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1 Description of deliverable and goal

Careful planning for the use of technologies such as smart meters, storage, and

demand-side management systems has enormous potential to facilitate the transi-

tion to an energy system less dependent on non-renewable sources. A new system of

active management of the electricity distribution grid will allow to minimize the costs

generated by the introduction of photovoltaic production, electrification of heating

systems and the advent of electric mobility, which are technologies that stress the

distribution grid, and that, if not well managed, can generate significant costs for

distribution system operators (DSOs).

The purpose of this work is to develop a tool to evaluate the potential of demand side

management (DSM) in counteracting these adverse effects in simulation, on realistic

grid topologies.

1.1 Executive summary

In this deliverable, we present a methodology that, given a certain region, allows to

design a plausible distribution network and to populate it with plausible loads. On

this synthetic network it is then possible to test different penetration scenarios of

photovoltaic (PV) generation, electric heating via heat pumps, and electric mobility.

All this is integrated in a simulation environment that allows performing a power-

flow study on the synthetic grid and testing the effect of DSM control algorithms for

grid optimization. The DSM tested algorithms are based on model predictive control

(MPC) techniques and rely on realistic predictions of load and production curves on

the network and could therefore be used in the real world. In this deliverable, we

present a particular example of such a methodology applied to the study of the effect

of vehicle to grid (V2G) for energy management.

1.2 Research question

The research question that the methodology presented in this deliverable attempts

to answer is the following. Is it possible to evaluate quantitatively and with sufficient

accuracy the impact of DSM algorithms in a given configuration of:

• network topology

• loads configuration (residential, commercial, industrial, ...)

• penetration of PV generation

• penetration of heat pumps for space heating the domestic how water

• penetration of electric vehicles (EVs)

• penetration of smart DSM algorithms

1



1.3 Novelty of the proposed solutions compared to the state-of-art

The proposed methodology allows testing the effectiveness of specific DSM solutions

(possibly combined with local storage) under various scenarios. Such a procedure

can be used to evaluate the effectiveness of smart DSM (with different control al-

gorithms) from a techno-economic point of view in multiple situations. A natural

continuation of this work is the identification of network archetypes through clus-

tering. The clustering should be performed so that one could associate the most

promising DSM strategy and its effectiveness to each network archetype. A specific

combination of such archetypes should be able to represent DSO grids generally and

could be used to identify what technologies to adopt and where to concentrate them

to optimize costs of the grid infrastructure.

1.4 Description

The simulation environment includes all the components that are needed to perform

both technical and economic analysis, following the concept depicted in figure 1. The

TECHNOLOGY

ELECTRIC VEHICLES 
AND BATTERIES

SOLAR ENERGY 
PENETRATION

THERMAL PARAM. 
HEATING SYSTEMS

STATISTICS ON 
HOUSEHOLDS

INNOVATIVE BUSINESS 
MODELS

SMART CONTROL ON 
FLEXIBLE LOADS

MANAGEMENT

BEHAVIOUR 
SIMULATION

CASH
FLOW

THERMAL 
SIMULATION

VOLTAGE AT NODES, 
CURRENT IN LINES

PROSUMERS’ AND EVS’ 
PROFILES

TECHNICAL

TYPICAL
WEATHER

GRID
TOPOLOGY

ENVIRONMENT

AUTONOMY RATE, 
ENERGY LOSSES 

COMMUNITY

ECONOMICS

P&L OF PROSUMERS 
AND AGGREGATORS

Figure 1: Simulation concept

simulation software provides the possibility to simulate algorithmic agents interact-

ing with the grid. A scheme for the simulator is provided in Figure 2. The agents

can be simulated in parallel, since communication based on message-exchanging

through a central message broker. The main driving script executes the simulation

and, at each step, launches the parallel agent simulation with a message containing

information about the newly simulated electrical step (such as the voltage at the

agent node, etc.), if needed to decide the next course of action. Individual agents

can include an arbitrary number of individual physical components such as build-

ing thermal envelopes, heating terminals, boilers, heat pumps, batteries, electric

vehicles, etc. Each of these elements has a corresponding physical model code, con-

figured with parameters specific to the agents’ instance. Both the model and the

agents can send, through the central message broker, records of their internal state
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to a time-series database (InfluxDB), allowing for storage and subsequent analysis

of the simulation results. Both the electrical quantities and the agents’ internal

evolving state are, therefore, recorded. Furthermore, the same time-series database

stores useful information available to the agents, such as meteorological data, tem-

perature and irradiance.

Figure 2: Conceptual scheme of the simulator

In the next subsections, we will describe the most important components of the sim-

ulation and finally we will present a case study in which the effect of bi-directional

charge control of EVs will be applied to the case of a grid with extreme PV and EV

penetration.

1.4.1 Grid topology design

A tool for generating realistic distribution grids was developed. Relative to current

existing solutions [1, 2, 3], the aims of the tool were to allow inter-building connec-

tions, consideration of geographical obstacles and promote a clustering of the loads

aware of the available substation sizes, thus capable of fitting the size to the cluster

to one size in a reasonably efficient way. The tool is able to generate a grid for an

existing community, drawing data from a publicly available source (specifically, the

current implementation uses OpenStreetMaps as a source for geographical data).

The data extracted comprise building position and area and the street paths. The

nominal power of the building is estimated starting from its area.

Initially, the streets form a connected graph induced by the street segments, while

the buildings are isolated points. The next step, then, is the creation of an under-

lying, highly connected graph comprising all the possible connections to be consid-

ered. The buildings are connected to the street segments defined by the four nearest

street points; the shortest path is drawn, so the connection to the segment is either

orthogonal or at one of the ends. Furthermore, the buildings are connected to their

2 nearest peers, ensuring that ”daisy-chain”-style connections are considered and

selected, if economical. A cost is then assigned to each edge. In the current ver-
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sion, a base cost is evaluated only according to the length of the connection and its

type (street-street, building-street, building-building). This part was conceived while

keeping in mind an easy and important extension, that can be straightforwardly inte-

grated: additional information about the underlying terrain and, possibly, obstacles,

can be factored in the costs, in order to evaluate more accurately the feasibility of

connections.

Once the base graph is in place, we can generate a first version of the clustering.

We focused on tree clustering techniques for application to the minimum spanning

tree of the underlying graph. Algorithms such as TAHC [4], while returning clusters

of high quality, have an inherent problem that makes them unsuitable for the task

at hand: they do not have any way of governing the maximum size of the clusters.

Often, this leads to severely unbalanced clusters that are impossible to reduce to

existing substation sizes. The final choice fell on a classic tree clustering algorithm,

LUKES [5]. This algorithm presents several advantages: it directly supports a max-

imum size of the cluster in terms of node weights (that map, in our application, to

customer powers), it yields the optimal solution in terms of cut edges cost and it

runs in pseudo-polynomial time (parametrized by the maximum size selected). Nev-

ertheless, the bare application of this algorithm, in general, brings to cluster sizes

that may be very small or just above one of the available substation sizes, thus re-

sulting in an inefficient allocation. We devised a method for finding a reallocation

of the loads among the clusters in a way that better fits the available sizes. We

proceed in the following way. With reference to a single one of the clusters, we first

identify a suitable boundary with an alpha-shape (a generalization of the concept of

convex hull allowing for radius-limited concavity). We consider as boundary nodes

the ones that are directly touched by this boundary line and have neighbors in one

or more other clusters. For each one of this nodes, we find cuts of the underlying

cluster MST such that the part containing the boundary node is under a certain,

configurable size in terms of node weights; these are considered as candidate for

reallocations to one of the cluster neighboring the reference boundary node. Once

we have considered all such possible reallocations, we make the following consid-

eration. Two reallocations are compatible if the nodes transferred by the first do

not include a node the second wants to use as attachment point. This relationship

between two reallocations induces a Compatibility Graph, in which the nodes are

the reallocations and an edge exists if two reallocations are compatible in this sense.

Cliques (complete subgraphs) in the compatibility graph are groups of moves that

can be all executed together; see figure 3.

Taking into account all the possible reallocations, nevertheless, would be too com-

putationally heavy. But there is a certain amount of redundancy in the rellocation,

in the sense that two reallocation of close size between the same two ordered clusters

will have very similar effect on the final solution, so we need not consider them all.

We can arrange the reallocations for each cluster pair in bins (the width of the bins

is taken to be the minimum reallocation size), and we retain only one reallocation
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Figure 3: Visual representation of the compatibility graph, with a clique of compati-
ble reallocations

per bin; this tipically causes a dramatic reduction in the number of reallocations.

See figure 4 for a representation of the bins of similar reallocations.

We then proceed to enumerate all the cliques and we evaluate them in terms of

global substations+connections cost. At this point we can take another important

shortcut. To have a chance at profitability, a clique of reallocations must involve

at least one reallocation that allows the reduction of a substation; otherwise, being

Lukes clustering optimal, the cost would surely increase. Thus, cliques that do not

meet this criterion are immediately discarded before evaluation. The clique that

grants the best cost improvement is then retained and the reallocations are applied

to get the final solution. Once the clusters are in place, we refine the connections

by considering the underlying connected graph once more and calculating a Steiner

tree approximation that touches all the loads for each cluster. We are now ready

for grid sizing. The current version of the method places the substation on the

edge that exhibits maximum edge betweenness centrality, and then for each edge a

diversified load is calculated (equal to the sum of the loads hierarchically below that

edge, taking the substation as the root, multiplied by a diversity factor). A unique

coefficient for each cluster is then evaluated for transition from the diversified load

to line impedance, and this coefficient is selected in order to obtain a maximum,

configurable delta V.

1.4.2 Electrical simulation

The electrical power flow simulation is carried out with Krangpower, an internally

developed Python library able to interact with OpenDSS, which we released open-
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Figure 4: Bins of reallocations of similar sizes

source1. It allows accessing the different functionalities of OpenDSS within the

simulation framework by providing modern interfaces, such as structured informa-

tion retrieval, dynamic querying, graphing, and other such functionality, in order to

provide a systematized interface and avoid the continuous need for scripts custom-

tailored to the particular simulation.

The configuration of the simulation can get quite complicated, since full informa-

tion must be provided about the grid, the agents, the models they contain with all

the possible parameters. The file type used is JSON, due to the inherent hierar-

chical structure, useful for specifying the agents, then their content, and then their

parameter. Krangpower uses a specifically structured JSON file that contains infor-

mation about the grid, essentially a list of elements (for example, transformers and

lines) with their parameters and topological information about the buses they are

connected to.

1.4.3 Weather conditions

For the specific scenarios studied, a typical meteorological year (TMY) is simulated.

The meteorological dataset is essential to have correct and synchronized user behav-

iors and to simulate solar power generation with a reasonable statistical distribution

over the year. The TMY is generated using the commercial tool Meteonorm2, the

world’s leading provider of synthetic datasets for meteorological assessments for re-

1https://github.com/supsi-dacd-isaac/krangpower
2www.meteonorm.com

6

https://github.com/supsi-dacd-isaac/krangpower
www.meteonorm.com


newable power plants and other engineering purposes.

1.4.4 Consumption profiles of residential and commercial users

Each building in the map is automatically connected to the synthetic grid and a

consumption profile is associated to it. The building’s intended use and thermal

characteristics are picked from regional statistics, or where available from real data.

To simulate residential users’ energy consumption profiles, we used Load Profile

Generator3 (LPG), a tool also available as an open-source library4. LPG is an agent-

based simulation tool that performs a full behaviour simulation of the people in a

household and uses it to generate load curves, water consumption profiles and car

usage profiles. All three types of profiles are used in our simulation environment.

Thousands of different profiles have been simulated with LPG. Every user has a

specific synthetic energy profile, and their aggregation has a realistic simultaneity

factor. All the profiles of the appliances come from real measurements and are

properly considering active and reactive power. We randomly assign the small loads

to one of the 3 phases, while the loads requiring more than 10A are equally split

and assigned to 2 or 3 phases. Thanks to the users’ LPG profiles, it is also possible

to define when users are at home or are travelling. In this way, the profiles of the

appliances and the EV plug state are coherently synchronised.

For the commercial users, we used a library developed by Hive Power5 to simulate

different type of businesses, which is compliant with the SIA norm 2024 / 2015

[6]. These profiles generated using this library are also following some stochastic

behaviour to represent in a correct way simultaneous loads from different offices

and make use of the global horizontal irradiance from the weather profile to simulate

the need for lighting.

Consumption profiles due to heating and cooling are modeled separately and only

the water consumption profiles from LPG are fed to the models that are generating

them. A detail explanation of the thermal simulation is available in section 1.4.5.

1.4.5 Thermal loads

In order to obtain a representative dataset for Switzerland, we used the STASCH

standard [7] and its variants as a reference for the heating system and the control

logic. In particular we implemented STASCH6, which includes both space heating

and domestic hot water production. The STASCH6 standard comprehends 3 main

components: a heatpump (HP), a water tank used as an energy buffer, and a heating

element delivering heat to the building. The control logic is explained in detail in

annex A.1.
3www.loadprofilegenerator.de
4https://github.com/FZJ-IEK3-VSA/LoadProfileGenerator
5www.hivepower.tech
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Building model We modeled the building thermal dynamics with a simple one state

RC equivalent model, as done in [8]. The main reason for this choice is that it is

hard to generalize RC models with higher number of states, since no values can be

found in the literature for the needed parameters. Estimating an RC model from

data requires different measurements of temperatures, internal and solar gains, at

a resolution of at least 10 minutes. This kind of datasets are extremely hard to

find, and limited to only a few, often undwelled, cases. These equivalent RC circuit

parameters could, in theory, be estimated starting from first principles, however

recently proposed studies show that this can give worse results then estimating a

model from data [9]. The second reason is that, while a higher order model leads

in general to smaller one step ahead residuals compared to a lower order model,

the loss of accuracy passing from a one state model to an higher order one when

considering a longer period of simulation is much lower [10]. Last, when considering

RC models for buildings with a number of states higher than 3, the chances of

overfitting are high, and additional measurements such as the heat fluxes between

thermal zones are required to guarantee observability. Alternatively, pseudo-random

binary sequences can be applied to the heating systems in order to excite the system

in a wide range of frequencies [11], while being uncorrelated with other exogenous

inputs. This technique induces high changes in internal temperature of the building

and cannot clearly be applied to occupied buildings.

The final model is the following;

C
∂Tz
∂t

=
Text − Tz

R
+ kQh +AeqIs (1)

where Text is the the external temperature, R is the equivalent thermal resistance for

the building, C is the thermal capacitance, k is a parameter weighting the estimated

power coming from the heating system Qh, Is is the incoming solar radiation and

Aeq is the estimated equivalent window area. In order to obtain representative sim-

ulations, R, C, k and Aeq were estimated from statistical data for Swiss households.

For the simulation regarding the LIC pilot, R was directly estimated from data and

C and Aeq where estimated from the buildings’ equivalent area.

At Swiss level, in a future version the thermal characteristics of the building will

be linked with the map of the demand from residential and commercial buildings

provided by the Swiss Federal Office of Energy in the GEO Admin API6, which are

based on the Federal Statistical Office’s 2014 Buildings and Dwellings Statistics and

2013 Statistics on Company Structures, and the Federal Office of Energy’s figures

in the annual report ‘Energy consumption in the industry and services sector’.

Floor heating The heat distribution system that allows to transfer the required

heat from the storage tanks to the building was designed from first principles. A

heating system based on serpentines was modeled, the details are presented in An-

6https://map.geo.admin.ch/?layers=ch.bfe.fernwaerme-nachfrage_wohn_
dienstleistungsgebaeude&lang=en
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nex A.2.

Water tanks The water tanks connected with the floor heating, which are used as a

buffer by the heat pump, and those used for domestic hot water (DHW) are modeled

as N-states fully-mixed stratified tanks. Despite not being able to model buoyancy

driven effects such as heat plumes and transient de-stratification, this kind of mod-

els are suitable for 1D simulations and control [12]. A detailed description of the

model can be found in Annex A.3.

Heat pump model The heat pump is modeled by means of interpolated tables,

in which heating and electrical power are available as a function of the evaporator

and the condenser temperatures. The tables were taken from the energy simulation

software Polysun7. When the heat pump produces heat for both the heating system

and the domestic hot water, its control logic prioritizes the latter, meaning that the

buffer is heated as long as the DHW tank temperature sensor reaches the upper

bound of its hysteresis control.

1.4.6 PV model

Residential PV power plants were modeled using the Sandia National Laboratories PV

Collaborative Toolbox [13], which is based on the 1985 Grover Hughes’ Engineering

Astronomy course at Sandia National Laboratories. The global horizontal irradiance

from the weather model is projected into the plane of the PV array and the AC power

produced by it is calculated assuming standard poly-crystalline modules are used.

1.4.7 EV and stationary battery models

Both stationary batteries and EVs have been modelled as a one state dynamic sys-

tem with asymmetric charging and discharging efficiencies, self-discharge, and a

minimum charging and discharging power. The detailed description of the EV dy-

namics is available in annex B.1.

Unlike stationary batteries, EVs also have a usage profile related to their primary

function, which is to provide a mobility service. Following the users’ behaviours de-

fined by the LPG, it has been possible to also define the usage of EVs, including the

purpose of the trips and the consequent mileage and timing of departure/arrival.

The yearly mileage of EVs has been defined to follow a distribution centered around

the average Swiss total annual mobility per person with private motorized traffic,

made available by the EVA ERA-Net project8.

7www.velasolaris.com
8https://evaproject.eu/
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1.4.8 Case study: V2G

Scenario definition To demonstrate the potential of the tool, we simulated a weak

residential grid that is subjected to the stress of very high PV and EV penetration.

This is one of the cases most DSOs are concerned about. We then evaluated the

effect of coordinated control of vehicle charging and discharging to minimize power

fluctuations at the transformer compared to a baseline scenario. We selected a

neighborhood in the vicinity of Lugano and used the grid generation tool described

in 1.4.1 to devise a realistic synthetic network, depicted in figure 5. In this scenario:

• The grid has 69 end buses (PQ buses) and 1 transformer (which is connected

to an ideal voltage source).

• 100% of buildings are residential

• 100% of the buildings are equipped with one 10kWp PV plant

• 100% of the buildings are equipped with one bidirectional capable EV with a

60kWh battery (90% of which usable) and a three-phase 11kW bidirectional

charger

• 30% of the buildings have a heatpump

Figure 5: Synthetic grid. PQ buses are depicted in white, lines in blue and trans-
former in red.

Two scenarios of DSM are investigated.
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1. A baseline scenario. In this scenario, the EVs are charged at the charging

station’s nominal power as soon as they are plugged to it.

2. Smart DSM scenario. In this scenario, EVs coordinate with each other to

achieve the objective function of reducing fluctuations at the transformer. Charg-

ing power can range from a minimum of 1.38kW (single-phase 6A) to a maxi-

mum represented by the charger’s rated power, in this case 11kW (three-phase

16A). The optimization problem ensures that the cars are fully charged when

the user picks them up.

V2G control strategy The distributed control approach applied in the smart DSM

scenario assumes a virtual energy community setting. It is described in detail in

Annex B.2, while its mathematical foundation and its applicability to a multi-level

distributed optimization setting are discussed in [14] and [15], respectively. The

distributed control has the capability to maximize the welfare of a community that

is subject to dynamic prices and explicit grid constraints while ensuring to reach

a generalized Nash equilibrium. We use it here in a simplified way to minimize

power fluctuations at the transformer by reducing the global objective function to

the sum of the transformer’s squared power over a 24h horizon. Technically, to

achieve this, αi (Eq. 42) was set to 1 for all agents, a power tariff was applied

to the transformer (which in this case represents the coupling point of the virtual

community) by introducing the γ coefficient (Eq. 47) and the energy prices were set

to 0. This ensures that all agents are contributing to the best of their ability to the

overall objective function without worrying about their own costs. Of course, this is

an extreme scenario. In this case, the one who will demand this flexibility service to

its users on the network will have to cover the additional user costs caused by the

activation of the EV battery. But it shows the potential technical boundaries of DSM

actions, regardless of financial requirements.

Simulation results Since the coordination mechanism is an iterative procedure

that can be time-consuming, we did not simulate an entire year. Instead, we sim-

ulated the day with the maximum power consumption (a day in January of our

simulated TMY) and the day with the maximum power injection into the grid (a day

in June). Indeed, the introduction of PV and EV into the grid increases power ex-

cursions to the transformer in both directions, and so it is important to check both

boundary cases. In winter, the power required by EVs is added to that already re-

quired by heaters and, in general, by loads that cannot be controlled and contributes

to increasing the evening peak. In summer, the PV obviously injects a lot of energy

around noon and causes the power flow to reverse.

Ideally, a DSM algorithm would need to limit such power excursions, in both di-

rections. First of all, to avoid exceeding the transformer’s operational limits and

secondly, to reduce its ageing, as distribution transformers were not originally de-

signed to accommodate such big power excursions and reverse power flows [16].

11



To qualitatively assess the effect of DSM on the transformer’s power, we plotted its

time course along with the total controlled power (i.e. the total power of the EVs) for

the two simulated days. The results as shown in Figure 6. It is meaningful to note

Figure 6: Active power at the transformer and total power of the EVs. Top: day
with the maximum power consumption at the transformer. Bottom: day with the
maximum power injection at the transformer.

that in both cases the EVs are able to reduce the power excursions at the trans-

former. In this case, it is important to emphasize that the control algorithms are

based on a realistic forecast. This is not the ideal solution with perfect forecast, but

a realistic one, which depends on the quality of the forecast. An in-depth discussion

of this issue is available in [17]. Furthermore, the control loop currently runs with

a time granularity of 5 minutes. It would be conceivable to increase this frequency.

However, at the moment it is not realistic to imagine a real-time DSM system based

on EV, as the loaders are not able to do it.

This means that the risk of exceeding the operating limits of the transformer is not

12



fully mitigated. Nevertheless, it is conceivable to add a battery in the network, which

has the possibility to be operated in real-time. And the combination of the current

DSM strategy with real-time control of a battery has the advantage of reducing its

required capacity.

Figure 7 focuses on the voltage at the PQ buses. The voltage between line and

neutral is plotted for all terminal nodes in the network and for all phases (this is in

fact an unbalanced load flow simulation).

Figure 7: L-N voltage at all nodes and all phases in the PQ buses of the grid. Top:
day with the maximum power consumption at the transformer. Bottom: day with
the maximum power injection at the transformer. Grey dashed lines: ±10% limits
from nominal voltage 400/

√
3.

It can be seen that the voltage is a more local phenomenon that requires targeted

interventions. Although the DSM algorithms partially succeed in mitigating voltage

problems at the nodes, some nodes still violate the EN50160 standard [18], espe-

13



cially in the day with the highest PV injection. The algorithm used here does not 
account for voltage and merely optimizes the total power at the transformer. Specific 
network constraints on voltage could be enforced using Lagrangian multipliers (see 
Annex B.2). In this case, one would use the voltage sensitivity coefficients as a first 
approximation of EV power’s effect on the voltage. However, EVs’ presence is not 
always guaranteed, and at such a local level, it would be hard to assure that the 
voltage quality standards are respected at all times. In this case, it would be advis-

able for the DSO to reinforce the weakest lines or to rewire its grid. Alternatively, 
the DSO could use our simulation tool to select where to site the above mentioned 
stationary battery so that both ”local” voltage and ”global” power constraints are 
respected.

1.5 Regulatory and legal barriers for implementation

In this deliverable, we presented a generic simulation tool that allows performing a 
techno-economic evaluation of DSM strategies. This tool can be used to evaluate the 
effect of business models and market designs, which, in order to be implemented, 
would require a modification of the current legislation. Consequently, it has the 
potential to allow overcoming possible barriers by providing quantitative data in 
support of the need for a change.

2 Achievement of deliverable

2.1 Date

March 2021.

2.2 Demonstration of the deliverable

The demostration is provided using a case study, presented in section 1.4.8.

3 Impact

The work presented in this deliverable demonstrates the potential of the simula-tion 
tool developed by ISAAC-SUPSI in the REeL project. The tool allows to couple a detailed 
simulation, of consumption (including thermal loads) and pro-duction (in this case, 
PV), with control algorithms of different types (including dis-tributed ones). The 
control algorithms are based on a realistic forecasting system that uses state of the art 
methods. This tool can be used to reduce the impact of distributed renewables on the grid 
and to test alternative business models involving the control of distributed flexibility in the 
local grid.
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A Annex: Heating system models

A.1 Control logic of heating systems

The heat pump control logic is based on two temperature sensors placed at different 
heights of the water tank, while the circulation pump connecting the tank with the 
building’s heating element is controlled by an hysteresis on the temperature mea-

sure by a sensor placed inside the house.

We describe the control logic in a sequential way, following the heating components of 
the system. The first decision is taken by the building central controller, which 
decides its working mode, that is, if the building needs to be cooled or heated, based 
on a moving average of the historical data of the external temperature:


wmt = −1 if Tma,t > Tmax,ma

wmt = 1 if Tma,t < Tmin,ma

wmt = 0 otherwise

(2)

where the working mode wmt is negative when the building requires to be cooled,

positive when heating is required, and 0 when no actions are needed.Tmax,ma and

Tmin,ma represent the maximum and minimum values of the external temperature’s

moving average, which is based on the past 7 days. The actual activation of the

heating element is controlled by the hysteresis on the internal temperature of the

building, Tz. If the working mode is positive, this is given by:
shy,t = 1 if ( Tz < Tmin,hy −∆T/2)

or (Tz < Tmin,hy + ∆T/2 and shy,t−1)

shy = 0 otherwise

(3)

where shy,t is the state of the hysteresis at time t, 1 meaning that the circulation

pump of the heating element must be activated, and ∆T was chosen to be equal

to 1◦C. For completeness, we report also the control logic when the building is in

cooling mode: 
shy,t = 1 if ( Tz > Tmax,hy + ∆T/2)

or (Tz > Tmax,hy −∆T/2 and shy,t−1)

shy = 0 otherwise

(4)

The incoming water temperature in the heating element is then modulated linearly

through a 3-way valve between a maximum and minimum value, based on the ex-

ternal temperature, both in the heating and cooling modes. When operative, the
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heating element requests hot or cold water to the water tank, which control logic is

based on two temperature sensors located in two different layers. When the building

is in heating mode, the control logic is a simple hysteresis based on the temperature

of the sensor in the uppermost layer, which is identical to the one in (3). When in

cooling mode, the control logic is the following:

shy,t = −1 if ( Tup > T cmax + ∆T/2)

or Tlow > T cmax + ∆T/2

shy,t = 0 if ( Tlow < T cmin) or (Tup < T cmax −∆T/2)

shy,t = shy,t−1 otherwise

(5)

where Tup and Tlow are the temperature measured by the upper and lower sensors,

respectively, and T cmin and T cmax are the minimum and maximum desired tempera-

tures of the water in the tank while in cooling mode.

The value of shy,t is then communicated to the HP. In the case in which the HP is also

used for the domestic hot water (DHW), the DHW tank is always served with priority

by the HP.

A.2 Heat distribution system

Floor heating was modeled starting from first principles. Considering a fixed and

uniform temperature for the ground and the building internal temperature at each

time-step and stationary conditions, we can retrieve the analytical expression of the

temperature profile along the pipe, through the energy balance on an infinitesimal

element of the pipe. This can be expressed as:

∂cTx
∂t

= Φx − Φx+∂x + q̇up + q̇down (6)

where c is the heat capacity in J/K, x is the distance from the pipe entrance, Tx is

the temperature of the water inside the pipe at x, Φ are enthalpy flows at the en-

trance and exit of the considered infinitesimal volume, q̇up and q̇down are the heating

powers from the building and from the ground. Expressing the latter through equiv-

alent resistance taking into account convective and conductive effects, the balance

in steady state can be rewritten as:

ṁcp
ρ∗

∂Tx
∂x

=
RdownTz +RupTg
Rdown +Rup

− Tx = T a − Tx (7)
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where T a is the asymptotic temperature and where:

Rdown =
1

hinw
+

1

hu,eqw
+Ru (8)

Rup =
1

hinw
+Rg (9)

ρ∗ =
Rup +Rdown
RupRdown

(10)

where w is the diameter of the tube, hin is the internal coefficient of heat trans-

fer, which can be retrieved using available empirical relation for fully developed flow

with fixed temperature at the boundary conditions [19], hu,eq is the heat transfer

coefficient between the floor and the building air including both the effect for nat-

ural convection and radiation. The values of hu,eq can be found in the literature

[20],[21]. The value of the thermal resistances Ru and Rg, towards the floor and the

ground, can be found in the literature as well. We can reformulate (7), making it

adimensional through a change of variable:

∂Θ

∂X
= −Θ (11)

from which solution we can retrieve the temperature profile of the water inside the

pipe:

Tx = T a + (T0 − T a)e
−xρ∗
ṁcp (12)

where T0 is the temperature of the water at the pipe inlet. We can use (12) to retrieve

the heating power flowing into the building, integrating q̇up(x) along the pipe.

Q̇up =

∫ L

0
q̇up(x)dx =

∫ L

0

T (x)− Tz
Rup

dx (13)

where L is the length of the serpentine. Integrating, we obtain

Q̇up =
(T a − Tz)L− (TL − T0) ṁcpρ∗

Rup
(14)

where TL is the temperature of the water at the outlet of the serpentine. Note that

the equation (14) tends to (TL − T0)ṁcp when Rdown increase and Rup is kept fixed.

The nominal mass flow of the heating system and the length of the serpentine are

found as the solution of the following optimization problem:

argmin
L,ṁ

(
Q̇up(L)− Q̇nom

)2
+ 10−3 (ṁ− ṁnom)2 (15)

where ṁnom is a reference mass flow, equal to 0.1 [kg/s] and Q̇nom is the power re-

quired to keep the building internal temperature constant under reference condi-

tions (we used an external temperature of -4◦C and a desired internal temperature
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of 20 ◦C):

Q̇nom =
∆Tref
R

(16)

where R is the resistance of an equivalent RC circuit describing the heating dynamics

of the building.

A.3 Water tank model

The dynamic equation describing the evolution of the temperature of the tank’s lay-

ers is the following:

C
∂Ti
∂t

= Q̇ubuo,i + Q̇dbuo,i + Q̇h,i + Q̇loss,i + Q̇ucond,i + Q̇dcond,i + cpṁ(Ti−1 − Ti) (17)

where Ti is the temperature of the ith layer, Qubuo,Q
d
buo,Q

u
cond,Q

u
cond are the thermal

powers due to buoyancy and conduction, from the lower and upper layer, respec-

tively. The last term represents the enthalpy flow due to mass exchange, while C is

the thermal capacity of the layer, in [J/K] and Qh,i is the thermal power due to an

electric resistance (for the boiler) or an heat exchange (for the heating system buffer).

The expression for the above thermal power are the following:

Q̇ubuo,i = k max(Ti+1 − Ti, 0)N, 0 for i = N (18)

Q̇dbuo,i = k max(Ti−1 − Ti, 0)N, 0 for i = 1 (19)

Q̇ucond,i = uamb(Ti+1 − Ti), 0 for i = N (20)

Q̇dcond,i = uamb(Ti−1 − Ti), 0 for i = 1 (21)

Q̇loss,i = uamb(Text − Ti) (22)

Q̇h,i = Q̇tot/nh if i ∈ I (23)

(24)

where N is the number of layers, uamb is the equivalent thermal loss coefficient with

the ambient and I is the set of the nh layers heated by the heat exchange (or electric

resistance). The buoyancy model is the one proposed in the IDEAS library [22].

Detailed description of the parameters for the boiler model can be found in [23].

B Annex: Optimization of EV charging and discharging

B.1 Detailed EV model description

The EV’s charging strategies we designed require the solution of an optimization

problem, which is formulated as a mixed integer quadratic problem (MIQP), in which

a (usually) economic objective is minimized. In the following, we present the core EV

optimization problem. Different charging strategies differ in the specification of the

objective function, while the set of constraints remains unchanged.

Called u = [pTch, p
T
ds]

T ∈ R2T the vector of concatenated decision variables for the
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control horizon T , where pch and pds are the battery charging and discharging power,

respectively, ũ = [pch, pds] ∈ RT×2 being the same vector reshaped in a 2 columns

matrix, p̂ ∈ RT being the forecasted power at building’s main for the next control

horizon, y ∈ RT being an auxiliary variable representing the energy costs at each

time step, we seek to solve the following problem:

u∗, y∗ = argmin
u,y

T∑
t

yt + k1‖δx‖22 + k2‖δe‖1 (25)

xt+1 = Axt +BũT ∀t ∈ [2...T ] (26)

xmin − δx 4 x 4 xmax (27)

x < emin + δe (28)

δx ≥ 0 δe ≥ 0 (29)

0 4 a 4 xplug (30)

a[1, 1]T ≤ 1 (31)

a ◦ ũmin 4 ũ 4 a ◦ ũmax (32)

y < pbuy
(
ũ[1,−1]T + p̂

)
(33)

y < psell
(
ũ[1,−1]T + p̂

)
(34)

(35)

where < stands for <R+, indicating element-wise inequalities, and ◦ represents the

Hadamard product (element-wise multiplication). For sake of clarity, we start ex-

plaining the problem constraints and the variables involved, and we finally explain

the objective function (25) at the end of the exposition.

Equation (26) describes the EV battery’s dynamics. A ∈ R+ and B ∈ R1×2
+ are the

discrete dynamics matrices obtained by the continuous one through exact discretiza-

tion [24]:
A = eAcdt

B = A−1c (Ad − I)Bc
(36)

where Ac = 1
ηsd

and Bc = [ηch,
1
ηds

], and ηsd, ηch and ηds are the caracteristic self-

discharge constant, charge and discharge efficiencies, respectively. Since Bc de-

fines an asymmetric behaviour in charging and discharging (even with equal charg-

ing/discharging coefficients), solving the battery scheduling requires to use two dif-

ferent variables for the charging and discharging powers, pch and pds, which compare

in equation (26) as ũ = [pch, pds]. Equation (27) and (28) represent relaxed box con-

straints for the battery state x. The parameters xmin, xmax ∈ R are the nominal min-

imum and maximum capacity of the battery. The first one states that the battery’s

state must lie inside xmin and xmax. However, the violation of the lower bound is

turned to a soft constraint thanks to the slack variable δe (minimized in the objective

function), allowing the battery to occasionally go below the minimum state of charge.

This is done to prevent the infeasibility of the problem in those cases in which the

initial energy in the battery is below the minimum, as a consequence of a prolonged
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unplug period and due to the self-discharging. The second constraint encodes the

energy lower bound required at unplug events. Also in this case, the presence of the

slack variable δe turns this into a soft constraint. The variable emin ∈ RT represents

the minimum energy that EV is required to store, and depends on the unplugging

events; in particular, the EV is required to be fully charged at unplug events, so that

emin can be described as:

emin,t =

xmax if ∆txplug = −1

0 otherwise
(37)

Equation (30), (31) and (32) represent the operational constraints for the charging

and discharging power. Here a ∈ ZT×2 is an auxiliary binary variable keeping track of

activation state of charging and discharging operations. The first equation requires

activations to be bounded by the presence of the car, represented by the param-

eter xplug ∈ RT . This is equal to 1 if the EV is plugged or 0 otherwise. Equation

(31) together with equation (32), encodes the complementarity constraint pchpds = 0

avoiding to express it as a nonlinear constraint, while bounding pch and tds inside

their operational constraints.

Figure 8: Visual explanation of the scope of the y variable. When linearly penalized,
y is pushed to its feasible space’s lower boundaries, collapsing on the cost function
c(p) in (41)

Finally, the last two equations (33) and (34) define the feasible space of the auxiliary
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variable y. The first summation in (25) represents the total cost of the agent in the

business as usual case. For prosumers, the cost function can be either positive

or negative, depending on the overall power at their household’s main and can be

expressed as in equation (41).

c(pt) =

pbuy,tpt, if pt ≥ 0

psell,tpt, otherwise
(38)

The cost can be thought of as the maximum over two affine functions (the first

and second line of equation (41), respectively). Equations (33),(34) constraint y to

live in the epigraph of the maximum of these two affine functions. Minimizing y

then guarantees that its value at the optimum, y∗, will lie on the epigraph’s lower

boundary (and will thus represents the prosumer’s total costs), as shown in figure

8.

All the variables, parameters and constants of the control problem, together with

their dimensionalities, are reported in table 1.

B.2 Distributed control of EVs

In this coordinated charging strategy, which applies to an energy community (EC)

setting, EVs are communicating with each other and actively share their planned

actions in the next control horizon to solve an optimization problem, which they

jointly try to minimize. The problem can be mathematically formulated as:

argmin
u∈U

e(u) +

N∑
i=1

c(ui)

s.t. : Aλu ≤ b

(39)

where U =
∏N
i=1 Ui is the Cartesian product of the flexible users feasible sets, e(u) is

a system level objective which defines the business model, c(ui) are the costs of each

flexible user in the business as usual case, and u = [uT1 , ..u
T
N ] = [ui]

N
i=1 is the vector of

the concatenated actions of all the flexible users. Here u ∈ U means that each EVs’

operations must respect the set of constraints (26)-(34). The inequality constraint in

problem (39) represents system-level constraints, which can be used to encode both

power and voltage grid constraints using voltage sensitivity coefficients [25].

We minimize the surplus function e(u), which is the negative of the surplus that the

agent community has in paying the energy at the point of common coupling with the

electrical grid instead of each one paying its own separate bill:

e(x) = c

(
N∑
i=1

ui

)
−

N∑
i=1

c(ui) (40)

where ui ∈ IRT is the vector of total power of the ith agent, c(·) is the energy cost
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Name Type Dim. Description

x variable RT+1 battery state [kWh]
u variable RT×2 charging and discharging power [kW]
y variable RT energy costs [£]
δx variable RT slack variable [kWh]
δe variable RT slack variable [kWh]
a variable ZT×2 charge/discharge activation
pbuy, psell parameter RT buying and selling prices [£/kWh]
emin parameter RT minimum energy due to unplug event [kWh]
p̂ parameter RT power of uncontrolled devices [kW]
xstart parameter R initial battery state [kWh]
xplug parameter R plug state
xmin, xmax parameter R capacity limits [kWh]
ũmin, ũmax parameter R2 charging and discharging power limits [kW]
k1, k2 constants R values: 10, 1e6

Table 1: Variables, parameters and constants of the core EV optimization problem.

function defined as:

c(pt) =

pb,tpt, if pt ≥ 0

ps,tpt, otherwise
(41)

where pb,t and ps,t are the buying and selling tariffs, respectively, at time t. Prices

can therefore be dynamic, given that the inequality pb,t ≥ ps,t is always respected at

any point in time. Minimizing e(u) maximizes the self consumption of the EC. The

overall objective function for the end users (not including system-level constraints)

becomes:
ctot(ui, u−i) = ci(ui) + αie(u)

= αic

(
N∑
i=1

ui

)
+ (1− αi)c(ui)

(42)

where α is a repartition coefficient for prosumer i, which ideally defines how much of

the surplus goes to the specific agent i, λi ∈ R2T is a vector of Lagrangian multipliers

associated with the inequality constraint in (39) and with the ith agent.

Decomposing (39) using different repartition weights for the surplus, induces a game

with unique generalized variational equilibrium [26], which can be reached using the

preconditioned forward backward (pfb) formulation [27]. At each communication

round k, agents can share their plans in order to jointly minimize their objective

functions. The original pFB method can be written as reported in algorithm 1. Here

F(xk) is the gradient of the overall objective function for the end user (42). The ΠZ

Algorithm 1 Preconditioned forward-backward (pFB)

uk+1 = ΠUi
[
uk − α(F(uk) +ATλk))

]
λk+1 = ΠIR+

[
λk + β(2Aλu

k+1 −Aλuk − b)
]

in 1 stands for the projection onto the convex set Z. Since projecting on the EVs’ set
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of constraints (26)-(34), Ui, is hard (it includes binary constraints), we reformulated

the gradient descent step (the first line of algorithm (1)) as the minimization of the

linearization of the system level cost around the previous state, plus a quadratic

punishment on the action at the previous iteration; more details on this equivalence

can be found in [14]. Replacing the agent cost with the auxiliary variable y as in (25),

the final objective function (for the EV) then becomes:

Φ(ui, u
k−1, λki ) = αi∇c

(
N∑
i=1

uk−1i

)T
ui + (1− αi)

T∑
i=1

yi + λTi ui

+ ρd‖ui − uk−1i ‖2 + k1‖δx‖22 + k2‖δe‖1

(43)

where uk−1i are the agent’s actions at the previous iteration. The final EVs’ optimiza-

tion problem can then be written as:

uk+1
i = argmin

ui∈Ui
Φ(ui, u

k−1, λki ) (44)

The repartition coefficients αi can be set in different ways. The simplest one is to

them to 1/N where N is the number of controlled EVs. This way each agent will re-

ceive 1/nth of the surplus. Another possibility is assign a value for αi which depends

on each agent’s contribution to the surplus in the past. When all the repartition

coefficients αi in (43) are set to 1 for all the agents, this corresponds to the case in

which the EVs are controlled by a central authority with the purpose of minimize

the EC’s costs at the point of common coupling (pcc) of the EC with the main grid,

without taking into account the single individuals’s costs.

B.3 Power constraints enforcement at the transformer

Explicit enforcement via lagrangian multipliers In this variant, we set up a con-

straint on the aggregated power of the EC. That is, Aλ in (39) was set to:

Aλ = IT ⊗ 1N (45)

where IT is the identity matrix of size T , ⊗ is the Kroneker product and 1N is the unit

vector of length N , where N is the number of controlled EVs. That is, Aλ performs

the summation, time-wise, of the aggregated power of all the agents. The power

limit on the overall power profile was set such that EVs could respect it most of the

times; this was computed using information about the total capacity of the EVs and

historical data of the uncontrolled power profile.

Power tariff at the PCC An possibility to enforce peak shaving and valley filling at

the coupling point is to apply a power based tariff at the coupling point. This would
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add a quadratic term the cost equation (41) at the PCC, which will become:

c(pt) =

(pbuy,t + γpt) pt, if pt ≥ 0

(psell,t + γpt) pt, otherwise
(46)

where γ is a quadratic punishment coefficient. To enforce this pricing scheme, we

need to add a quadratic punishment on the overall power profile to the system level

objective. This can directly be included in the pFB algorithm, adding the following

term in equation (43):

αiγ

(
N∑
i=1

ui,k−1

)T
(47)
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coefficients between heated/cooled radiant floor and room,” Energy and Buildings, vol. 66, pp.
599–606, 2013.

[21] P. Wallenten, “Heat Transfer Coefficients in a Full Scale Room With and Without Furniture,” Lund
Institute of Thechnology, pp. 1–8, 1999.

[22] R. D. Coninck, R. Baetens, D. Saelens, A. Woyte, L. Helsen, A. Mechanics, and B. P. Section,
“Rule-based demand side management of domestic hot water production with heat pumps in zero
energy neighbourhoods,” Journal of Building Performance Simulation, 2013.

[23] L. Nespoli, A. Giusti, N. Vermes, M. Derboni, A. Rizzoli, L. Gambardella, and V. Medici, “Dis-
tributed demand side management using electric boilers,” Computer Science - Research and De-
velopment, vol. 32, no. 1-2, 2017.

[24] L. S. Shieh, H. Wang, and R. E. Yates, “Discrete-continuous model conversion,” Topics in Cataly-
sis, 1980.

[25] K. Christakou, J. Y. Leboudec, M. Paolone, and D. C. Tomozei, “Efficient computation of sensi-
tivity coefficients of node voltages and line currents in unbalanced radial electrical distribution
networks,” IEEE Transactions on Smart Grid, vol. 4, no. 2, pp. 741–750, 2013.

[26] L. Nespoli, M. Salani, and V. Medici, “A rational decentralized generalized Nash equilibrium seek-
ing for energy markets,” in 2018 International Conference on Smart Energy Systems and Technolo-
gies, SEST 2018 - Proceedings. Institute of Electrical and Electronics Engineers Inc., 10 2018.

[27] G. Belgioioso and S. Grammatico, “Projected-gradient algorithms for Generalized Equilibrium
seeking in Aggregative Games are preconditioned Forward-Backward methods,” arXiv, 2018.

25


	Description of deliverable and goal
	Executive summary
	Research question
	Novelty of the proposed solutions compared to the state-of-art
	Description
	Grid topology design
	Electrical simulation
	Weather conditions
	Consumption profiles of residential and commercial users
	Thermal loads
	PV model
	EV and stationary battery models
	Case study: V2G

	Regulatory and legal barriers for implementation

	Achievement of deliverable
	Date
	Demonstration of the deliverable
	Added value of SCCER-FURIES

	Impact
	Annex: Heating system models
	Control logic of heating systems
	Heat distribution system
	Water tank model

	Annex: Optimization of EV charging and discharging
	Detailed EV model description
	Distributed control of EVs
	Power constraints enforcement at the transformer




