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1 Description of deliverable and goal

Distributed dispatchable loads can be operated to optimally counteract abrupt changes

in the power produced by renewable energy sources installed in the distribution

grid. Thermo-electrical loads such as heat pumps (HP), HVAC and electric boilers

are among the most energivorous dispatchable loads and thus the most likely to

be operated in this sense. This deliverable focuses on the development of a tech-

nique to increase the accuracy of temperature forecasts up to 36 hours into the

future, exploiting the information coming from low-quality distributed thermal sen-

sors. Typically, spatial resolution of numerical weather prediction (NWP) for tem-

perature predictions is of few kilometers; in this range temperature variation can

be significant, especially in mountain regions. Such spatially coarse prediction can

be corrected using locally installed sensors, reconciling the observed values and the

NWP forecasts. The final scope is double fold: in the first place, this would result in

better scheduling of these devices whose performance are temperature dependent,

like HPs and HVACs, for which the coefficient of performance (COP) is influenced

by the external air temperature (Ta). A smart controller of these devices would thus

benefit in knowing Ta in advance, e.g. waiting for periods in which Ta is higher (and

so the COP) to start heating an household, in order to use less energy. On the sec-

ond hand, a better forecast of Ta could increase the accuracy of power forecasts for

single households, as well as for aggregated groups of consumers.

1.1 Executive summary

Temperature time series from distributed sensors have been used in order to in-

crease the accuracy of meteorological forecasts. The signals come from thermal

sensors of Netatmo stations [9]. Despite the reasonable accuracy of these devices,

the resulting available data presents two main issues:

• The sensors are installed by the users. This could result in an improper instal-

lation (e.g. on the southern facade of a building, under direct sun irradiance).

• The data is incomplete (see Fig. 1). Temporal characteristics of unavailable

data spans from short and regular periods, which are likely to be the result

of connection issues, to very long periods in which the signals are completely

absent.

The first issue has been mitigated by identifying and removing outliers, and those

signals having a high correlation between the measured temperature and the ir-

radiance for different positions of the sun. The second issue has been addressed

by firstly discarding those signals presenting large quantity of missing data. The

missing data of the remaining sensors has then been forecasted using proper data

imputation techniques. The complete forecasted signals has then been used to cor-

rect the forecasts coming from a NWP service. The technique has been tested with
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annual data from 59 netatmo stations located nearby Bellinzona (TI), in the dis-

trict supplied by the Azienda Multiservizi Bellinzona (AMB). The results show that

the method consistently increase the accuracy of the forecasted signals for all the

locations.

1.2 Research question

The research questions addressed in this deliverable are two:

1. Is it possible to increase the forecast accuracy for the ambient temperature,

with respect to the one provided by NWP services, using low-quality sensor

networks? In section 1.4.2 we investigate this possibility.

2. Is it possible to use the corrected temperature forecast in order to increase the

accuracy of the power forecasts of the aggregated power consumption of given

region? In section 1.4.3, we try do so using data from AMB clients. We try

to achieve this by obtaining a more representative forecast for the temperature

influencing the supplied region.

1.3 Novelty of the proposed solutions compared to the state-of-art

1.3.1 Increasing temperature forecast accuracy

As previously stated, the agreement between the NWP prediction, T̂NWP,t and the

temperature observations up to time t, Tobs,t,can be increased using a data recon-

ciliation technique. In particular, we want to obtain an increase of accuracy of the

forecasted temperature T̂ , given T̂NWP,t and the observed NWP error; in other words,

we want to obtain the conditional probability distribution p
[
T̂t+k|T̂NWP , Tobs

]
. This

can be done using a Kalman filter, as suggested in [1, 2, 3]. However, this requires

to define a model for the evolution of the error εt = Tobs,t − T̂NWP,t. Since no assump-

tions can be made in general over the time evolution of ε, a simple autoregressive

model subject to Gaussian noise is usually adopted, so that the final probability for

the corrected temperature prediction can be obtained through:

εt+1 = Aεt + w

yt = Cεt + v

E
[
T̂t+k|T̂NWP

]
= ε∗t+k + T̂NWP,t+k k ∈ N[1,H]

(1)

where w N (0, Q) and v N (0, R) and ε∗t+1 is the updated error on the prediction, ob-

tained through a Kalman filter update. In fact, under the assumption of Gaussian

model and observation noise, the probability distribution of error εt can be updated

up to time t, and then simulated using the first equation of 1, up to time t+ k. Three

main issues can be identified using this approach:

1. When Tobs,t is missing, is not possible to update the Kalman filter estimation for

the forecast error. This would result in less accurate corrections.
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Figure 1: Missing data for the senors located in the sorroundings of Bellinzona,
sorted by quantity of available data, for 2018. The dots represent the presence of
the signal.

2. At time t, we only possess the error relative to the NWP forecasts up to time

t − 1. This means that the Kalman filter must run for the whole prediction

horizon, which would drastically increase the covariance associated with the

state estimation.

3. The autoregressive model for the error in 1 is not realistic in general. In fact,

NWP services usually provides forecasts for the next 24 or 36 hours only a few

times in a day (e.g. at midnight and at noon). This will result in systematic

discontinuities in the error distribution, at the update time (if the forecasts are

updated at 12, we expect that the error at t = 13 will be lower than the error at

t =11).

Instead of introducing all these modeling assumptions, we propose to use a regressor-

based approach, in which the corrected probability distribution of the forecasted

temperature for the next prediction horizon of H timesteps is obtained through H

general-purpose interpolator:

E
[
T̂t+k|T̂NWP

]
= f(T̂NWP , Tobs, X|t) ∀ k ∈ N[1,H] (2)

where (z|t) refers to the history of variable z up to time t and X is a set of exogenous

variables. Comparing 2 with 1, is possible to highlight the differences of the two

approaches. The model in 1 uses a recursive strategy to get the updated forecast

at time t + k. This is done by modeling the probability distribution of the error ε

as a dynamic linear system. On the other hand, the set of regressors in 2 directly

provides the probability distributions of the corrected forecast for all the timesteps

in the prediction horizon.
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1.3.2 Increasing consumption accuracy

Once the forecasts for the temperatures in a given geographical region have been

corrected using historical observations, they can be used to forecast the compos-

ite power flow of heterogeneous electrical consumers/producers. We propose to

reweight the temperature based on the consumption of the district in which the

sensors are located, in order to have a more representative indicator for the power

prediction task. The steps we propose in order to exploit the information from the

distributed sensor network, are summarized in the following:

1. The temperature forecast T̂NWP for a given region is corrected using histori-

cal values of temperature measurements from a group of sensors S = N[1,S]to

obtain more accurate sensor-dependent forecasts T̂s.

2. T̂s are geographically smoothed using a Gaussian Process (GP), under the as-

sumption of time-invariant GP’s hyperparameters.

3. The obtained smoothed forecasts T̂s are used to obtain an average temperature

for each district in the geographic region, T̂d, with d ∈ D,D = N[1,D] and D < S.

4. The district temperature forecasts are weighted by the relative consumption of

their district (compared to the region) rd, obtaining the final forecast for the

temperature of the region, T̂r =
∑

d∈D rdT̂d

The geographical smoothing is introduced in order to obtain a more realistic repre-

sentation of the temperature distribution over the region of interests. In fact, the

GP finds a generative consistent probabilistic description of the data, assuming that

the observations are linked by a given covariance structure. This probabilistic link

will ensure that extreme values observed during the period of interest are smoothed

out, and will actually de-noise the observations. This technique is also known under

the name of kriging in the geographical information systems (GIS) literature [4, 5].

Usually, geographical smoothing does not take into account time-varying process.

Two notable exceptions are represented by time-forward kriging, in which an au-

toregressive time structure is modeled by mean of augmented covariance matrices

[6] and by Gaussian Markov random field, which parameters can be learned via in-

tegrated nested Laplace approximations [7]. Both these techniques requires a high

computational burden. In our case we don’t need to consider a temporal structure

for the GP, and to apply these techniques will represent an overkill. The authors

in [8] propose to fit different sets of hyperparameters of the GP for each time step,

in order to predict the spatial distribution of wind pressure. We want however, to

identify a common set of hyperparameters for the GP fitted at different timesteps.

In fact, the set of hyperparamters defines the covariance structure and the level of

noise in the data, which are reasonably time invariant. For this reason we propose

to learn the hyperparameters by minimizing the sum of the standardized log loss

(SLL) over all the timesteps.
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1.4 Description

1.4.1 Dataset description

The used dataset consists in a set of temperature measurements coming from a

distributed sensor network, a set of meteorological forecasts coming from a NWP

service, and the aggregated power profile of the region in which the temperature

sensors are located. All the signals refer to a one year period starting 1st January

2018, and to the region served by AMB. A detailed description of the data is in the

following:

1. Temperature measurements coming from Netatmo stations [9]. All the sensors

are labeled with their geographical locations in terms of longitude and latitude.

The region of interest present 95 sensors, part of which unusable to our pur-

poses, due to the high number of missing values, as shown in Fig. 1. We have

discarded all sensors for which the ratio of missing data is greater than 40%.

The resulting dataset consists of 65 sensors. The data sampling time is 1 hour.

2. NWP meteorological forecasts coming from meteoblue History+ service [10].

These forecasts are actually obtained by backward simulations of a meteoro-

logical model, and are thus de-facto more accurate than actual NPW forecasts.

This means that the increase in accuracy of the temperature sensors we will

obtain will be conservative w.r.t. what could be obtained using actual NWP

forecasts. The data sampling time is 1 hour.

3. Aggregated power profile for the region of AMB, serving 13 commons and around

33500 single clients. The data sampling time is 15 minutes.

For the forecasting of the aggregate profile, we consider a prediction horizon of 36

hours, and assume that the forecasts must be communicated every day at noon for

the following day.

1.4.2 Increasing temperature forecast accuracy

We have compared two different general purpose regressors in order to obtain the

predicting function f in 2:

• Support vector regression (SVR). This regressor, under the assumption of Gaus-

sian kernels, can be efficiently computed. Unfortunately, there is no out of the

shelf method that allows for the use of datasets with missing data. The method

will in fact discards (and won’t predict) instances with missing regressors. This

means that we can restrict f to be a function of the data that we are confident

will be always available. This means that the interpolator cannot be function

of the observed error ε, since this is a function of Tobs, which presence is not

always guaranteed in this context, coming from an unreliable sensor. For this

reason, in this case the regressor dataset is the following:

T̂s,t+k|t = f(T̂NWP,t:t+k, θaz,t:t+k, θel,t:t+k, ht) ∀ k ∈ N[1,H] (3)
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Figure 2: Crosses: example of historical values of the temperature, Tobs,t∈Thist, used
as regressors with the QRF. Red line: regressor NWP forecasts for the region of
interest. Yellow line: observations for the target temperature.

where T̂NWP,t:t+k is a vector of length k+1, containing the temperature predicted

by the NWP from time t up to time t + k, θaz, θel are the sun azimuth and ele-

vation, and ht is the hour of the day at time t. The latter is passed to the SVR

since, as stated previously, the NWP accuracy could be in general dependent

on the time in which the forecast is made available.

• Quantile regression forest (QRF). This interpolator, well known for its perfor-

mance on a broad variety of regression datasets, can automatically handle

missing data, through surrogate splits. In this case, we can exploit also the

information coming from the unreliable temperature sensors Tobs in order to

correct the forecasts. In this case the regressors set can be augmented as

follows:

T̂s,t+k|t = f(Tobs,t∈Thist|t , T̂NWP,t:t+k, θaz,t:t+k, θel,t:t+k, ht) ∀ k ∈ N[1,H] (4)

where Thist,t is a set of past observations at time t, for the temperature sensors

whose measurement we are trying to predict. For the numerical test we have

chosen Thist = − [36, 24, 1, 0], where each negative number denotes an hour in the

past, and 0 denotes the value for the current hour. An example of the historical

data for Tobs,t∈Thist is shown in figure 2.

For each of the two methods, we have obtained the corrected forecasts T̂s for the

whole length of the dataset using 10 folds cross validation. In particular, since

we are dealing with time series, and since the training dataset must be obtained
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through Hankel matrices, we have built training and testing indices in such a way

that training and testing periods are always separated by at least one day of data.

In this way, we are sure that none of the data we have use in the test, has been

seen by the interpolator during the training phase. In Fig. 3, an example of training

and test indexes for the first 20 days, fir the first fold, is shown. Each 10 days, 7

contiguous days are used for training, while 1 is used for testing. The other folds

are obtained by shifting the training and test indexes by one day; in this way we can

obtain realistic predictions for the whole year.

In Fig. 4 the results in terms of RMSE and MAPE ratios with respect of the NWP

forecasts is shown. Formally, the plotted quantities are:

RMSEr,s,k =
RMSEcorr,s,k
RMSENWP,s,k

MAPEr,s,k =
MAPEcorr,s,k
MAPENWP,s,k

(5)

where corr stands for the KPI obtained through the interpolators, while the s and

k suffixes refers to the sth sensor and kth step ahead. The definition of RMSE and

MAPE are the following:

RMSE =

√√√√ 1

nt

nt∑
t=1

(xt − x̂t)2

MAPE =
1

nt

nt∑
t=1

∣∣∣xt − x̂t
xt

∣∣∣
(6)

Fig. 4 reports the RMSE and MAPE ratios for all the considered sensors, as a

function of the prediction step (in hours). As can be seen, both the RF and SVR

formulations consistently provide better KPIs (KPIs ratios below 1) for all the sensors

and for each prediction step. In particular, the first row of the plots refers to the SVR

interpolator, which doesn’t consider historical values from Tobs,s for the correction.

This results in a constant increase in performance through the whole prediction

horizon. As expected, the RF interpolator shows better performances in the first

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

time [days]

Figure 3: Example of training and test split for the first 20 days. Blue: training days.
Red: test days.
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Figure 4: Ratio between the RMSE and MAE of the NWP forecast and of the corrected
forecasts, as a function of step ahead. First row: SVR. Second row: RF. Each line
indicates the ratios for one of the 59 considered sensors. The horizontal red line
highlights the unit value; values below 1 indicates that the forecast correction has
increased the accuracy of the prediction.

step ahead, and an increase of performance approaching the one of the SVR with

increasing step ahead. We stress out that this increase of performance w.r.t. the

SVR is possible due to the ability of the RF to automatically handle missing data in

the regressors’ dataset.

1.4.3 From temperature to power prediction

As anticipated, the corrected forecasts for the temperature can be used to improve

the prediction of a group of prosumers, obtaining an average temperature for the

region of interest. In order to be more correlated with the overall power signal, we

propose to smooth the forecasts, and weight the single districts temperature with a

relative consumption factor, as previously explained in 1.3.2. In order to smooth the

forecasts, we use a GP, whose hyperparameters are learned minimizing the marginal

log-likelihood of the observed data. Informally, a GP describes the joint probability

distribution of the targets, y ∈ Rn, as a multivariate Gaussian distribution, whose

covariance matrix Σ ∈ Rn×n is defined in terms of similarity between points in the

design (or input, or feature) matrix Xtr ∈ Rm×n. We have chosen to adopt a scaled

squared exponential kernel as the covariance function:

k(xi, xj) = e
− 1

2

(
xi−xj

l

)2

+ b (7)
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where b and l are hyperparameters of the GP. The GP joint distribution for new

predictions ŷ is then completely defined in terms of the kernel function:[
y

ŷ

]
∼ N

(
0,

[
k(Xtr, Xtr) + σ2I k(Xtr, Xte)

k(Xte, Xtr) k(Xte, Xte)

])
(8)

where Xte is the test input matrix relative to the new predictions ŷ. Through (8), one

can retrieve the conditional expected value for ŷ:

E [ŷ|Xtr, Xte, ytr] = k(Xte, Xtr)
[
k(Xtr, Xtr) + σ2I

]−1
ytr (9)

Furthermore, under the GP assumption of Gaussian prior and likelihood for the

predictions, ŷ|X ∼ N (0, k(X,X)), y|ŷ ∼ N
(
ŷ, σ2I

)
, one can compute the marginal

likelihood (see [11] for details on this integration) and its logarithm w.r.t. the training

set:

p(y|θ) =

∫
N (0, k(X,X))N

(
ŷ, σ2I

)
dŷ = N (0, σ2I + k(Xtr, Xtr))

Lt(θ) = log(p(ytr,t|θ)) = −1

2
yttr,t

(
σ2I + k(Xtr, Xtr))

)−1
ytr,t −

1

2
log(|σ2I + k(Xtr, Xtr))|)

(10)

where θ is the set of hyperparameters, which in this case is the tuple
(
σ2, l, b

)
. We can

now optimize the hyperparameters maximizing the log-likelihood on the training set.

To do so, we make the aforementioned assumption that the hypeparameters set is

time invariant. In our case, the feature matrix is unchanged at each time step, since

the location of sensors are also time-invariant. This means that we can precompute

k(Xtr, Xtr), and minimize the overall log-likelihood as:

θ∗ = argmin
θ

−
T∑
t=1

Lt(θ)

= argmin
θ

1

2
log(|ℵ(θ)|) +

T∑
t=1

1

2
yttr,tℵ(θ)−1ytr,t

(11)

where ℵ(θ) = σ2I + k(Xtr, Xtr)), which is time invariant. An example of the resulting

smoothed temperature field obtained using θ∗ is shown in Fig. 5. As in the case

of temperature forecast correction, the forecasted aggregated power for the region of

AMB can be described in terms of a deterministic function acting on the input space:

P̂t+k|t = f(Xk, T̂x,t:t+k, θaz,t:t+k, θel,t:t+k, ht) ∀ k ∈ N[1,H] (12)

where T̂x is a forecast for the temperature of the region of interest, obtained with

the NWP service or with the method described before in section 1.3.2, and Xk is an

additional regressors matrix.

Since for the given test case we are also in possess of the production of a subset

of PV panels installed in the region, we include the forecasted PV production as a
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Figure 5: Mean value of the fitted GP. Points: original measures. Crosses: estimated
values (projection onto the GP mean value).

regressor, as suggested in [12]. The additional regression matrix is thus defined as:

Xk = P̂pv,t:t+k (13)

where P̂pv is also obtained through an interpolator, starting from the forecasts for

the global horizontal irradiance (GHI) and temperature:

P̂pv,t+k|t = fpv(T̂NWP,t:t+k, ˆGHINWP,t:t+k, θaz,t:t+k, θel,t:t+k, ht) ∀ k ∈ N[1,H] (14)

The results of using the NWP temperature rather than T̂r in terms of RMSE are

shown in Fig. 6. Additionally, the results obtained when the temperature signals

are not smoothed out is also shown. First of all, we can see that the RMSE for all the

cases has a peak at noon. This can be explained by plotting the daily pattern of the

target time series, after a weekly detrending, as shown in Fig. 7. As expected, the

variance of the power profiles is maximal during daytime, while shrinking at night.

From Fig. 7 it is also possible to see the peak of electric boilers’ consumption in

the evening, the UTC shift, and the three different clusters of profiles based on the

day of the week. Further considerations can be done concerning Fig. 6. The method

proposed in section 1.3.2 seems to effectively decreasing the RMSE, especially during

night hours, as we would expect due to the influence of the temperature on heat

pumps. In table 1 the mean (over the prediction horizon) nRMSE is reported for

the base case, the corrected temperature, and the GP smoothed temperature. We

can see that, when the corrected temperature is used instead of the NWP one, the
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nRMSE decreases from 5.84e − 2 to 5.54e − 2, which corresponds to a decrease of

5.14%. Secondly, the GP smoothing doesn’t provide an additional increase in the

accuracy, as is also shown in table 1. This could mean that the aggregation by

district is enough to retrieve a representative temperature for the region of interest,

and is robust enough to mitigate the influence of outliers.

Table 1: Mean normalized RMSE and MAPE over the prediction horizon, for different
methods of retrieving the forecasted temperature of the region. NWP: the temper-
ature is obtained through numerical weather prediction service. corr: the NWP
temperature is corrected using observations from the distributed sensors. GP: the
corrected temperature is additionally smoothed using a Gaussian Process.

method nRMSE MAPE

NWP 5.84e-02 4.20

corr 5.54e-02 4.08

GP 5.53e-02 4.08

2 Achievement of deliverable

2.1 Date

June 2019.

2.2 Demonstration of the deliverable

This deliverable consists of data analysis work. The comparison of the performance 
of the various forecasting techniques is presented in the previous sections.

3 Impact

This work explores the possibility of using distributed temperature sensors to in-

crease the accuracy of NWP forecasts at their location. As shown, this approach can 
also increase the accuracy of the forecast of an aggregated power profile. As a result, 
the output of this deliverable can be used in the WP, in which the power forecasts for 
the next day ahead are required.
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