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Executive summary

The massive integration of renewable energy, and the electrification of the building heating
systems are required in order to meet the Paris agreement’s CO2 emission target. Heat pumps
and PV is expected to penetrate quickly in the market come with significant investment
costs. To maximize the profit and advantage of both technologies without increasing their
management complexity, novel algorithms guaranteeing close-to-optimal operations should be
demonstrated.
In this work, a novel heuristic control algorithm is presented. The algorithm optimizes an
indicator comparing the variation of the operating cost and the generated heat. It is versatile
and agnostic of the building modeling complexity. The benchmark against a mixed-integer
linear formulation of the energy management shows that the proposed algorithm performs
closely to the optimal solution. The differences in terms of operating costs and temperature
deviations are negligible. The simplicity of the algorithm makes it suitable for implementing
in a micro-controller as a state machine.
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1 Description of the deliverable and goal

In the energy transition and the Swiss 2050 energy strategy framework, a high penetration of
distributed photovoltaic (PV) systems is expected. This implies a shift from a centralized to a
decentralized energy provision system. Furthermore, to cope with the Paris agreement’s CO2

emission target, the electrification of the building heating system is required (representing a
large third of the final Swiss energy demand, see Figure 1). These two critical elements of the
energy transition will have a substantial impact on our electrical grid and how modern energy
systems are designed and operated.

Heating
62 TWh (27%)

Domestic hot water
13 TWh (6%)

Process heat
27 TWh (12%)

Process
19 TWh (8%)

Appliances
15 TWh (6%)

Mobility
66 TWh (29%)

int.aviation
22 TWh (9%)

other
6 TWh (3%)

Figure 1: Final Swiss energy demand by application adapted from [1]. The appliances category
gather Lightning, IT & Entertainment, ventilation & AC needs.

At the scale of an individual building, there is a growing need for technologies enabling
optimal system operation by acting on controllable loads. The heating system (assuming
converting electricity to heat) is typically a controllable load because the thermal inertia
allows for load shifting with a low impact on the occupants’ comfort. Using a heat pump
(HP) is an obvious choice for the simple thermodynamic reason that one electricity unit fed
to the device generates more than one heat unit. The question is how to control the HP so
that it fulfills its duty of providing heat and maintain the occupants’ comfort while leading to
the minimum possible operating cost by using as much as possible of the cheap available PV
energy?

This work aims to provide a simple and effective HP control algorithm for PV systems
aiming to maximize such a system’s profitability, hence reducing the operating cost. This
work describes the formulation of a heuristic control strategy designed to be versatile in terms
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of modeling equation requirements, and lean in terms of computational resource requirements.
The proposed algorithm is based on an indicator rather than a complex objective function,
ensuring the computation’s simpleness.

1.1 Research question

This work aims to answer the following research question:

• What is the optimal control trajectory of a HP to minimize the operating costs?

• Which algorithm can provide a HP control trajectory leading to an operating as
close as possible to the optimal cost while being lean in terms of computation
requirements and versatile in term of modelling complexity?

1.2 Novelty of the proposed solutions compared to the state-of-art

The building energy management problem has attracted a wide range of research aiming to
address this problem from various perspectives or using different techniques. Regarding the
thermal and electrical supply management, the first category is to use quadratic formulation
to get the absolute optimal solution. For instance, mixed-integer linear programming (MILP)
can be used as in [2, 3, 4, 5] to obtain the optimal size and operation of the component (HP,
PV, battery, and thermal energy storage). This technique requires, however, linear or at least
quadratic objective and constraint functions. The second practice is to use meta-heuristic
optimization [6, 7, 8, 9]. Meta-heuristics typically focus on quickly getting a feasible (non-
linear constraints are admissible) solution, but their optimality still needs to be demonstrated.
The advantage of using such a technique is to allow any kind of non-linearities in the input
model. The first two categories are focused on the formulation of an optimization problem
and how to solve it. The energy management problem can also be tackled from a control
perspective.

Model predictive control is a well-known approach extensively used to solve the energy
management problem [10, 11, 12]. This technique can be extended using dynamic optimization
like in [13]. This approach suffers from an extended complexity inherent to the fact that very
accurate models are usually used and that the definition of the objective function is not so
straight forward. The influence of the objective function’s formulation (despite aiming to the
same conceptual goal) can indeed widely change the resulting operation [6]. For instance,
instead of using the comfort temperature as hard bounds (often used in MILP approaches), a
comfort penalty is integrated into the objective function [14]. The difficulty with such a method
of combining heterogeneous metrics in the objective function is to find the appropriate weights
so that the solution is a good trade-off between the various objectives.

The final approach for the HP control is to use a heuristic approach similar to [15, 16].
This approach has been recently identified [17] as more appropriate in a short-term range
due to the difficulty of the industry to embrace complex and emerging control methods like
reinforcement learning [18, 19].
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The proposed algorithm extends the basic formulation of [16] to encompass the control 
algorithm around a single indicator. The indicator puts in relation a possible action (like 
increasing the electricity fed to a HP), the corresponding gain in operating expense, and the 
heat production gain. Our heuristic control algorithm (HCA) evaluates this indicator as often 
as needed and chooses the action which minimizes this indicator. Such an approach is novel 
because it doesn’t require any parameters tuning and achieve the close-to-optimal control 
trajectory.

1.3 Description

This work is organized as follows: Section 3 provides a description of the system model and 
the HCA. The methodology for the benchmark of the algorithm is also provided. Section 4 
describes the case study and the main cost and model parameters. The benchmark results are 
exposed in section 5, while the conclusions of this work are presented in section 6.

2 Achievement of Deliverable

2.1 Date

This deliverable is handed in December 2020.

2.2 Demonstration of the Deliverable

The deliverable aims to apply to any buildings with HP and PV in Switzerland and outside. 
The dataset of building used in this work is based on the cantonal buildings registry of the 
canton of Vaud from which all buildings of the Rolle demonstrator and surrounding are ex-
tracted. The considered buildings, although anonymized, are real buildings from which their 
properties are extracted using the Swiss society of engineer and architects (SIA) norm.

2.4 Impact

Starting from the building model formulation and the control problem, this work can very 
rapidly turn into a real product and be implemented into HP control hardware. The current 
Swiss market suffers from a lack of such products.
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3 Methodology

This section presents the methodology to benchmark the HCA against the solution solved by
a MILP formulation. The same building energy system model, described in section 3.1, is used
in both approaches. Then section 3.2 detailed the objective function of the MILP formulation,
followed by the workflow of the HCA introduced in section 3.3. Finally, section 3.4, gives the
benchmark methodology and the key performance indicator definitions.

3.1 System model

The considered energy system, illustrated in Figure 2, comprises an air-water HP, with vari-
able operating power capability, dedicated to DHW and building heating coupled with a PV
installation. The HP is augmented with an electric heater (EH) to cover any peak demand in
any extreme case. The building is connected to electrical networks and can import and export
electricity if required. The local electricity consumption should be satisfied at any time. The
heating demand should be met so that the building and hot water tank temperature stay
within given bounds.

Figure 2: A basic sketch of the system under study

5



This section presents a linear model of this energy system that can be solved either with
a MILP formulation or with the HCA. A linear model is used to ensure a fair performance
benchmark, although the HCA would work with any non-linear model. This model is derived
from a previous work in which the optimal sizing of the PV and battery capacity was per-
formed [20]. In this work, we introduce a thermal model and perform the optimization of the
HP and EH size. Although a battery could be considered in the formulation of the problem,
it is omitted in this work for simplicity. The active power curtailment is modeled as a con-
trollable load with an upper bound equal to the instantaneous PV generation. The complete
set of variables are provided in Table 1. In the latter, the decision variables (in opposition to
parameters) are marked with a ?.
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Table 1: Variables definition. The decision variables are indicated with a ? in the V
columns. The rest are parameters.

Variables Set Units V Descriptions

ti
m
e T N - number of time steps

TS RT
+ s time steps

sy
st

em
P imp RT

+ W ? imported power (from the grid)
P exp RT

+ W ? exported power (to the grid)
P load RT

+ W uncontrollable electricity consumption
P cur RT

+ W ? curtailed power
T amb RT

+ K ambient/external temperature
cimp RT

+ CHF/J import electricity tariff
cexp RT

+ CHF/J export electricity tariff
L N years system lifetime
r R - discount rate

pv

N N - number of PV configurations
J N - number of roofs
nmod NN - ? PV configurations, number of units
bmod {0, 1}N - ? PV configurations, presences
bpv {0, 1} - ? PV installation, presence
cPV
F R+ CHF PV fixed cost
cmod RN

+ CHF/W PV configurations, specific costs
Pmod

nom RN
+ W PV unit nominal powers

PPV
t RT×N

+ W PV configuration unit generations
Amod RN

+ m2 PV configuration areas
Aroof RJ

+ m2 roofs areas

h
p

P hp
cap R+ W ? HP electric nominal power
P el
cap R+ W ? EH nominal power
P hp RT

+ W ? HP electric power
P el RT

+ W ? EH power
Q̇hp RT

+ W ? HP thermal power
COP RT

+ W HP coefficient of performance
qcarnot R+ - carnot non-ideality factor of the HP
St RT

+ HP starting up
Rt RT

+ HP running
cstart R+ CHF HP start cost
crun R+ CHF/s HP run cost
chp R+ CHF/W HP specific cost
cel R+ CHF/W EH specific cost
ηel R+ - EH efficiency

d
h
w

Q̇hp→tank RT
+ W ? HP thermal power to tank

Q̇el→tank RT
+ W ? EH thermal power to tank

Q̇DHW RT
+ W DHW thermal power consumption

T tank RT
+ K ? tank temperature

T room R+ K room temperature (constant)
TH,tank R+ K hot source temperature of the domestic hot water circuit
T tank

min,max R+ K hot water tank service temperature range
Ctank R+ J/K thermal equivalent capacitance of the dhw tank
Rtank R+ K/W thermal equivalent resistance of the DHW tank

bu
il

d
in

g

Q̇hp→sh RT
+ W ? HP thermal power to space heating

Q̇el→sh RT
+ W ? EH thermal power to space heating

Q̇sh→b RT
+ W thermal power from the space heating to building

T b RT
+ K ? building temperature

T sh RT
+ K ? space heating temperature

TH,sh R+ K hot source temperature of the space heating circuit
T b

min,max RT
+ K building comfort temperature range

T sh
min,max RT

+ K space heating service temperature range
Csh R+ J/K thermal equivalent capacitance of the space heating
Cb R+ J/K thermal equivalent capacitance of the building
Rsh R+ K/W thermal equivalent resistance of the space heating
Rb R+ K/W thermal equivalent resistance of the building
A0 R+ m2 equivalent horizontal building opening surface
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The system’s power balance is described in (1) and must be satisfied for all time steps.
The PV system’s modeling equations are described in eqs. (2a) to (2c).

P imp
t − P exp

t + P cur
t + PPV

t − P hp
t − P el

t = P load
t ∀t ∈ T (1)

PV generation at time t PPV
t =

N∑
i=1

Pmod
t,i · nmod

i (2a)

area constraints for all roofs ∈ J
Nj∑
i=1

nmod
i ·Amod

i < Aroof
j ∀j ∈ J (2b)

curtailment constraint P cur
t − PPV

t < 0 (2c)

The thermal model is based on the electrical-thermal analogy. The reference circuit is
pictured in Figure 3. The circuit consists of the HP (and EH, omitted for clarity) providing
heat to a space heating circuit which as its thermal inertia (equivalent capacitance) and trans-
fers its heat (3c) to the building. The latter gains heat from the solar irradiance (through
windows) (3e) and loses heat in the surrounding environment (3d). This is represented in the
heat balance equation of the building (3a). The building temperature is constrained by ap-
plying reasonable bounds (3f) to ensure a fair approximation of the occupants’ comfort while
guaranteeing the optimization feasibility. The initial temperature must also be specified (3h).

C
sh

C
b

Q̇
su

n

Rsh Rb

Q̇
h

p
→

sh
Q̇

el
→

sh

T sh T b T amb

Figure 3: Equivalent electrical circuit of the building and space heating circuit
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building thermal balance Cb ·
T b
t − T b

t−1
TSt

= Q̇sh→b
t − Q̇loss,b

t + Q̇sun
t

(3a)

space heating thermal balance Csh ·
T sh
t − T sh

t−1
TSt

= −Q̇sh→b
t + Q̇el→sh

t + Q̇hp→sh
t

(3b)

heat gain from the space heating circuit Q̇sh→b
t =

T sh
t − T b

t

Rsh
(3c)

heat loss in the surrounding environment Q̇loss,b
t =

T b
t − T amb

t

Rb
(3d)

heat gain from the sun Q̇sun
t = I0,tA

sun
0 (3e)

building temperature constraints T b
min ≤ T b

t ≤ max(T b
max, T

amb
t ) (3f)

space heating temperature constraint T sh
min ≤ T sh

t ≤ T sh
max (3g)

initial building temperature constraint T b
0 = T b

init (3h)

initial space hating temperature constraint T sh
0 = T sh

init (3i)

To fulfill the domestic hot water demand (Q̇DHW
t ), the hot water tank acts as a thermal

reservoir, which is supplied by the HP and EH (see thermal balance equation (4a)). The tank
heat loss depends only on the tank temperature (4b), the surrounding temperature, T room

t is
assumed as constant à 20 ◦C. The temperature in the tank is bounded (4c). The tank heat
loss is not considered as heat gain for the building. Hence, the tank is a non-ideal storage (3).

tank heat balance Ctank ·
(
T tank
t − T tank

t−1
)

TSt
= Q̇el→tank

t + Q̇hp→tank
t − Q̇loss,t

t − Q̇DHW
t

(4a)

heat loss from the tank Q̇loss,t
t =

T tank
t − T room

t

Rtank
(4b)

tank temp. constraint T tank
min ≤ T tank

t ≤ T tank
max (4c)

To provide the required heat in both the space heating circuit and the DHW tank circuit,
the HP and EH consume electric power as described in (5a) and (5b). The coefficient of
performance (COP) is derived from the Carnot definition and assume constant hot and cold
source temperature (both for the space heating and tank side) (5c) and (5d). The maximum
input power demand defines the unit’s capacity for both the HP and the EH (5e) and (5f).
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electric power for the HP P hp
t =

Q̇hp→sh
t

COP sh
t

+
Q̇hp→tank

t

COP dhw
t

(5a)

electric power for the EH P el
t =

Q̇el→sh + Q̇el→tank
t

ηel
(5b)

COP for space heating COP sh
t = qcarnot · TH,sh

TH,sh − T amb
t

(5c)

COP for the DHW tank COP dhw
t = qcarnot · TH,tank

TH,tank − T amb
t

(5d)

HP capacity constraint P hp
cap ≥

Q̇hp→sh
t

COP sh
t

+
Q̇hp→tank

t

COP dhw
t

(5e)

EH capacity constraint P el
cap ≥

Q̇el→sh + Q̇el→tank
t

ηel
(5f)

3.2 MILP formulation

The problem is formulated as a mixed-integer linear problem, in which the objective function
is to minimize the total cost of ownership (7).

minimize TOTEX subject to eqs. (1) to (5f) (6)

The TOTEX is composed of the capital (9), which include the cost of buying PV modules,
a HP and the battery (11), and operating cost (8), which consist of the maintenance cost of the
PV installation, the operating cost of the HP and electrical boiler, and the cost of exchanging
energy with the grid (12). In this work, only a standard volumetric tariff is defined.

TOTEX = OPEX +R · CAPEX (7)
OPEX = oxge + oxhpo + oxelo + oxpm (8)

CAPEX = cxpv + cxhp + cxel (9)

R =
r · (1 + r)L

(1 + r)L − 1
(10)

The CAPEX components are defined in (11).

PV cxpv =

N∑
i=1

nmod
i · Pmod

nom,i · cmod
i + bpv · cPV

F (11a)

HP cxhp = P hp
cap · chp (11b)

EH cxel = P el
cap · cel (11c)
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The OPEX components are defined in (12).

grid exchanges oxge =
T∑
t=1

[
P imp
t · cexpt − P exp

t · cimp
t

]
· TSt (12a)

pv maintenance oxpm = γPV · cxpv (12b)

3.3 HCA formulation

The HCA’s objective is to optimize the HP power consumption P hp
t to meet the DHW and

building heating needs while minimizing the OPEX . This power consumption profile is dis-
cretized with a power step ∆P hp. The algorithm’s main phases, shown in Figure 4, are first to
initialize temperatures, then optimize the HP operation to meet the DHW needs, and finally,
a second optimization is performed to meet the building heating demand.

initialize tank, building
and space heating

temperatures
START

optimize heat
pump usage to

meet dhw needs

optimize heat
pump usage to
meet building

heating demand

END

Figure 4: Main steps of the HCA

The HCA, detailed in Figure 5, is used to optimize the HP usage to meet either the DHW
or building heating demand. For the following, the word tank can be exchanged by building.
At the beginning of the process, both HP and EH power profiles are set to zero. A first
heat balance of the tank is carried out (thanks to eqs. (3a) to (5f)), enabling to obtain the
temperature profile of the tank over the entire time horizon. An indicator is then computed
(13) for every possible increase of the HP electric power. If the tank temperature drops below
the minimum temperature, a period P is defined, corresponding to the period during which the
HP power should be increased to maintain the tank temperature in a given range [T tank

min , T
tank
max ].

If the HP is not already used at nominal power during the period P , then the HP power P hp
theat

is increased by a power step ∆P hp at the time theat corresponding to the minimum of the
indicator. If the HP was already at maximum power during the period P , then the EH is used
instead. A new heat balance is carried out to assess the tank’s temperature rise from theat to
the end of the time horizon. If the tank temperature is still too low, the loop starts again.
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initial heat balance of 
to get the temperature

evolution 

 = tank or building

compute indicator 

define period  =  time
steps  such that

find time  such that 

new heat balance of  to get
the temperature evolution 

update  for 

START

compute indicator 

find time  such that 

END

no

no

yes

yes

initialize power profiles 

Figure 5: Optimal HP and EH control

The HP indicator Ωhp
t gives the cost of the produced heat. In other words, it is the ratio

between the OPEX increase and thermal energy production increase due to the rise of the HP
electricity consumption by ∆P hp.
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Ωhp
t =

∆OPEXt

∆Qt
(13)

Here, the OPEX is the sum of two contributions. The first part, given by the power
exchange with the grid, takes into account the import cimp

t and export cexpt electricity tariffs.

OPEXt = OPEX grid
t + OPEXhp

t (14a)

OPEX grid
t =

(
P imp
t · cimp

t − P exp
t · cexpt

)
· TSt (14b)

OPEXhp
t = cstart · St + crun ·Rt · TSt (14c)

The second part, OPEXhp
t , depends on the HP operation. It consists of two parts, a cost

for each start-up of the HP and a second, proportional to the HP operation duration. The
running state Rt and starting St are defined as followed.

Rt =

{
1 if P hp

t > 0

0 otherwise
(15)

St =

{
1 if Rt−1 = 0 ∩Rt = 1

0 otherwise
(16)

Finally, the ∆OPEXt is given by the OPEX difference when considering an increase of the
HP power consumption by a power step ∆P hp. This increase of the power consumption as an
influence on the OPEX grid

t through (1) and obviously on OPEXhp
t since Rt and St depends

directly on P hp
t .

∆OPEXt = OPEXt(P
hp
t + ∆P hp)−OPEXt(P

hp
t ) (17)

The denominator of the indicator is based on the heat generated by the HP, Q̇hp
t , defined

as :

Q̇hp
t (P hp

t ) = P hp
t · COPt(P

hp
t ) · TSt (18)

Thus a variation of the heat generation driven by an increase of the HP consumption ∆P hp

can be expressed as :

∆Q̇hp
t = Q̇hp

t (P hp
t + ∆P hp)− Q̇hp

t (P hp
t ) (19)

=
(

(P hp
t + ∆P hp)) · COPt(P

hp
t + ∆P hp)− P hp

t · COPt(P
hp
t )
)
· TSt (20)

For this benchmark, the COP formulation is defined in eqs. (5c) and (5d) was implemented
in the HCA too. In this way, the COP is a parameter that doesn’t depend on any decision
variable. However, this is a simplistic assumption. Usually, the COP depends on the hot
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source temperature and part load ratio of the HP. The following gives an example of such a
non-linear formulation that can be easily implemented in the HCA.

COPnonlin

(
T amb
t , TH

t , P
hp,n
t

)
= COPlin

(
T amb
t , TH

t

)
· fc
(
P hp,n
t

)
(21)

With TH , the tank T tank or building T b temperature. The linear part of the COP is only a
linear function of the external temperature T amb and hot source temperature TH .

COPlin

(
T amb
t , TH

t

)
= d0 + d1 · T amb

t + d2 · TH
t (22)

And fc is the dependence of the HP efficiency on its part load ratio, here expressed with six
order polynomial function.

fc

(
P hp
t

)
=

6∑
n=1

an ·
(
P hp,n
t

)n
(23)

Where P hp,n
t is the normalized HP power.

P hp,n
t =

P hp
t

P hp
cap

(24)

3.4 Benchmark

In order to benchmark the HCA performance, the algorithm is applied to various representative
buildings. The methodology for selecting the set of representative buildings is described below.
For each building in this set, typical periods are defined based on the irradiance, temperature,
electrical, and DHW consumption. Then for each of these periods (and each building), the
HP operation is solved using both the HCA and MILP formulation. Finally, key performance
metrics are computed based on the operation results. This process is graphically summarized
in Figure 6. The following will describe in more detail each of these steps.
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START

 representative building
selection

K

use MILP to optimize the
design and get the capacity

of:
 

- PV  
- heat pump 
- electrical heater 

nmod

P
hp

cap

P el
cap

select   typical periodsP

p = 1

simulate the operation with
the  MILP and HCA fixing

  ,  , 
and save representative state

variables

nmod P
hp

cap P el
cap

p = p + 1

No

Yes

p > P

k = k + 1

Yesk > K

evaluate metrics on the 
 periodsK × P

STOPk = 1

No

Figure 6: Workflow of the benchmark process

The cantonal buildings registry (RCB) or its federal version (RegBL)1 gives standard
information about all the buildings in the canton, like footprint area, number of levels, building
or renovation year, number of housing, etc. The RCB divides the buildings into six categories:

1010 provisional building

1021 single-family house

1025 multi-family building

1030 multi-family building with annex activities (like shops)

1040 building with partial usage for housing

1060 non-residential building.
1https://www.housing-stat.ch/fr/accueil.html
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By combining the building category, footprint area, the number of levels, number of hous-
ing, and the renovation year with the SIA norm 2024 [21], it is possible to extract:

1. an estimation of the electrical, heat, and domestic hot water demand

2. the physical properties of the building (heat transfer coefficient, thermal capacity, etc.(see
Table 1).

From the solar roof 2 data, the roofs’ characteristics (area, azimuth, and tilt) are also
known for each building. From this dataset of buildings, the most representative buildings
are extracted for each building category. The k-medoids [22] algorithm is used to perform the
clustering on the following set of building features:

• number of housing

• number of levels

• building renovation year

• building height

• building footprint area

• the ratio between the annual PV potential (extracted from solar roof ) and the annual
electricity demand

• the total heat demand (including DHW)

The number of medoids (representative building) is a parameter of the clustering. Finally,
for all medoids, electrical and DHW load profiles are allocated using the annual energy de-
mands. The electric profiles come from an database of load profiles acquired during a project
on the households’ flexibility [23, 24]. The DHW load consumptions are generated from daily
samples extracted from the work of Roux and Booysen [25, 26]. For these representative build-
ings, the PV, HP, and EH capacities will be optimized at the same time as their operations for
one full year by solving the MILP problem depicted in section 3.2. To investigate the HCA’s
operational behavior, typical periods have to be defined.

Following a similar approach, the typical periods’ selection for a particular building con-
sists in choosing a few representative period samples from a set of time-series samples. This
approach and the complexity of energy systems is discussed in detail in [27]. The partition-
ing of long time-series into representative shorter samples is now a well-accepted technique
[28, 29]. The first step is, hence, to cut the time series into samples. In this work, each
time-series sample is one week long. There are thus, 52 time-series samples for a particular
building. Each sample consists of a TS × F matrix, where TS is the length of the time series
(corresponding to one week in this case), and F is the number of considered features. For

2https://www.uvek-gis.admin.ch/BFE/sonnendach
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the latter, we choose the electrical load P load, the DHW demand Q̇DHW, the horizontal global
irradiance GHI, and the ambient temperature T amb. Again, the k-medoids[22] algorithm was
used to extract four representative weeks from the 52 available.

Once the design of a particular building in terms of technology capacity and the correspond-
ing typical weeks are defined, the system operation is simulated. First, a reference operation
is obtained by solving the MILP of 3.2. Then the HCA is run. The relevant performance
metrics can be computed for each typical week and for each representative building.

The performance metrics are defined for each building k ∈ [1...K] and each typical period
p ∈ [1...P ]. For easing the notation, the subscript k, p are dropped. The operator

∑
denotes

the operation
∑TS

t=1.

operating cost OPEX =
∑

(P imp
t · cimp

t − P exp
t · cexpt )TSt (25a)

heat generation Qu,s =
∑

Qu,s
t · TSt ∀u ∈ [hp, el], s ∈ [sh, tank] (25b)

HP running time ratio HPrun =

∑
Rt · TSt∑

TSt
with Rt defined in 15 (25c)

HP switch on per day HPswitch =

∑
St∑

TSt/(24 · 3600)
with St defined in 16 (25d)

temperature deviation ∆T̄ =

∑∣∣T b
t − T ∗

∣∣
TS

with T ∗ = 19 ◦C (25e)

The time needed for both algorithms to simulate the operation for a typical week is also
recorded.

4 Case study

The cantonal building registry of the canton of Vaud has been used as the building data set.
Five representative buildings are extracted for each of the following categories

• Single-family house (cat 1021)

• Multi-family building (cat 1025)

• Non-residential building (cat 1060)

The resulting 15 representative buildings are pictured in Figure 7. This figure shows
the total exergy demand (defined in equation 26) versus the building footage: the building
footprint times the number of levels. The size of the disc represents the PV potential capacity.

Bk =

T∑
t=1

[
P load
k,t + Q̇DHW

k,t

(
1− T ∗

T dhw

)
+Qsh

k,t

(
1− T ∗

T sh
k

)]
TSt ∀k = 1...K (26)
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where T ∗ = 19 + 273K, T dhw = 60 + 273K and T sh
k depends on the year of construction of

the building, and vary between 35 and 50 ◦C.
As highlighted in Figure 7, single-family houses are relatively small compared to multi-

family and non-residential buildings. Non-residential buildings can have small building foot-
print but a high exergy demand, while multi-family buildings have the exergy demand scaling
linearly with the building footprint. As a matter of fact, the reason behind this is that
non-residential buildings have an energy consumption that is uncorrelated with their building
footprint (industry sites or shopping malls), while residential buildings energy demand scale
typically with the living surface (the more surface, the more people, the more energy needs).
The use of the exergy demand in this figure is simply to aggregate the electric consumption,
the heat need for space heating, and the DHW consumption in one single metric.

The buildings’ PV related data are summarized in Table 3. The buildings’ thermal param-
eters are summarized in Table 4. The cost for PV and HP are estimated using the approach
reported in [20], while the HP and EH cost comes from [30] and [31]. The cost parameters
and other standard parameters are reported in Table 2.
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Figure 7: Systems size given by their exergy consumption and buildings footage. The size of
the disc indicates the PV potential capacity.
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Table 2: PV, HP, and system parameters

Parameter Unit Value

P
V

cPV
F CHF 10’050
cmod CHF/W 0.83
Pmod

nom W 315
PPV
t W 1

Amod m2 1.6
γPV - 0.5%

T
h
er

m
a
l

Ū tank W/m2K 1.0
qcarnot - 0.8
ηel - 0.99
chp CHF/W 1.5
T amb K 2

TH,tank ◦C 90
T b

min,max
◦C > 19

T sh
min

◦C 5
T tank

min,max
◦C 59-85

S
y
st

em

T - 3

TS s 900
L years 25
r - 3%
P load W 4

Q̇DHW
t W 4

1 Simulated using pvlib for each configuration according to the
modules parameters

2 Extracted from weather data from meteo-suisse3.
3 35040 for the design phase and 672 per periods for the simulations
4 Allocated for each building from a source of real measurement

19



Table 3: Building PV parameters

PPV
cap,pot Aroof N J

kW m2 - -

H
o
u
se

1 28 211 5 5
2 29 215 4 4
3 19 141 2 2
4 23 180 6 6
5 29 225 6 6

M
u
lt

i
fa

m
il
y 6 26 195 6 6

7 34 262 8 8
8 43 314 4 1
9 28 216 6 6
10 96 716 3 3

C
o
m

m
er

c
ia

l 11 50 381 23 14
12 110 803 4 1
13 38 287 2 2
14 45 337 2 2
15 24 181 2 2

Table 4: Building thermal parameters

Cb Csh Ub* U sh* U tank* TH,sh T sh
max Ksun V tank** Footage

kWh
K

kWh
K

W
K

W
K

W
K

◦C ◦C m2 L m2

H
o
u
se

1 4.1 0.5 170 849 3.6 75 70 8 470 369
2 4.5 0.4 207 616 2.9 75 70 10 341 268
3 3.4 0.1 208 237 1.6 75 70 10 131 103
4 3.1 0.1 153 291 2.3 60 55 5 237 186
5 2.8 0.1 142 399 2.8 60 55 5 325 255

M
u
lt

i
fa

m
il
y 6 4.2 0.3 160 718 3.6 65 60 6 467 250

7 4.9 0.2 182 616 5.3 60 55 5 819 438
8 9.0 1.3 307 3115 9.6 65 60 12 2026 1084
9 4.7 0.5 175 1207 5.1 65 60 7 785 420
10 21.6 3.8 658 9325 20.0 65 60 26 6064 3245

C
o
m

m
er

c
ia

l 11 11.7 0.7 490 2320 2.6 60 55 20 277 1128
12 25.8 2.1 977 6821 5.2 60 55 39 814 3316
13 6.1 0.1 284 403 0.8 60 55 11 48 196
14 7.7 0.3 344 487 0.9 75 70 20 61 247
15 6.2 0.5 276 789 1.3 75 70 16 98 400

* Rx = 1/Ux
** Ctank = ρcpV

tank with ρ = 1 kg/L, cp = 4.18 · 103 J/kg
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5 Results

The designs obtained from the MILP are summarized in Figure 8. Note that the PV capacity
corresponds for each building to the maximum potential capacity reported in Table 3. For the
single-family house and multi-family building, the HP capacity is larger than the EH. There
is an apparent economic interest in investing in a HP rather than in an EH because for every
unit of electricity sent to the HP, one gets a lot more heat from the HP than from the EH.
However, for rare peaks of DHW demand, it might be advantageous to invest in an EH because
the specific investment cost is much lower. So for systems that may suffer from large heating
peaks, it might be interesting to have a larger electrical capacity. For instance, not-residential
buildings have significantly larger EH capacities.

PVcap elcap hpcap
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40
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80

100

120
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 (
kW

el
)

single-family
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not residential

Figure 8: PV, HP, and EH capacity given by the MILP.

The operation is simulated for each typical week and each representative building. An
example operation from the MILP and the HCA is represented in Figures 9 and 10, respectively.
One may note that the MILP and HCA’s operations are very similar. A closer look at Figure
10 highlights that the space heating circuit and the hot water tank’s temperature are higher
than those of the MILP (Figure 9. This means that the HCA generally uses more heat than
the MILP, as shown in Figures 12 for the space heating, and 11 for the DHW.
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Figure 9: three days operation example resulting from the MILP optimization.
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Figure 10: three days operation example resulting from the HCA.

The heat generated from the EH is negligible compared to the heat generated by the
HP both for the space heating and DHW as shown in Figures 11 and 12, respectively, even
for the non-residential category where larger EH capacities are observed. This enforces the
hypothesis that the EH only supports large peaks of heat demand. In Figures 11 and 12, the
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minimum heat required is also indicated. The difference between the minimum and actual
heat generation can be explained by three aspects. First, one should consider the tank heat
loss. Second, the objective function is not to minimize the amount of heat consumed, but to
minimize the operating cost. Finally, for the HCA only, the non-optimality of the algorithm
might induce this larger heat generation. The question arises if the HCA keeps the building
warmer.
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Figure 11: Heat generation for DHW. Qhp→tank is the heat generated by the HP, Qel→tank is
the heat generated by the EH (too small to be visible), QDHW is the DHW heat consumption.
The bar of the left corresponds to the MILP, and the one of the right to the HCA.

The mean temperature deviation is reported in Figure 13. Keeping in mind that this is the
sum of the absolute temperature deviation from a target comfort temperature, the HCA suffers
from a higher temperature deviation. It reaches up to 2.5 ◦C (absolute value), which can be
quite significant from the user’s perspective. Nevertheless, these temperature deviations can
come from the fact that the external temperature and solar gain can significantly increase the
building temperature. Assuming that the MILP provides an optimal building temperature,
the temperature deviations, in this case, reach up to 2 ◦C. This leads to the conclusion that
the difference between the HCA and MILP is not so significant. Another aspect that may
explain the HCA’s higher temperature deviation is that the latter considers the HP’s running
and switching cost.

The running cost comes from the fact that a HP has a finite lifetime, which can be measured
as the total operating hours. The HCA takes it into account and aims to minimize the running
time of the HP. The MILP, on his side, does not take into account this aspect in the objective
function. This leads, obviously, to a much higher running time for the MILP than for the HCA,
as highlighted in Figure 14. It might also explain why the HCA has a higher temperature
deviation than the MILP. Similarly, the MILP does not take into account the switching costs.
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Figure 12: Heat generation for space heating. Qhp→sh is the heat generated by the HP,
Qel→sh is the heat generated by the EH (too small to be visible), Qsh is minimum building
heat consumption. The bar of the left corresponds to the MILP, and the one of the right to
the HCA.

Those come from the fact that switching on and off a HP causes mechanical damage and
should be minimized, as in the HCA. Again, the MILP has much higher switching per day
than the HCA, as depicted in Figure 15, for the reason just explained. The switching and
running costs are virtual costs that help to moderate the HP operation. The real cost of a HP
is the investment cost that may be amortized on a shorter lifetime due to more intensive use.
This aspect has not been further investigated. The only real, measurable cost is the operating
cost. The switching and running cost are not integrated into the MILP objective function
because this would require 2T additional Boolean decision variables and drastically increase
the solving time.

The operating costs for all scenarios (sorted by the ascending MILP OPEX value) are
pictured in Figure 16. The blue line, representing the HCA, is very close to the MILP,
showing very similar financial results in terms of grid exchange. The total operating cost per
building summed across all typical periods is reported in Table 5. The difference between the
MILP and the HCA going between 20 cts/day up to 2.55 CHF/day, for an OPEX ranging
between -20 CHF/day and 20CHF/day. The difference can even be in favor of the HCA
(the OPEX of the HCA is smaller than the MILP one). Despite the very tiny difference,
these surprising results come from the fact that no constraints are applied to the HCA’s space
heating temperature. It happens that the HCA chooses to over-heat the space heating circuit,
self-consuming a little bit more PV energy, while the MILP would stop heating before breaking
the temperature upper-bounds.

Finally, the simulation times are reported in Table 6. The MILP problem is solved via
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Figure 13: Mean temperature deviation ( ◦C).

gurobi [32], a very efficient solver, whereas the HCA is a heuristic algorithm. For this reason,
the simulation times are much higher for the HCA than for the MILP. However, the HCA
can perform the control of a HP in a very short time compared to the length of the period
(one week). Moreover, the HCA can cope with all non-linear energy system models, making
it suitable for a real implementation. Finally, the MILP requires advanced softwares to solve
the optimization problem that are not required by the HCA. Indeed the HCA could be
implemented on a simple micro-controller as a state machine.
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MILP HCA ∆

si
ng

le
-f
am

ily 1 -3.02 -2.77 0.26
2 -4.63 -4.37 0.27
3 -3.72 -3.55 0.17
4 -4.69 -4.52 0.17
5 -5.29 -5.11 0.19

m
ul
ti
-f
am

ily
6 -7.36 -7.24 0.12
7 -5.27 -5.07 0.20
8 -1.16 -0.44 0.71
9 -2.47 -2.19 0.28
10 19.53 22.08 2.55

no
n-
re
si
de

nt
ia
l 11 -9.50 -9.53 -0.03

12 -22.96 -22.98 -0.02
13 5.57 5.68 0.12
14 -5.09 -4.80 0.29
15 -2.51 -2.31 0.19

Table 5: OPEX comparison (CHF/jour)

min max median mean

MILP 0.07 0.23 0.12 0.13
HCA 15.76 686.35 121.53 172.30

Table 6: Running time (s)
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Figure 14: HP running time ratio.
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6 Conclusions

In this work, we proposed a linear thermal model to obtain the heat pump’s (HP) optimal
control trajectory by solving the mixed-integer linear problem (MILP). We also presented a
novel heuristic control algorithm (HCA) to control a HP and its ancillary electrical heater
(EH) in the framework of a PV system in a self-consumption scheme. The HCA is based
on an indicator with relates, for all possible actions, the variations of the operating cost,
and the variation of the produced heat. The algorithm’s primary objective is to keep the
temperature state variable in the imposed bounds. This ensures comfort in the building and
the appropriate service temperature for the domestic hot water (DHW). The first step is to
evaluate the system’s behavior and target time windows when temperatures are below the
target temperatures and heating is needed. Then, for these time-windows, the algorithm
evaluates the value of the indicator and chooses the best set of actions that minimize this
indicator.

The HCA is straightforward and an effective control algorithm suitable for implementation
in any micro-controller without the need for advanced computing technology. The system
behavior’s model is versatile, allowing to catch any non-linearities related to the HP behavior
under part load or detailed COP calculations. Although it is not implemented yet, it could be
possible (at some computation cost) to use a more advanced model for the tank and building
temperature (for instance, considering a stratified tank temperature or using a more complex
RC model for the building).

Ee used a linear formulation of the problem with the operating cost as the objective
function to benchmark this algorithm and solve it using a commercial MILP solver. A set of
15 building models was built to have a representative case study. We also used four typical
periods of one week to simulate the HCA’s behavior and compare it with the MILP. Under
the assumption of a perfect forecast, the HCA’s performance is close to the linear problem one.
The differences in operating cost are negligible. The temperature deviations can sometimes
be significant but stay in the same range as the MILP (recalling that no cooling is allowed,
these are mostly due to the external temperature). The HCA, because it includes the HP’s
running and switching costs, uses the HP more carefully, hence having lower running time
and switching than the MILP. This should positively impact the lifetime of the HP in a real
application. Despite the HCA’s computing time being much larger than the MILP, the HCA
has a low computing burden when considering that we simulated one week of operation at 15
min time resolution.

To sum up, the HCA is suitable for a real deployment in a HP and solar controller. The
next step would be to test the algorithm on real hardware. Further work should also include
the control of an electrochemical battery in the formulation of the indicator.
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