Esim with a proxy, Ẽ: instead of simulating the whole hating
system and its logic, including stratified tanks, we can replace it with the following simplified equations:

qnom = R−1∆Tref (63)
u = Tma(Text) < Tma,min (64)

qint,t = qnom(Tt−1 < Tmin,t−1)ut (65)

Tt = Tt−1Ad+Bd(qint,t + kIt + T [t]R−1) (66)

Ẽsim =

tmax∑
t=1

qint,t (67)

where ∆Tref is the reference temperature difference used for the sizing of the heating system, Tma is
the one-week moving average on the external temperature, Tma,min indicates the value of Tma under
which the heating is turned on, u is a binary variable indicating if the heating system is active, Tmin is
the time-dependent vector of minimum internal temperatures, Ad and Bd are the exactly discretized
dynamic matrices, obtained by the continuous one through exact discretization [64]:

Ad = eAcdt

Bd = A−1
c (Ad − I)Bc

(68)

where Ac = [− 1
RC ] and Bc = [− 1

C ]. Equations (63)-(67) allows to reduce the computational cost for a
yearly simulation with 10 minutes sampling time for one building down to 0.5 milliseconds on average,
when compiled with numba, making it practical to solve (62) through gradient-based optimization for all
the simulated buildings.
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