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1 Description of deliverable and goal

This deliverable was originally linked to the experimental demonstration of decen-

tralized demand-side management (DSM) control strategies and the assessment of

their performances in the context of the Romande Energie Demo site. Due to tech-

nical issues, it was not possible to set up a distributed demand side control demon-

strator managing the demand side of a high number of residential clients. For this

reason, the focus of the proposal switched to the performance comparison of dif-

ferent DSM strategies based on simulation results, with a deeper focus on different

forecasting techniques than previously anticipated.

1.1 Executive summary

In this deliverable, the effectiveness of different forecasting models was tested, and

assessed in combination with a model predictive control, in closed loop. The evalu-

ation was done both in terms of forecasting accuracy and in terms of economic re-

sults of different combinations of forecasters and control algorithms. We restricted

the study to the control of distributed electric batteries for demand-side manage-

ment applications. We tested 5 different forecasters, namely a Holt-Winters based

model and different flavors of Gradient Boosted Trees. Two coordination schemes

were tested, associated with two alternatives tariff schemes: an implicit coordina-

tion, and an explicit coordination scheme. In both the approaches, the final costs

for the end-users are only determined by the aggregated energy consumption and

production of a group of users, that is, the final price is generated by an automated

market maker mechanism. In the implicit approach coordination is achieved with-

out communication, but only using the forecasts of the energy prices as guidance

(which depend on future energy consumption and production). The explicit coordi-

nation additionally uses an iterative coordination scheme obtained formulating the

welfare maximization problem as a non-cooperative game, through distributed opti-

mization; in this case, the final prices for the end-users are generated through the

re-partition of a system-level economic objective among the users; this re-partition

depends on how much each user helped in the minimization of this system-level

objective.

The performances were evaluated on a simulation environment replicating the LIC

pilot1, a self-consumption community located in Lugaggia, a small village near Lugano.

The simulation environment simulates thermo-electric appliances, building heating

systems and thermal dynamics, and power flow on the local low voltage grid.

Results show how the first step ahead accuracy has a higher impact on the economic

results under both the implicit and explicit coordination and remuneration schemes.

Switching from the implicit coordination to the explicit one shows a slight increase in

the financial performances; this performance difference is expected to increase with

increasing penetration of controlled batteries since the implicit coordination cannot

1https://lic.energy/
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fully handle correlations in user’s control actions.

Additionally, we relaxed the constraint for which the batteries can only charge or dis-

charge from and into the households’ electric main. This increases the feasible space

of the controller, leading to better economic results. As a consequence, the accuracy

of the forecasters on steps ahead beyond the first one increases its importance on

the final economic results.

1.2 Research question

• How accurately can we forecast residential power profiles? Residential power

profiles are characterized by high variance and low signal to noise ratios. Res-

idential buildings with significant electric loads like electric boilers and heat

pumps don’t show a perfect seasonality, and severely unbalanced distribution

gets hard to predict.

• Does an increased accuracy on the whole forecast horizon reflects in an in-

crease of control performances? Despite this being a common assumption in

control problems exploiting systems with an energy buffer, the accuracy of the

forecasts at different timesteps is not usually investigated in terms of perfor-

mances.

• How worse is an implicit coordination mechanism compared to an iterative

coordination scheme?

1.3 Novelty of the proposed solutions compared to the state-of-art

Accuracy of forecasters is not usually compared in closed-loop control, but rather

in open-loop through KPIs on the prediction accuracy. In this deliverable, we per-

formed a closed-loop comparison through different coordination and remuneration

schemes. Forecasters were selected among different parametric and non-parametric

models which already proved to deliver good results in the energy demand and pro-

duction prediction tasks.

1.4 Description

1.4.1 Coordination cases

Beside comparing different forecast algorithms, two different approaches were com-

pared for the control of distributed electrochemical storage:

1. Explicit control: it is based on the decentralized energy market presented in

[1] and [2]. The approach explicitly models a welfare maximization problem

with coupling constraints representing power and voltage constraints in a local

distribution grid.

2. Implicit control: this approach is based on dynamic prices which are formed

through simple price formation rules, which try to minimize the impact of
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the distributed energy resources in the grid and try to increase overall self-

consumption. The agents are indirectly coordinated by forecasting the dynamic

price and optimizing for their costs.

Explicit control The problem can be mathematically formulated as a variant of

the so called sharing problem [3]:

argmin
u∈U

e(S∅u) +
N∑
i=1

c(ui)

s.t. : Aλu ≤ b

(1)

where ui are the actions associated with the agent i, U =
∏N
i=1 Ui is the Cartesian

product of the flexible users feasible sets, e(u) is a system level objective which

defines the business model, c(ui) are the costs of each flexible user in the business

as usual case, and u = [uT1 , ..u
T
N ] = [ui]

N
i=1 is the vector of the concatenated actions of

all the flexible users. Here Aλ is a constraint matrix, taking into account the linear

influence of the end users’ powers on the problem constraints, and b encodes box

constraints limits on the power and voltages at specified grid’s nodes.

A notable business model is the one of energy communities, or self consumption

community (SCC), for which the billing is done at the point of common coupling

(PCC) with the main grid. In this case the function e(u) is the surplus that the

agent community has in paying the energy at the point of common coupling with the

electrical grid:

e(x) = c

(
N∑
i=1

ui

)
−

N∑
i=1

c(ui) (2)

where ui ∈ IRT is the vector of total power of the ith agent, c(·) is the energy cost

function defined as:

c(pt) =

pb,tpt, if pt ≥ 0

ps,tpt, otherwise
(3)

where pb,t and ps,t are the buying and selling tariffs, respectively, at time t and p is the

power at the households’ electric main. Decomposing (1) using different repartition

weights for the surplus, induces a game with unique generalized variational equi-

librium, which can be reached jointly minimizing the utility function of the agents,

given by:

ctot(ui, x−i) = ci(ui) + αie(u) + λTi ui (4)

where α is a repartition coefficient for prosumer i, λi ∈ R2T is a vector of Lagrangian

multipliers associated with the ith agent.

The αi coefficient in (4) is intended to promote a truthful report of the users’ power

forecasts and redistribute the SCC’s economic surplus (2), so that the users are
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interested in maximizing e(x). In [2] we proposed the following formula for αi:

αi,t = ai,t

∑t
k=t−τ |xi,k|∑t

k=t−τ
∑N

i=1 |xi,k|
(5)

where τ is a characteristic period (e.g. one week). This is basically a normalized

moving average of the consumption (or production) of the ith agent. In other words,

the discount experienced by the SCC member is proportional to the produced or

consumed kWh. For the numerical experiments carried out in the following sections,

we have adopted a different definition which promote fairness: the αi coefficients are

computed using moving averages of the change in the surplus due to the action of

the ith agent. In other words, called e(x−i) the surplus computed without the action

of the ith agent, the αi are defined as:

αi,t = ai,t

∑t
k=t−τ α̃i,k∑t

k=t−τ
∑N

i=1 α̃i,k
(6)

α̃i = e(xi)− e(x−i) (7)

Implicit control A default rule that allows calculating the price of electricity sold

at any time is defined. Users can then react according to this price signal. We

will call this mechanism ”implicit coordination”. Various pricing schemes can be

adopted, in this case we opted for a simple and easy to explain one. We define the

price formation mechanism using extremely simple and interpretable rules:

• The energy consumed from the external grid shall be paid for as if the consumer

were not part of the community.

• The energy consumed from inside the community is paid for at a total price

lower than the standard tariff of the energy supplier and DSO, with a discount

proportional to the ratio of the total produced and consumed energy.

• The energy injected into the external grid shall be remunerated as if the con-

sumer were not part of the community.

• The energy injected, which is consumed inside the community is remunerated

at a price higher than the standard tariff of the energy supplier, with a discount

proportional to the ratio of the total consumed and produced energy.

This simple set of rules push flexible users to increase the overall self-consumption.

The energy price is calculated using an automated market making (AMM) mecha-

nism, which follows these principles:

• The self-consumed energy is equally split among the community members pro-

portionally to their consumption and production.

• The instantaneous buying and selling prices are dynamic, but for a given time

slot they are the same for everyone.
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We define the price functions of our AMM mechanism starting from the previously

introduced rules, which can be expressed formally as:

pb =
(
Ecp

BAU
b −min(Ec, Ep)(p

BAU
b − pP2P

b )
)
/Ec

ps =
(
Epp

BAU
s −min(Ec, Ep)(p

P2P
s − pBAUs )

)
/Ep

(8)

where pb and ps are the buying and selling prices generated by the AMM, Ec and Ep

are the sum of the energy consumed and produced inside the energy community,

while pBAUb , pBAUs , pP2P
b and pP2P

s are the buying and selling prices in the Business

as Usual (BAU) case and inside the energy community. In such pricing configura-

tion, peers clearly profit from the difference in price between BAU and P2P, but the

community administrator also earns money, when energy is self-consumed inside

the community. It is important to notice that P2P tariff is applied only to the energy

produced by the members of the community, as a consequence it is also in the ad-

ministrator interest to maximize self-consumption (no conflicting interests between

peers and community admin).
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Figure 1: Buying and selling prices as a function of the GDI.

We can develop some intuition on how these prices reduce the variance of the ag-

gregated power profile and maximize self-consumption plotting them as a function

of the grid dependence index, defined as:

GDI = (Ep − Ec)/(Ep + Ec) (9)

The GDI defines how much the community is dependent on the main grid, which

provides an infinite reservoir of negative or positive energy. When the GDI is equal

to 1, no one is consuming inside the community, while a GDI of -1 indicates that

no one is producing. As shown in Fig. 1, the selling price for a net energy producer

increases as the GDI moves from 1 to 0, then reaching a plateau. The same is seen
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for the buying price for a net consumer, decreasing while the GDI shifts from –1

to 0, and getting constant thereafter. This means that the community maximizes

his welfare when the GDI is 0, that is when the buying price is minimized and the

selling price is maximized for the agents. This means that the community maximizes

its welfare when the self-consumption is maximized.

1.4.2 Battery models

The battery controller is supposed to be interfaced with the battery energy manage-

ment system, returning an estimation of the battery’s state of charge and injected

and withdrawn power, into and from the battery. In this setting, the battery can be

considered as a one state fully observed system and applying the MPC is straightfor-

ward. The formulation of the battery control algorithm for the implicit coordination

is based on the work published in [2], and has been further improved to decrease

the overall computational time, exploiting a new formulation for enforcing mutual

exclusivity in charging and discharging operations. We report it in the following.

Called u = [pTch, p
T
ds]

T ∈ R2T the vector of concatenated decision variables for the con-

trol horizon T , where pch and pds are the battery charging and discharging power,

respectively, ũ = [pch, pds] ∈ RT×2 being the same vector reshaped in a 2 columns

matrix, p̂ ∈ RT being the forecasted power at household’s main for the next contro

horizon, y ∈ RT , sch ∈ RT , sds ∈ RT being three auxiliary variables, we seek to solve

the following problem:

u∗, y∗ = argmin
u,y

T∑
t

yt + ‖sch‖2 + ‖sds‖2 (10)

xt+1 = Axt +BũT (11)

y < pb
(
ũ[1,−1]T + p̂

)
(12)

y < ps
(
ũ[1,−1]T + p̂

)
(13)

x ∈ [xmin, xmax] u ∈ [umin, umax] (14)

sch, sds < 0 (15)

sch < −p̂ sds < p̂ (16)

u 4 [sch, sds] (17)

where < stands for <R+, indicating element-wise inequalities, pb ∈ RT and ps ∈ RT

are the business as usual buying and selling prices. We start analyzing the objective

function (10) term-wise. The first summation in (10) represents the total cost of the

agent in the business as usual case. For prosumers, the cost function can be either

positive or negative, depending on the overall power at their household’s main and

can be expressed as in equation (3). The cost can be thought of as the maximum

over two affine functions (the first and second line of equation (3), respectively).

Equations (12),(13) constraint y to live in the epigraph of the maximum of these two

affine functions. Minimizing y then guarantees that its value at the optimum, y∗, will
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Figure 2: Visual explanation of the scope of the y variable. When linearly penalized,
y is pushed to its feasible space’s lower borders, collapsing on the cost function c(p)
in (3)

lie on the epigraph’s lower boundary (and will thus represents the prosumer’s total

costs), as shown in figure 2. Equation (11) describes the battery’s dynamics. A ∈ R+

and B ∈ R1×2
+ are the discrete dynamics matrices obtained by the continuous one

through exact discretization [4]:

A = eAcdt

B = A−1c (Ad − I)Bc
(18)

where Ac = 1
ηsd

and Bc = [ηch,
1
ηds

], and ηsd, ηch and ηds are the caracteristic self-

discharge constant, charge and discharge efficiencies, respectively. Since Bc de-

fines an asymmetric behaviour in charging and discharging (even with equal charg-

ing/discharging coefficients), solving the battery scheduling requires to use two dif-

ferent variables for the charging and discharging powers, pch and pds. When con-

sidering grid constraints, the battery can try to dissipate energy through round-trip

efficiency to help respect negative grid constraints (when there is an excessive PV

generation), so that in this case we need explicit binary complementary constraints

for enforcing mutual exclusivity (the battery cannot charge and discharge at the

same time). This can be obtained in three ways: explicitly modeling the bi-linear

constraint pchpdc = 0, introducing a binary variable and model it through big M

formulation, or trying to restrict their feasible space. The first way will make the

problem non-linear, while the second will turn it into a MIQP introducing a binary

variable; as both options will increase the computational time, we introduced a new

formulation exploiting the third way. Charging and discharging powers are effec-
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tively separated using the auxiliary variables sch and sds. The feasible space of sds is

constrained to be the epigraph of the maximum between 0 and the forecasted power

at the main. As shown in figure 3 for the case of sds, the equations (15) and (16)

constrain these auxiliary variables to live in the positive half-plane and to be higher

than the power profile at main (or its negative value for sch). When sch is quadratically

punished, it will shrink on the lower boundary of the epigraph, (orange line in the

second panel of figure 3). Its optimal value can then be used to define the feasible

regions of the battery charging power, as done by equation (17). The same reason-

ing done in figure 3 for the discharging power can be applied to define the feasible

regions for the battery’s charging power; this will result in two disjoint feasible sets

for the charging and discharging powers.
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Figure 3: Visual explanation of the change in the feasible space for the discharging
power.

The presented problem formulations for the battery, (10), minimizes the end users’

business as usual costs. These can be adapted to solve the decomposed sharing

problem (1) simply modifying the part of the objective function representing the end

users’ costs and altering the feasible space for the charging and discharging powers.

The total costs for the In particular, using the expression presented in section 1.4.1

for the total costs for the agent, the economic cost of the agent becomes:

ctot,i = c(ui) + αie(u) (19)

= αic

(
N∑
i=1

ui

)
+ (1− αi)c(ui) (20)

This cost function must be augmented with the Lagrangian multipliers coming from

the decompostion of problem (1):

ctot,i = αic

(
N∑
i=1

ui

)
+ (1− αi)c(ui) + λTi u (21)

λi = [λTi,ch, λ
T
i,ds]

T ∈ R2T being the vector of Lagrangian multipliers associated to the
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ith agent. Briefly speaking λi is a filtration of the overall λ induced by Aλ in (1). More

details about this filtration process can be found in [2, 1]. In order to allow batteries

to charge and discharge when system-level constraints are violated, we must further

modify the feasible space of pch and pds in (10). In particular, equations (16) and (17)

become:

sch < −p̂+Mλi,ch (22)

sds < −p̂+Mλi,ds (23)

(24)

Here M is a big constant, that we set to 1e6 in the simulations. An example of change

in the feasible space of pds is shown in figure 4.
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Figure 4: Visual explanation of the change in the feasible space for the discharging
power, when sds is modified taking into account the Lagrangian associated to the
battery’s charging power λi,ds.

Finally, using the preconditioned forward backward formulation, agents perform a

gradient descent step in the direction of the negative gradient of the system level cost.

This can be formulated as the minimization of the linearization of the system level

cost around the previous state, plus a quadratic punishment on the action at the

previous iteration; more details on this equivalence can be found in [2]. Replacing

the agent cost with the auxiliary variable y as in (10), the final objective function (for

the battery) then becomes:

αi∇c

(
N∑
i=1

ui,pre

)T
ui + (1− αi)

T∑
i=1

y + λTi u+ ρd‖u− upre‖2 + ‖sch‖2 + ‖sds‖2 (25)

where ui,pre are the agents actions at the previous iteration.
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1.4.3 Forecasting models for DSM

Residential power profiles are characterized by high variance and right-skewed data.

This is due to the non-synchronous activation of loads and the presence of devices

with a predominant power consumption (e.g. heat pumps and electric boilers) w.r.t.

the other appliances. The activation of these loads doesn’t usually have a strict

seasonality effect; for example, heat pumps are usually characterized by several

turn on events during the day, but the activation time seldom coincide with the one

of the previous day. This makes the power profile hard to forecast.

In the following we describe the forecasting models that we have used for the closed

loop comparison. We focused on methods which have already proved to be accu-

rate in forecasting 24 hours ahead residential power profiles. In particular we tried

to improve the performance of the methods that were tested in [5] and [6], and fo-

cused on the Holt-Winters method and on different forecasting techniques exploiting

gradient boosted models (GBM), a family of competition-winning, general-purpose,

non-parametric regressors, which exploit sequential model fitting and gradient de-

scent to minimize a specific loss function. For these latter models, we applied a

preliminary causal embedding of the explanatory variables, in order to capture sea-

sonal effects. Starting from the original time series s ∈ S, a predictors (or regressors)

matrix X and a target matrix Y are obtained. Given a dataset with T observations,

a prediction horizon of h steps ahead, and an history embedding of e steps, we ob-

tain the Hankel matrix of targets Y ∈ IR(T−h−e)×h, and the Hankel matrix of the past

regressors, Xp ∈ IR(T−h−e)×nxe, where nx is the number of regressors. Verbosely, Xp

and Y can be written as:

Xp =

[ x1,t−e x1,t−e+1 ... x1,t x2,t−e ... xnx,t
...

x1,t−e+1 x1,t−e+2 ... x1,t+1 x2,t−e+1 ... xnx,t+1
x1,T−2h x1,T−2h+1 ... x1,T−h x2,T−2h ... xnx,T−h

]
(26)

Y =
[ yt+1 yt+2 ... y1,t+h

...
yT−h+1 yT−h+2 ... yT

]
(27)

where x1,t stands for the first regressor at time t. In hour case, we fixed h = 288,

corresponding to a prediction horizon of 24 hours ahead with a 5 minutes sampling

time. The past regressors matrix Xp is then augmented with categorical time fea-

tures, e.g. day of week, and NWP variables, to obtain the final regressors matrix

X.

Holt-Winters model with double seasonality The Holt-Winters (HW) model [7] is

a special class of the exponential smoothing [8], which consists of three smooth-

ing equations, such that the final prediction is a combination of the level a, trend

b and seasonality s. We tested different flavors of the HW families and based on
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performance, we adopted a double seasonality additive HW:

ŷt+h = (at + hbt) + s1,t−p(1)+1+(h−1)\p1 + s2,t−p2+1+(h−1)\p2

at = α(yt − s1,t−p1 − s2,t−p2) + (1− α)(at−1 + bt−1)

bt = β(at − at−1) + (1− β)bt−1
s1,t = γ1(yt − at − s(2, t− p2)) + (1− γ1)s1,t−p1
s2,t = γ2(yt − at − s(1, t− p1)) + (1− γ1)s2,t−p2

(28)

where α, β, γ1 and γ2 are parameters to be learned from data, while p1 = 96 and

p2 = 672 are the periods of the seasonalities, and \ is the modulo operator. The values

for p1 and p2 correspond to a daily and weekly period. The model (28), and HW in

general, do not include exogenous inputs. Since quantities like external temperature

and irradiance are important explanatory variables in load forecasting, we included

them with an a-priori linear detrend, such that the new target is y = y −Xβd, where

X is a three column matrix containing GHI, T and the unit vector (for the intercept),

and βd is the vector of linear coefficients. Usually, a single set of α, β, γ1 and γ2

values is fitted, and the prediction of each step ahead is obtained applying equations

28 recursively, as usually done for state-space systems. To increase the accuracy of

the method, we instead fitted 5 different models: the first two models have the only

purpose of predicting the first and second step ahead, respectively. The third model

predicts the steps from the third to the fifth, the fourth model predicts the steps up

to the 20th and the last one predict the resto of the steps up to 288. Each model has

its own set of parameters, which where fitted through random search with a budget

of 3000 samples. Since the trend of the time series was negligible, we fixed the β

parameters to 0.

Single GBM A single gradient boosted model was fitted to predict all the 288 steps

ahead. In order to obtain this, we stacked 288 copies of the features matrix (26),

each one decorated with an additional column containing the number of the step

ahead to predict. The target was replaced with the opportune reshape of matrix

(1.4.3), Ỹ ∈ R((T − h− e)h).

Independent GBMs In this approach, we fitted 288 models, each one taking as in-

put the same matrix (26), but predicting different columns of (1.4.3). This allows the

model to be more expressive (having much more parameters w.r.t. the single model

strategy; as we will see this is especially beneficial for the first steps predictions. The

drawback is an increase of computational time.

Independent GBMs with Huber loss In figure 5, 1 month power profiles of 4 build-

ings are aggregated in boxen plots based on the hour of the day, and plotted along

with observations (black dots). As can be seen, the distribution at each hour of the

day is severely skewed, approaching a bi-modal distribution for night hours. In the

literature, prediction of unbalance data is usually threaded with the use of tweedie
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loss [9]; however, this approach is useful only in the case of extremely unbalance

and zero inflated data, which is not the case as we can see in figure 5. In an attempt

to make the model more robust against outliers, we fitted independent GBMs using

Huber loss with standard parameters.
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Figure 5: Boxen plots and observations (black dots) of the power distributions of 4
controlled buildings. The observations are groped by hour of the day. The w analyzed
buildings has roof-mounted PV plants. All day hours present skewed, but different,
distributions.

Hybrid GBMs This final model is an hybrid approach between the Single GBM

and the independent GBMs approach. We fitted 5 independent models for the first

steps ahead, which we expected to be more important in terms of controllers’ per-

formances, and a single GBM for the rest of the steps.
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Figure 6: Example of predictions for an household main’s power profile, for the
tested forecasters.

1.4.4 Forecasting accuracy

The forecasting accuracy was tested on a 1 month simulation. Figure 6 shows an

example of day ahead predictions for the household’s power profile of one of the

controlled agents. It can be noticed that the HW model is able to approximately

predict the high power peaks due to the presence of an electric boiler, capturing the

seasonality of the time series. At the same time, since the turn on events of the

boiler are not exactly periodic, the other models tend to underestimate the power

profile, actually treating the turn on events as outliers.

More insight can be given by plotting the expected mean absolute error (MAE) of the

different forecasters as a function of the day hour (vertical axis) and 5 minutes ahead

time of the prediction (horizontal axis), as done in figure 7. For all the methods,

we can see that the combination of step ahead and step of the day close to the

antidiagonal present the lowest values in terms of MAE. This means that in a time

window of a few hours centred around midnight, the predictability of the signal

is high. While the non-parametric models are in general better than the HW, the

approach using multiple independent models trained with Huber loss do not improve

upon the others; this means that treating the turn on of big electric appliances as

outliers doesn’t improve the overall MAE. The effect of having several models for the

initial steps of the HW based forecaster is clearly visible. This is also visible for the

hybrid LGB model, and is better seen in figure 8.
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Figure 7: Results in terms of MAE for the households with controlled batteries. The
results where mediated using bins of day hour (vertical axis) and 5 minutes ahead
time of the prediction (horizontal axis).

Here the MAE for the different forecasters is plotted as a function of step ahead (left)

and the time of the prediction (right). The best forecaster in predicting the first step

ahead is the HW based forecaster. The independent GBM models and the hybrid

approach achieved similar accuracy for the first step, while using the Huber loss

deteriorated the performances. In general the hybrid approach combines the first

step accuracy of the independent models forecaster with the more stable accuracy of

the single GBM forecaster for successive steps ahead. Plotting the MAE as a function

of the prediction time highlight the more stable predictions of the non-parametric

models w.r.t. the HW model, which is less accurate when predicting the next day

ahead during post meridian hours.
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Figure 8: Mean results in terms of MAE for the households with controlled batteries.
Left: results mediated on the step ahead. Right: results mediated on the time of the
day on which the forecast was performed.

1.4.5 Closed loop performances

Economic results Figure 10 and 9 show the differences in monthly costs with

respect to the business as usual, in the case of the explicit and implicit control

strategies, for different forecasters. Additionally, we tested the HW and LGB hybrid

models in the case in which the battery’s constraint for which it cannot charge nor

inject in the main grid are removed. In this last case, the battery complementarity

constraint on charging and discharging operations is modeled with an integer vari-

able and a big M formulation. For both the business models the change in costs

w.r.t. the base case is always positive (meaning a lower cost w.r.t. the base case), as

expected since the methods guarantee a reduction of costs for the end-users by con-

struction. The reduction of costs is higher for households with batteries since those

are the only controllable devices in this test. The outlier in both plots is the kinder-

garten, in which a 27 kWp photovoltaic system and a battery with a capacity of 60

kWh are installed. For the implicit coordination, figure 10, no substantial difference

is seen among the forecasters, in terms of distribution means. For the explicit coor-

dination case, the cost reduction for the HW is slightly higher in expectation. A more

meaningful comparison can be done plotting the differences for the HW and LGB

hybrid forecasters, in the case in which injection and charging into e from the grid

are allowed for batteries, which is shown in 11 and 12 for the implicit and explicit

15



coordination cases, respectively. Both for the implicit and the explicit coordination

cases, two households with a boiler and a battery worsen their performance when

using HW forecaster, w.r.t. the case in which the battery can’t inject or charge in and

from the grid. Since the relaxed problem allows the battery to perform arbitrage, ex-

panding the feasible space for charging and discharging operations, this can be due

to the low accuracy of the HW forecaster for the higher steps-ahead. This hypothe-

sis is strengthened by the fact that the LGB hybrid forecaster, which has a higher

accuracy w.r.t. the HW model for higher steps-ahead, shows a consistent decrease

of costs for the end-users with a battery. While for the implicit coordination the LGB

hybrid model guarantee a reduction in monthly costs for all the participants, this is

not the case for the explicit coordination, in which agents without a battery see a

slight increase of costs w.r.t. the case in which batteries cannot interface with the

main grid. This is due to the redistribution model for the explicit coordination pre-

sented in section 1.4.1, which incentives those agents which had a greater impact

in reducing the surplus function of the SCC.
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Figure 9: Difference in monthly costs w.r.t. the BaU, for the implicit coordination.

Effect on power at PCC Figure 13 shows the effect of the different forecasting

algorithms on the distribution at the PCC. The HW model is surprisingly good at

coordinating batteries when the uncontrolled power at the PCC is in its extreme

quantiles. The second-best performer in terms of effectiveness in coordination when

the PCC power is at extreme values is the hybrid GBM. This suggests that the ac-

curacy of the prediction of the first step ahead is the most important factor when

considering grid constraints. Figure 14 shows the pdf of the power at the PCC,
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Figure 10: Difference in monthly costs w.r.t. the BaU, for the explicit coordination.
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Figure 11: Difference in monthly costs w.r.t. the BaU with no allowed injections,
with implicit coordination.

which gives a more complete overview of the different performances of the forecast-

ing models. Once again, it’s clear that the best models for reducing the variance of

the power at the PCC are the HW and the hybrid GBM models.
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Figure 12: Difference in monthly costs w.r.t. the BaU with no allowed injections,
with explicit coordination.

1.5 Regulatory and legal barriers for implementation

The energy schemes proposed in 1.4.1 generate costs which depend on the consump-

tion of all the energy community participants. That is, it is not directly proportional

to the energy consumed by the end user, and its get lower when the self consumption

inside the energy community increases. Switzerland is embracing a causal principle

on the price formation for end users, as stated in the recent modification to the Fed-

eral Electricity Supply Act [10]. This means that the electrical bills “should reflect

costs caused by end users”. However, the Electricity Supply Ordinance [11] states

that DSO must guarantee to the end users that at least 70% of their bills are directly

proportional to their energy use; at the same time they can offer opt-in tariffs in

which this percentage is reduced. Under these constraints, the tariff proposed in

1.4.1 can be potentially applied in Switzerland.

2 Achievement of deliverable

2.1 Date

November 2020.
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2.2 Demonstration of the deliverable

This deliverable presents the impact of different control methods for DSM using 
communication and different forecasting models. The main features of the developed 
applications are presented in the previous sections.

3 Impact

The work presented in this deliverable demonstrate the economic feasibility of using 
distributed control as a tool for reducing the impact of
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Figure 14: Probability density function (PDF) of the power at the PCC using diffrent
forecasting algorithms.
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