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1 Description of deliverable and goal

1.1 Executive summary

Distributed control techniques that are used to coordinate a set of agents elec-

trical loads or batteries rely on the forecasts of each agents electrical consump-

tion/production. In order to counteract fast change of power induced by renewable

distributed energy resources (DERs) we are interested in coordinating agents with a

timestep in the range of minutes. Moreover, since both residential (and industrial)

power consumption and DERs power production profiles have a daily seasonality,

a 24 hours ahead planning is typically used. The high number of timesteps, the

frequency at which the problem must be solved, the number of agents to be co-

ordinated (in the range of hundreds) and the limited computational power of the

devices on which the distributed control problem is solved (smart meters), require

a careful selection of both optimization strategy and forecasting algorithm. In order

to reduce the computational burden we have investigated the impact of consider-

ing non-uniform stepsize in model predictive control (MPC) algorithms, by means

of randomly generated power profiles. The solution based on the reduced number

of steps achieve a similar performance in terms of objective function, when com-

pared to the solution achieved with the uniform timestep discretization. We have

then compared the performances of different multi-step-ahead forecasters for the

composite residential power measurements, up to 24 hours. We did this by means

of synthetic datasets representative of swiss residential power production and con-

sumption. Secondly, we have investigated the influence of modeling PV power plants

on the forecast accuracy. Even if the modeling does increase prediction accuracy

(estimating power production from meteorological conditions), this does not always

results in an increase of forecasted generated power, which depends on the accuracy

of the numerical weather prediction forecasts. At last, we proposed a distributed al-

gorithm to perform hierarchical reconciliation of power forecasts, which can be used

to preserve privacy of the users while obtaining sum-consistent forecasts.

1.2 Research question

In section 1.4.1 we investigate the possibility of using non-uniform stepsize for the

control algorithm of a battery with a multi-objective optimization (minimizing cost

while performing peak shaving), which would result in a reduction of computational

time for both forecasting and control. Assessing accuracy in forecasting requires

a representative dataset of the signals that we want to predict. Datasets of energy

consumption data at a good resolution and for a high number of households are

scarce. Moreover the location of the houses is often unavailable, in order to preserve

privacy. In order to test various forecasters on a representative dataset consisting

in power consumption for uncontrolled devices, heat pumps, electric boilers and PV

power production, we generated synthetic data by means of thermo-electric simula-
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tions of households. In section 4.1 we present a detailed description of the pyhton

simulation environment, along with heating system control logic, that we have used

to generate the residential net power profiles. The latter are then used in section 1.5

to investigate the accuracy of various forecasters. All the selected forecasters pro-

duces conditional probability distributions, which are compared in cross validation

by means of quantile skill score. We have additionally compared them by means of

required computational time. As a growing number of roof-mounted PV system is be-

ing installed, in section 1.5.2 we investigate the effect of exploiting physics-based PV

models in order to forecast their power production. Forecasting PV power is of great

importance for the future electrical grid, as more accurate power predictions allows

to better handle abrupt rump up in regional power flow, due to change in cloud con-

figuration, and ultimately permit to increase the number of PV plants which can be

hosted in the distribution grid.

The last part of the report is dedicated to hierarchical forecasting. When forecast-

ing power consumption in the electrical grid, we are typically interested in different

level of aggregation. For example, when we aim at controlling an HVAC system of

a residential building for minimizing future expenses, we are interested in single

household level forecasts. On the other hand, when we want to provide a peak-

shaving service to a local DSO, we are most interested in the forecast of the power

consumption at the medium voltage transformer level. The most complex case is

the one in which we would like to use demand side management to control a group

of prosumers and sell their flexibility to a third party. In this case we are inter-

ested in system-level objectives (e.g. peak shaving of the power flow at the LV/MV

transformer), and in respecting grid constraints. Since distribution grid topology is

usually radial, they can be described using a rooted three. We can therefore say

that we would like to have accurate prediction at all the levels of the grid hierarchy,

while assuring consistency among forecasts. This means that forecasts at the bot-

tom level of the hierarchy should sum up to the forecast of the aggregate, which is

not guaranteed when forecasting them separately. Moreover, single house electrical

consumption is usually difficult to predict, due to the high variability of the signal.

Overall forecast accuracy could be increased performing a forecast of the aggregated

signal and using hierarchical forecasting techniques to reconcile the measurements.

In section 1.5.6 we introduce a distributed algorithm for hierarchical forecasting,

which can be used to reconcile household forecasts while preserving privacy of the

prosumers (since forecast data is available at upper level of the hierarchy only by

means of aggregated profiles) that was tested using real data of 2200 households

coming from a UK smart meter trial.

1.3 Novelty of the proposed solutions compared to the state-of-art

Many research in the past decades focus on the reduction of MPC computational

time, mainly due to the need of performing real-time control on embedded plat-

forms. Historically, two methods has become widely adopted to speed up MPC com-
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putation. The first one relies on the approach used in linear quadratic regulators,

which is based on the Bellman’s principle of optimality. Basically, in an equality

constrained linear quadratic dynamic problem, the objective function at time t2 can

be reformulated as a function of the system state at time t1 only. This, together

with the fact that the optimal at the end of the control horizon can be approximated,

allows one to find an optimal control policy by backward recursion solving a Riccati

equation, and then apply it sequentially to the system’s state. This techniques can

be modified to include exogenous inputs, for example allowing for the solution of

tracking problems. Moreover, Riccati recursion is able to exploit peculiar proper-

ties of the problem’s Hessian deriving from the regularity of the condensed form of

the dynamic matrices [1, 2], allowing to achieve a computation cost which is linear

in the number of time-steps [1], namely O
(
N(nx + nu)3

)
, where nx and nu are the

number of states and control variables, while N is the length of the control horizon.

However, when dealing with inequality constraints, this approach must be coupled

with [3] other methods such as the Mehrotra predictor-corrector interior-point al-

gorithm [4], losing part of the computational advantage. The second method which

has gained a lot of popularity for real time control is the explicit MPC formulation,

which relies on multiparametric programming [5]. The explicit formulation allows

to partition the state space in terms of feedback control laws, that is, the optimal

control policy can be provided in in terms of look-up tables, depending on the state

of the system. This is convenient as long as the state space has a low number of

partitions. Unfortunately this number increases fast with the number of states and

control horizon, so that this method can become practically infeasible. Further-

more, explicit MPC cannot handle cases in which system matrices, cost function

or constraints are time-dependent [6]. Since we want to keep the formulation gen-

eral we investigate the possibility of reducing the computational burden by means

of considering non-uniform step-size control problems, in which disturbances (the

predicted power production/generation) are mediated over increasingly large time-

steps. Indeed, a battery minimizing energy cost at an household’s main must solve

a problem with time-varying exogenous variables (prices and forecasted power), in-

equality constraints and discontinuous price function (the slope of objective function

with respect to the exchanged power at the household’s main changes while the pro-

sumer switches his role from consumer to seller). These requirements lead us to

consider a very general formulation. Demand side management algorithms use fore-

casts of the overall power consumed or generated at the point of common coupling

with the grid in order to properly plan an optimal control signal. They typically need

up to 24 hours ahead forecasts, since residential power profiles have a strong daily

seasonality. Forecasting a signal several steps ahead in the future poses techni-

cal and conceptual challenges, depending on the adopted technique. Some simple

methods, like state space methods, ARMAX and exponential smoothing, are usu-

ally used to perform multi-step ahead forecasting through a recursive technique, in

which the 1 step ahead forecast is used as an input to the same model to predict
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the next step ahead [7]. Although this procedure is very simple, since it does not

change the model at each time step, it can be prone to instabilities: since errors

tend to accumulate and cannot be compensated, the recursive technique strongly

depends on the quality of future exogenous inputs, that are usually forecasted using

some other methods. Another possible way to apply a general purpose univariate

interpolators to multivariate regression is to perform some sort of embedding of the

time step ahead one is trying to predict, and pass it as an additional input to the

interpolator. The so called direct way is to fit T different interpolators where T is

the number of steps ahead to be predicted, keeping the set of regressors fixed, while

changing the target variable to be the tth step ahead target. The latter one can show

better accuracy when compared to multivariate regression, also known as multiple

input multiple output (MIMO) regression, but it lacks of interdependency modeling

between time-steps, which is needed in the case we are interested in producing sce-

narios for stochastic control out of the predictions [8]. Anyway, the interdependency

structure can always be superimposed later, through time dependent copulas, for

example with the dual-ensamble copula-coupling approach [9]. A comparison of

several multi-step ahead strategies for forecasting, applied to very simple univariate

time series of the NN5 competition [10], using non-probabilistic methods, is pre-

sented in [11]. Since we are interested in forecasters (which have to be periodically

retrained) which can run on embedded chips with limited computational resources,

we are also interested in comparing training times. Moreover, we are interested in

forecasters which are able to retrieve the conditional probability distribution on the

whole horizon. Therefore, we proposed two different methods which compare fa-

vorably in terms of training time with respect to quantile random forests, namely

an double seasonality Holt-Winter exploiting exogenous inputs by means of linear

de-trending, and an ensemble of extreme learning machines.

1.4 Description

1.4.1 Multi-step-ahead forecast for control with non-uniform step size

Systems with an internal buffer, such as batteries, boilers and the thermodynamics

systems composed by an heatpump and a building, can increase their performance

when shifting from a reactive control to a predictive one. Furthermore, when the

dynamics of the controlled system can be modeled accurately, we can use the system

model to generate prediction on the system state into the future, as it’s done in Model

Predictive Control (MPC). In any case, the predictive control requires a multi-step-

ahead forecast of the disturbances when the typical rate of change of the system rate

due to control actions and disturbances is meaningful effect we get from controlling

the system, has a typical time scale which is smaller than the rate of change of the

system’s state (e.g. the state of charge of a battery) when subject to a typical control

action. Typically, is more difficult to predict disturbances at several steps ahead

into the future than predicting a single step forward. Fortunately, when dealing
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with the aforementioned system, we can to some extent disregard to use the same

time-step when forecasting distance events into the future, since these events have

a lower impact on the optimal control action we must apply to the system at the

present time, with respect to the disturbance of the next timestep. This means that,

instead of predicting one day ahead with 1 minute timesteps, we can instead predict

averaged values of the system’s disturbance on wider timesteps during the end of

the day. A similar approach is used in reinforcement learning, where a discount

factor is applied to the reward of future actions.

The second advantage of having a variable stepsize in the forecasting horizon is the

reduction of computational time needed for the traning and prediction phase of the

forecasters and for the solution of the control problem. Even when considering an

optimistic computational time for the optimization problem of O(n), where n is the

number of steps, passing from an horizon of 1440 steps (one minute intervals) to

one of 14 steps reduces the computational time by a factor of 100.

1.4.2 Estimation of sub-optimality of non uniform step-size

In order to estimate the loss in the objective function of a typical receding-horizon

optimal control problem, we compared the solution of two different control prob-

lems. The first one is obtained with a fixed 10 minutes step, while the second uses

logarithmically spaced steps. We limit the investigation to the case in which a resi-

dential user would like to controlling a single state electrical battery to minimize its

electricity costs and perform peak shaving. We consider the battery’s control law to

be the solution of the following optimization problem:

u∗ = argmin
x∈X ,u∈U

α‖P̂ + Su‖2 +

T∑
t=1

c(P̂ + Su) (1)

where x ∈ IRT and u ∈ IR2T are the state of charge of the battery and the vector

of control actions (charging and discharging power) of the battery, S ∈ IRT×2T is

a summation matrix, summing charging and discharging battery operations with

appropriate signs, X and U are the constraints sets containing the battery dynamics

and operational limits, P̂ ∈ IRT is the forecasted uncontrolled power at the electrical

main of the user, and c(·) is the energy cost function defined as:

c(zt) =

pb,tzt, if zt ≥ 0

ps,tzt, otherwise
(2)

where pb,t and ps,t are the buying and selling tariffs, respectively, at time t.

We generated 100 power profiles using detrended random walks whose variance was

drawn from a Gaussian distribution. The random walks are obtained as:

xi,t+1 = xi,t + wi,tσi (3)
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where xi,t is the ith random walk at the t timestep, wi,t ∼ N (1, 1) and σi ∼ N (1, 1)

are random variables drawn from the normal distribution. We generate 3-days long

scenarios, with an initial timestep of 10 minutes, resulting in 100 scenarios of length

432 steps. The signal was then detrended using a moving average with a window

of 36 steps, equal to 6 hours. In Fig.1 a sample of 10 random walks and their

detrended signals are shown.

We used logarithmically spaced bins for the reduction of the control horizon. The

desired number of control steps was fixed a-priori equal to 15. We then found k

such that: stepi+1 = k stepi ∀i∑15
i=1 stepi = 144

(4)

The resulting step lengths where also used to obtain the final synthetic forecasted

signals, through bin averages. We then solved the problem in a receding horizon

fashion, where only the solution of the optimal control action of the first time step is

actually applied. This means that for each scenario we solved 2-days long receding

horizon problems, which means that for each scenarios we solved 288 optimization

problems, retrieving an equal number of optimal control actions u∗i,t, t ∈ [1, 288] .

In Fig. 2 the estimated density function of the relative change in the objective func-

tion (1) when solving it with variable length rather than fixed time-steps is shown.

Half of the observed relative changes lye in the interval [−1.4e− 3, 2.3e− 4] while 90%

of them lye in the interval [−7.7e− 3, 1.6e− 2]. As can be seen for Fig. 2, the max-

imum relative deviation (represented by three outliers) is in the range of 10%. Fig.

3 shows the boxplots of the scenario-average computational time obtained following

the two strategies on a IntelCorei7− 5500UCPU@2.4GHz. The median computational

time for the variable step-size strategy was 1.4e−2 seconds, while for the constant

step-size strategy was 1.2e−1 seconds.

1.5 Evaluation of multi step ahead forecasters for net power prediction

Forecasting multi step-ahead power profiles for residential households is an ex-

tremely complex task, mainly due to the high dimensionality of the multivariate

output, the even higher dimensionality of the inputs, which make us incur in curse

of dimensionality [12] related problems, the volatility of the target and its low signal

to noise ratio. The last two points doom any point forecasting method to return large

errors when compared to the task of forecasting more predictable time series (like

the power flow at a medium voltage transformer). Furthermore, a decision maker

or a control algorithm is, generally speaking, not interested in point forecasts, but

rather in probabilistic ones, that is, the a-posteriori probability distribution of the

target given the present conditions. As such, we only focused on methods able to

cope with those aspects, and evaluated them also based on the predicted quantile

of the conditional distributions. For 3 of them we directly predict time aggregates of

the target variable, as motivated in subsection 1.4.2, in the attempt of mitigating the
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difficulties of predicting an output with high dimensionality.

In the following we describe the four methods we employed for this analysis. Each

method belongs to a different class of multi-step ahead methodology introduced be-

fore.

Quantile regression forest and recursive quantile regression forest Random

forests are basically an ensemble of (high variance and low bias) decision trees,

trained with random subsets (independently chosen) of the explanatory variables

and samples of the original training dataset. It is known that aggregating multiple

forecasters leads to variance reduction of the prediction, when base learners (the

to-be aggregated forecasters) are trained using random samples of the dataset. This

technique is known as bagging or bootstrap aggregation [13]. Each tree is trained

following a greedy strategy, choosing which variable to split and at which level in a

sequential way, minimizing a loss function (usually squared error). In order to get

the quantiles out of a random forest, one could simply estimate the quantiles of the

prediction of the N trees, assuming each tree has been independently optimized.

Anyway, a better alternative exists, which consists of keeping track of all the data in

the trees’ leaves, and estimating empirical quantiles out of them. This algorithm is

known as quantile regression forest (QRF) [14]. The first method based on QRF uses

a direct approach, which uses past variables up to time t − T to predict the next T

outputs, namely:

ŷt+k|t = f(x[t−T,t]) ∀k ∈ [1, T ] (5)

where x[t−T,t] is the set of explanatory variables from timestep t − T up to t, ŷt+k|t
is the forecasted variable at time t + k having knowledge of X up to time t. For-

mally, given a datasets with N observations, we obtain the Hankel matrix of targets

Y ∈ IR(N−T)\T×T, where \ stands for integer division, and the Hankel matrix of the

explanatory variables, X ∈ IR(N−T)\T×nxT, where nx is the number of explanatory

variables. Verbosely, X and Y are the following:

X =


x1,t−T x1,t−T+1 ... x1,t x2,t−T x2,t−T+1 ... xnx,t

...

x1,t−T+1 x1,t−T+2 ... x1,t+1 x2,t−T+1 x2,t−T+2 ... xnx,t+1

x1,N−2T x1,N−2T+1 ... x1,N−T x2,N−2T x2,N−2T+1 ... xnx,N−T

 (6)

Y =

 yt+1 yt+2 ... y1,t+T

...

yN−T+1 yN−T+2 ... yN

 (7)

where x1,t stands for the first explanatory variable at time t. In order to ulteriorly

reduce the dimensionality of the problem, we applied time aggregation, with bins

symmetric to the time aggregation for the output. That is, referring to table 2, the

first 31 (465 divided by 15) columns of matrix X, which are the farthest in time with

respect to the one step ahead prediction, are averaged together, and so on for all
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the columns. This reduces the size of X from nx(N − T ) to 10(N − T ). This strategy

assumes that, since we are requiring forecasts with a loss of temporal resolution as

we move forward in time from t, we can as well get rid of the high temporal resolution

of historical values, as we move backward from it.

The second method still relies on QRF, but uses a recursive-like logic to generate the

t+ k step ahead. The first step ahead is simply generated taking the full Henkel ma-

trix X as regressors, that is, the one described by equation (6) and with 15 minutes

sampling. The second step ahead is generated replacing the first column of X with

the prediction of the first step ahead, ŷt+1|t. The procedure is iterated since 10th step

ahead, for which all the columns but the last 465 have been removed by the original

X. That is, the explanatory variables matrix for predicting ŷt+T |t will consist of 475

columns, the first 9 being the output of the QRF of the first 9 timesteps.

Tree bagging Extreme learning machines This method uses a MIMO regressor,

the so called extreme learning machine (ELM) [15], to predict all the 10 step ahead

at once. Since ELMs were originally thought as interpolators, we perform an ensem-

ble through bagging in order to obtain the conditional distribution of the prediction.

The ELM is a 2-layers perceptron, in which the first matrix of weights linking the

inputs to the layers of neurons, and the neurons biases, are randomly initialized. As

such, the only weights that need to be learned are the ones linking the neurons with

the (multivariate) output. This can be done efficiently by means of linear regression

exploiting the Moore-Penrose inverse. The main advantage of the ELM is that, since

there is no need of training the first matrix of weights and biases, we can bypass

backpropagation (gradient descent) or other types of iterative optimizers, which are

usually needed due to the presence of the nonlinear activation function, and just

retrieve the optimal values of the second matrix of weights. In practice, this method

firstly augment the space of explanatory variables by applying random nonlinear

transformations, and retrieves their optimal combination by linear regression. Since

the dimensionality of the explanatory variables is highly increased, we can penal-

ize the weights adding a Ridge punishment in order to regularize the output and

decrease the forecaster variance. Formally, the ELM is described by:

Y T = θO + ε

O = σ(WXT + b)
(8)

where X and Y are the previously described Henkel matrices, σ is the activation

function (which is usually a sigmoid), W ∈ IR(N−T)\T×nn and b ∈ IRnn are the randomly

initialized matrix of weights and biases of the first neuron layer, where nn is the

number of neurons. O ∈ IRnn×(N−T)\T is the output of the first layer and θ ∈ IRnn×T

is the matrix of final weights which connects the output of the first layer O to the

matrix of targets Y . As in normal linear regression, assuming Gaussian noise ε and
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applying regularization, we retrieve the analytical solution for θ:

θ∗ =
(
OOT + λI

)†
(OY ) (9)

where λ is the Ridge regularization parameter, I is the identity matrix of appropriate

dimensions and † stands for the pseudoinverse. Due to the presence of the sigmoid

activation function, inputs must be normalized to be centered in the interval [−1, 1].

We normalized X to unit variance; informally:

Xn = σ̂−1s (X − µ̂s) (10)

where σ̂s is the vector containing the estimated sample standard deviation of the

columns of X, and µ̂s is the vector of the estimated sample means of the columns

of X. In order to speed up the activation function computation, we have used a

piecewise linear function instead of the analytic sigmoid. Notice that in out case

the nonlinearity reduces to an upper and lower threshold. For the tests we have

adopted 400 neurons ELM, with λ equal to 1e − 1. To estimate the a-posteriori

quantile distribution and reduce the variance of the predictions, we have applied

bagging to 100 ELMs. For each ELM we selected 70% of variables and 70% of the

original observations, at random.

Detrended multiple Holt-Winters The Holt-Winters (HW) method [16] is a special

class of the exponential smoothing [17], which consists of three smoothing equation,

such that the final prediction is a combination of the level a, trend b and seasonality

s. We tested different flavors of the HW families and based on performance we

adopted a double seasonality additive HW:

ŷt+h = (at + hbt) + s1,t−p(1)+1+(h−1)\p1 + s2,t−p2+1+(h−1)\p2

at = α(yt − s1,t−p1 − s2,t−p2) + (1− α)(at−1 + bt−1)

bt = β(at − at−1) + (1− β)bt−1

s1,t = γ1(yt − at − s(2, t− p2)) + (1− γ1)s1,t−p1
s2,t = γ2(yt − at − s(1, t− p1)) + (1− γ1)s2,t−p2

(11)

where α, β, γ1 and γ2 are parameters to be learned from data, while p1 = 96 and

p2 = 672 are the periods of the seasonalities. The model (11), and HW in general,

do not include exogenous inputs. Since quantities like external temperature and

irradiance are important explanatory variables in load forecasting, we included them

with an a-priori linear detrend, such that the new target is y = y−Xβd, where X is a

three column matrix containing GHI, T and the unit vector (for the intercept), and

βd is the vector of linear coefficients. Moreover, instead of keeping a single set of α,

β, γ1 and γ2, we fitted 96 sets of these values, based on the step ahead. To identify

them, we used synthetic generated power profiles, using the methodology described

in section 4.1. Due to the linear detrend we applied to the target, the fitted β values
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where close to 0 for all the steps ahead, and thus we decided to fix this parameter

to 0. The identified parameters are shown in Fig. 4. For the HW the conditional

probability distribution of the prediction was obtained a-priori, using data from the

training set. That is, for each fold, we obtained the distribution of the error on the

training set, based on the step ahead and the hour of the day:

q̂αi,h,k = quantileαi(eh,k) (12)

where eh,sa is the set of training errors related to the hour h and to the kth step ahead

and αi is the level of the quantile.

1.5.1 Results from synthetic dataset

We compared the performance of the four different forecasters in predicting the

power demand/production of a group of 100 prosumers, at different levels of ag-

gregation, using one year synthetic data generated as described in appendix 4.1. We

used 15 minutes-sampled time series, but we did not predict 96 timesteps. Rather,

we predicted 10 steps ahead with different levels of aggregations, using logarithmi-

cally spaced bins, as explained in section 1.4.2. The length of each bin is reported

in Table 1.

Table 1: Number of minutes for each step ahead.
step 1 2 3 4 5 6 7 8 9 10

minutes 15 15 30 45 75 105 150 225 315 465

Each user power consumption is obtained combining 3 different appliances: an

heat pump (HP), a roof-mounted PV and uncontrolled loads (UL). The simulated pro-

sumers are composed as described in Table 2. The forecasters are evaluated in cross

validation, using 6 folds of 2 months each. We adopt the same cross validation ap-

proach later described in section 1.5.4, in which the training set in each of the 6

folds is composed by groups of 3 consecutive days (see Fig. 6). As explanatory vari-

ables we use the historical values of the power, GHI and T. Additionally, we gave the

regressor the perfect forecast of GHI and T. This was motivated firstly by the lack

of NWP for the typical meteorological year we have used to generate the synthetic

load, and secondly because we wanted to evaluate the best possible performance of

the forecaster, without dealing with NWP accuracy. In fact, NWP services provide

forecast with different accuracy, based on the presence of on-ground measurements

used for prediction calibration. The evaluation metrics we used for the forecast-

Table 2: Number of houses per type of appliances.
PV+HP+UL PV+UL HP+UL UL

20 20 10 60

ers are the root mean squared error (RMSE), the mean absolute error (MAE) and a
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Figure 4: Fitted parameters for the HW model, as a function of the step ahead

quantile skill score S which compares the quality of the predicted quantiles of the

a-posteriori probability distribution returned by the forecasters, with the empirical

one, estimated on the test set. Formally, S is defined as:

S(ŷt+k|t, yt+k) = −
m∑
i=1

(
1{yt+k≤q̂αit+k|t} − αi

)(
yt+k − q̂αit+k|t

)
(13)

where q̂αit+k|t is the predicted αi level quantile for t+ k at time t and 1x is the indicator

function on the condition x. The skill score (13) is a proper skill score [18], it is al-

ways positive, and lower values of S means higher quantile prediction accuracy. The

results for the individual agents are shown in Fig. 5, by means of boxplots. Each

boxplot contains the observations for the 100 agents, already mediated across the

6 folds. QRF and the RQRF clearly obtain better performance in all the indicators,

with the exception of the one step ahead prediction, in which the HW is consis-

tently the best forecaster. Besides the accuracy of the methods, we reports also the

agent computational time for each forecasters, obtained on a Intel Core i7-4790K @

4.00GHz with 32 GB of RAM. The values in the boxplots are, once again, already

mediated across the folds, and refers to the training period on each fold, which was

roughly 2 months. The median computational time for each forecaster is reported in

table 3. While the QRF and RQRF achieve greater accuracy in the forecasts, they are

hardly embeddable in a smart meter due to both the high number of parameters and

the high computational time. On the other hand, both the ELM and the detrended

HW only requires matrix inversions in the training phase, and simple algebraic mul-

tiplication for the test phase. While the ELM requires O(nn) parameters, where nn
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Figure 5: Evaluation of different regressors for multiple step ahead forecasting. Each
boxplot contains 100 points, which are the results for each agent, mediated across
the CV folds. Blue: QRF, direct. Red: RQRF, recursive. Yellow: bagging of ELM.
Violet: detrended HW

14



is the number of neurons, the HW only requires 3×96 parameters, which can be

reduced to 12 if the parameters in figure 4 are approximated with piecewise linear

functions. More importantly, the HW does not require to keep historical values for

the training dataset, being an adaptive state-space method. This means that all the

information needed for performing a forecast are stored in the model parameters.

This is also true for the detrend of the exogenous variables when an adaptive linear

fit is applied, as it was the case in this study. This means that the HW method can

be easily embedded in a microcontroller.

Table 3: Agent median computational time for 2 months of data, for each forecaster.

forecaster QRF RQRF ELM HW

training time [s] 45.7 241.1 6.3 3.5

1.5.2 Influence of PV modeling on forecasting

Several studies have tried to include physics based model in the forecasting task

[19], while a pletora of methods relying on econometrics and machine learning have

been proposed to forecast PV using a data-driven approach [20], [21]. However in

these studies the authors tend to focus on one of the two approaches, and as such

is hard to assess the contribution of physics-based models to PV power forecasting.

We split the analysis in two, starting from estimating the effect of PV models in

predicting PV AC power, given the global horizontal irradiance (GHI) and ambient

temperature T and the current time t. That is, we want to find a regressor

P̂pv,t = g (GHIt, Tt, t) (14)

which maps the aforementioned variables to the estimated PV production, and see if

the reconstruction accuracy increases when considering a physics-based model for

the PV. We then investigate the effect of the same models when trying to forecast the

PV power for the next 24 hours, that is, we want to find a regressor

P̂pv,[t,t+T ]|t = f
(
GHI[t−T,t], T[t−T,t], ˆGHI [t,t+T ]|t, T̂[t,t+T ]|t

)
(15)

where x[t,t+T ]|t means all the values of variable x from t up to t + T , given the in-

formation available at time t, ˆGHI [t,t+T ]|t and T̂[t,t+T ]|t being the forecasts at time t

for irradiation and ambient temperature provided by a numerical weather prediction

service, up to time t + T . The rationale behind this is that, if we possess accurate

enough GHI and T forecasts for the next day, we can combine them with an esti-

mated PV model to increase the forecast accuracy. For this task we use real data

coming from 4 PV roof-mounted power plants located in Biel-Benken, Switzerland.

The PV power plants are composed by differently oriented folds; their description

and metadata can be found in [22].
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1.5.3 Evaluation of PV modeling for prediction

Since we want to estimate the effect of a physics-based model on the accuracy of g,

we chose a-priori a family of regressors and keep it fixed during the analysis. We

chose to use a random forest regressor due to its ability in modeling nonlinearities,

its high resiliency to overfitting and its low prediction variance [13]. We compared

the performance of g against physics-based models, and than we try to increase

its predictive power including the models as regressors in g. The overall estimated

models are the following:

1. We just use the random forest to map GHI and T to the PV generated power.

Instead of including time as a regressor, we use the solar azimuth instead.

1
P̂ pv,t = g (GHIt, Tt, Azt) (16)

2. The PV power is estimated using only a physic based model, which is described

by a linear regression making use of a vector of proxies for the power produced

by the identified PV panel. Briefly speaking, each proxy is an esteem of the

AC power produced by a typical PV panel with a given spatial orientation. We

used 21 proxies, uniformly distributed on the unit sphere, disregarding the one

facing north. The θ coefficients linking proxies with the actual PV power pro-

duction are then retrieved by means of a robust linear regression. An accurate

description of this method can be found in [22]. The PV model is identified

starting from AC PV power measurements and GHI.

2
P̂ pv,t = Prtθ̂ (17)

where Prt ∈ IRnp is the vector of proxies at time t, with np the number of proxies.

3. The PV power is still estimated using only a physic based model, but this time

the model is identified blindly, based only on the aggregated power measure-

ments at the main of a residential building. Firstly, we use a disaggregation

technique to estimate the generated AC power production of the PV, which is

then used to identify the PV model, as described in [23]

3
P̂ pv,t = Prtθ̂bl (18)

4. In the fourth model the PV power estimated with the second model is passed as

a regressor to the random forest g, along with the same inputs used for the first

model. The idea here is to investigate if the non-trivial nonlinear transformation

which project GHI on the plane of array, which were obtained with a physics-

based approach and which are contained in the matrix of proxy signals, can

help the random forest in predicting Ppv

4
P̂ pv,t = g

(
GHIt, Tt, Az,

2
P̂ pv,t

)
(19)
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5. This model is equal to the previous one, but uses the prediction of model 3,

which were obtained through the blind identification

1
P̂ pv,t = g

(
GHIt, Tt, Az,

3
P̂ pv,t

)
(20)

1.5.4 Results

We evaluated the methods through k-fold cross validation on a dataset of increasing

size. In particular, used 10 datasets, spanning from a minimum of of 40 days up to

a maximum of 400 days. For each of these datasets we estimated the performance

of the methods using a 10-folds cross validation. The cross validation is done in the

following way: each dataset is divided in 10 folds; for each fold we extract a training

and a test set. The training set is obtained taking sequences of 3 days out of 4,

for all the length of the fold. The remaining data constitutes the test set. This fold

selection was done to exclude seasonality effects from the analysis. In fact, should

be noticed that this methodology is more realistic compared to simply taking the

first period of the data in each fold as the training test and the last part as the

testing set, as the test sets can be as long as 100 days. This would lead to test the

model on period of the years which are significantly different from the data seen by

g in the training set. On the other hand the aforementioned methodology mimic the

behavior of estimating a model for the PV power plant once each three days, which

is reasonable. Fig. 6 shows as an example the division of the cross validation folds

for the 80 days dataset.

As performance metrics we use the root mean squared error (RMSE) and the mean

absolute error (MAE), without any normalization. The results, in forms of boxplot

containing all the cross validation results for the four different PV power plants

(that is, each boxplot contains 40 points), are shown in Fig.7 for RMSE and MAE

respectively.

From the results, we can draw the following conclusions: first, the accuracy of the

identification does not show significant changes with the dataset size, for datasets

larger than 120 days, for all the methods but the blind identification
3
P̂ pv. Secondly,

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

d1 d2 d3 d4 d5 d6 d7 d8

Figure 6: Example of 10 folds cross validation on the 80 days dataset. The dataset
is divided in 10 folds, each of 8 days. For each fold, the training set (green) is
composed by 3 consecutive days each 4 days, while the test set (red) is composed by
the remaining days.
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while the random forest estimation
1
P̂ pv has similar performance to the proxy based

identification
2
P̂ pv in terms of RMSE, the latter is slightly better for all the dataset

periods when considering the MAE. Last, the most accurate methods for estimating

Ppv are clearly
4
P̂ pv and

5
P̂ pv, which combines the physics-based methods with the

random forest regression. This could be explained by the fact that the proxies used

for the physics based regressions include the projection of the GHI signal onto differ-

ently oriented planes. These projections are non-trivial, since they include the split

of GHI in the diffuse and direct irradiance seen by these planes. At the same time,

the physics behind these splits and projection is well-known. It seems reasonable

that the random forest predictive accuracy increases when the information of these

projections is (indirectly) included as a regressor.

In Fig. 8 the average values of the identified θ coefficient, mediated across the folds,

for
2
P̂ pv and

3
P̂ pv are shown, based on the total number of training days. Each line of

the figure refers to one of the four households hosting the PV power plants. We can

see that the
2
P̂ pv method, which only relies on the aggregated power profile, presents

a dense pattern in the θ value, meaning that the true orientation of the PV folds is

not accurately identified. On the other hand, the
2
P̂ pv method, which makes use of

values of measured GHI, present a sparse and consistent pattern in the values of θ

across the datasets, meaning that the dataset size is less relevant to the identified

values.

1.5.5 Evaluation of PV modeling for forecasting

As mentioned previously, predicting the value of PV power output and forecasting

PV production are two different task. As we have seen in the previous section, us-

ing a physics based model for PV increases the prediction accuracy when we try to

estimate PV power production starting from known values of GHI, but whether this

results in an increase of forecasting accuracy mainly depends on the NWP quality

and resolution, as we argument in this section. Once again we used cross valida-

tion, this time using folds of 120 days, since no gain in accuracy was seen in 1.5.4

when selecting higher dataset size in PV power prediction. In order to estimate the

influence of the PV modeling on forecasting, we evaluated the performance of a QRF,

which was the forecaster with the higher accuracy among the one evaluated for the

power forecast in the analysis presented in 1.5.1, on the Biel-Benken dataset. We

used two variants of the
4
P̂ pv,t model (equation 19) in order to increase the accuracy

of the forecast. Namely, in each fold we estimated a physics based model, using the

proxy technique, as explained before. Secondly, with the same data, we trained a

random forest regressor to learn the map from GHI T and the solar azimuth to the

power production. We then fed this model with the NWP forecast for GHI and T ,

and then we pass the result as an explanatory variable to the QRF. Formally, the
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Figure 8: Values of the identified θ coefficient for all the households, for the robust
fit regression (left) and for the blind identification (right), mediated over the cross
validation folds, based on he number of training days.
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forecaster can be described as:

P̂pv,[t,t+T ]|t = f (X)

X =
[
GHI[t−T,t]|t, T[t−T,t]|t,

4
P̂ pv,t

(
θ̂, ˆGHI [t,t+T ]|t, T̂[t,t+T ]|t

)] (21)

where
4
P̂ pv,t is the best model for the PV power prediction 19. The difference from the

prediction task is that now the model makes use of the NWP forecast ˆGHI [t,t+T ]|t and

T̂[t,t+T ]|t. We used MeteoBlue as NWP service, which provides local forecasts for GHI

and T at hourly resolution for the next 36 hours. The forecasts are updated twice

per day. As such the accuracy of the NWP forecasts is not constant with the step

ahead, but is also dependent from the time of the day. Some authors use Kalman

filters to reduce the forecast error, but this method need to retrieve a dynamic model

for the error, which in this case has discontinuities (twice per day, at the moment of

the update), thus it is hard to model with a simple autoregressive model. To perform

the correction we decided once again to use a random forest which we fed with the

perfect forecasts from historical values of GHI and T , and the hour of the day. We

stress that the RFs for the NWP correction and the models for the PV prediction(
4
P̂ pv,t

)
were trained and identified in each fold, in order to keep the results from

different folds statistically independent.

In the second variant we assumed the lack of a pyranometer for the measurement

of the local value of GHI. As such, we identified the PV model, θ̂, directly from the

PV AC power measurements, using only observations from clear sky periods and

exploiting robust regression. In this case, in order to correct the NWP forecasts, we

reconstructed the local GHI seen by the PV panel starting from the identified model,

as described in [22].

We used MAE and RMSE as KPIs, where the error is previously normalized using

the mean of non-zero values for each step ahead, that is:

nRMSEsa =

[
1

n

n∑
t=1

(
yt,sa − ŷt,sa

ȳsa

)2
] 1

2

(22)

nMAEsa =
1

n

n∑
t=1

yt,sa − ŷt,sa
ȳsa

(23)

where ȳsa is the mean of non zero values of y for the current fold, at the sa step

ahead. Note that this normalization does not requires to re-weight for the different

length of the step ahead bins.

We started assessing the effect of the estimated PV models using perfect forecasts

for GHI and T in order to have a lower bound for our evaluations. In Fig. 9 and Fig.

10 are shown the boxplots containing the nRMSE and nMAE for all the households

and all the folds, as a function of the step-ahead. The blue boxplots refers to the

base case predictions, where no PV models are estimated, while the red and yellow

boxplots refer to the first and second variants of PV model estimations. We can
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see that the improvement in forecast accuracy due to the estimation of PV models

are significant both in nRMSE and nMAE, especially for the most aggregated time-

steps. Additionally, the effect of estimating
4
P̂ pv,t without knowing GHI is marginal.

We additionally investigate the loss of accuracy due to the resolution of the forecasts:

since the NWP are available with a sampling time of one hour, we are interested in

the loss of accuracy when the perfect forecasts are downsampled using the same

resolution. In Fig. 11 the nRMSE for the base case forecast, in which no PV models

are used, are shown. The blue boxplots refer to the perfect forecasts, while the

green and bordeaux refer to the 1 hour downsampled perfect forecasts and to the

real forecasts, respectively. We can see that in the first timesteps, the distribution

of the nRMSE of the real forecasts is close to the distribution of nRMSE of the

downsampled perfect forecasts. This means that there is little or no bias in the

corrected NWP forecasts. Despite this, PV modeling does not significantly affects the

forecasts accuracy in any step ahead, as can be seen in Fig. 12, where the nRMSE

boxplots are shown in the case in which the corrected NWP forecasts for GHI and

T are used. This can be explained additionally considering the effect of PV modeling

when using the 1 hour downsampled perfect forecasts, as shown in Fig. 13. The

effect of modeling PV when using the 1 hour sampling time resolution is negligible for

the first 3 step ahead, while increasing for the last steps ahead. We can conclude that

the NWP forecasts accuracy and temporal resolution for GHI and T are not accurate

enough to induce a decrease in the forecast error when using a PV model. Anyway,

we can see from Fig. 11 that the accuracy of the real forecasts is already close to the

1 hour mediated perfect forecasts. This means that the (anyway modest) increase

of accuracy that can be seen in Fig. 9 for the first step ahead is mainly due to the

perfect knowledge of GHI. It seems not reasonable that the NWP accuracy can be

improved for the first step ahead. This is mainly due to the fact that GHI signal has

a typically high variance during overcast days. Any low-variance forecaster which

uses a quadratic loss will tend to smooth out the high frequency components of the

signal to be predicted, since under least squares error minimization criterion the

conditional expected value of the signal is the best minimizer. On the other hand,

we can see from Fig. 11 that PV modeling decreases the error starting from the 7th

step ahead (which corresponds to 2 hours ahead) up to 24 hours ahead, even when

using 1 hour sampling time. At the same time we can see from Fig 11 that the last

step ahead NWP forecast accuracy is distant from the perfect forecasts downsampled

signal. This means that if the NWP forecasts accuracy increases for the last steps

ahead, this will results in an increase of accuracy in PV power prediction when using

PV modeling.

At last, we repeated the same analysis using only clear day samples. The clear days

are identified as the 10% of days which shows the lowest error between the NWP
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Figure 9: nRMSE as a function of step ahead for perfect forecasts. Blue: base case.
Red: with PV model. Yellow: with PV model estimated without GHI.
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Figure 10: nMAE as a function of step ahead for perfect forecasts. Blue: base case.
Red: with PV model. Yellow: with PV model estimated without GHI.
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Figure 11: nRMSE for perfect forecasts, perfect forecasts downsampled and real
forecasts, for the base case (no PV models)

1 2 3 4 5 6 7 8 9 10 11 12 13 14
step ahead [-]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

nR
M

S
E

 [-
]

k-fold RMSE

Figure 12: Normalized MAE as a
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Figure 13: nRMSE as a function of step ahead for 1 hour downsampled perfect
forecasts. Blue: base case. Red: with PV model. Yellow: with PV model estimated
without GHI. The effect of modeling PV is negligible for the first 3 steps ahead.

forecasts and the expected extra-terrestrial irradiance:

εcl,t =
1
n

∑t+H
k=t

ˆGHIk|t
1
n

∑t+H
k=t Ek

st =

1 if εcl < q0.1(εcl)

0 otherwise

(24)

where st is the indicator for clear day selection, Ek is the extraterrestrial irradiance,

which is known for a given time and geographical location, ˆGHIk|t is the NWP fore-

casted of GHI available at time t for time-step k, εcl,t is the normalized error at time

t, εcl is the vector of all the normalized error for all the dataset, H is the number

of step-ahead and qα stands for the quantile of level α. Note that both signals are

known in advance, so that this filter can be actually implemented to switch between

different forecasting models. In Fig.14 the empirical cumulative distribution func-

tion (ECDF) of the nRMSE for the whole forecasting horizon, for the case of perfect

forecasts, is shown. Formally, we plotted the ECDF of

nRMSEt =

[
1

H

H∑
sa=1

(
yt,sa − ŷt,sa

ȳsa

)2
] 1

2

(25)

(26)
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The continuous lines refer to the whole dataset, while the dotted lines are the ECDFs

referring to the clear sky dataset, which was obtained using only observations for

which st = 1. It is clear that when the NWP for GHI for the next 24 hours are

close to the extraterrestrial irradiance, the forecasting error for the whole horizon is

significantly lower. Fig. 15 shows the same results when NWP forecasts for GHI and

T are used. Also in the case of clear days, modeling the PV does not significantly

increase the accuracy of the forecasts, since when no clouds are present, splitting

GHI in its direct and diffuse components is easier, and the map which links PV

production to GHI is much easier to learn.

1.5.6 Distributed hierarchical forecasting

It is easy to see that if consistency is not respected (single household power forecasts

do not sum up to the prediction of the aggregated power profile), distributed control

algorithms will just disregard forecasts of upper levels of the hierarchy. This is detri-

mental in all the cases in which the time series at the bottom level of the hierarchy

are much harder to forecast with respect to the forecasts of the root node. This is

true when the bottom time series present a low signal to noise ratio (with respect to

the root node) and are mutually uncorrelated. Consistency can be enforced encoding

the hierarchical structure in a learning algorithm. One way to do this is to firstly

obtain forecasters for all the levels of the hierarchy, and then reconcile them based

on the hierarchical structure. Following this approach, in [24] the authors used

ordinary least squares (OLS) regression to reconcile the forecasts in the hierarchy.

Elaborating on this approach, [25] proposed a trace minimization method in which

the covariance matrix of the forecasters error is estimated to perform a weighted

least squares regression. In [26], an elastic net penalization was proposed in order

to induce sparseness in the forecasters adjustments, and benefit was shown on the

reconciliation of the forecasts for the power consumption of residential consumers.

We included this variant in our analysis. In the following we present a distributed

algorithm to obtain hierarchical reconciliation of the different time series. Being

able to reconcile time series through a distributed algorithm allows to not fully dis-

close informations about individual time series, respecting the privacy of individual

prosumers. In fact, this information would be available only in an aggregated form

to the upper level of the structure. Apart from the basic case in which hierarchi-

cal reconciliation techniques are useful due to geographical smoothing of the power

consumption, the distributed mechanism can be also beneficial in the case in which

prosumers do possess additional information about their future consumption, for

example the internal scheduling of their heat pump or electric vehicles. Moreover

this technique can be applied to temporal hierarchy [27], but in this case decompos-

ing the problem is of few interest, since typically a single entity would be in possess

of the information needed to apply the technique in this case.
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Figure 14: ECDF of the horizon nRMSE for the base forecast and the two PV model
forecasts, for each household. The dotted lines are referred to the clear sky day
dataset.
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Figure 15: ECDF of the horizon nRMSE for the base forecast and the two PV model
forecasts, for each household. The dotted lines are referred to the clear sky day
dataset.
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1.5.7 Problem formulation

We consider a hierarchical structure which can be described by a rooted tree, which

is a unidirected acyclic graph, with every node having exactly one parent, except for

the root node. Each node is identified by a tuple (d1...di...dl) where l is the level to

which the node belongs, and each entry represent the enumeration of its ith level

ancestor. Formally, we indicate with τ the set of all the nodes in the tree. Given the

forecasts for the next t timesteps of all the n nodes of the rooted tree, called the base

forecasters, we can collect them in the matrix T ∈ IRt×n. Reconciling the forecasts is

then equal to the task of finding the set of bottom level forecasts X ∈ IRt×nb which

minimizes the residual ε

T = [Tu, Tb] = XST + ε (27)

where Tu ∈ IRt×n−nb and Tb ∈ IRt×nb are the matrices of the upper level and bottom

level base forecasters. The intuition behind this is that we are seeking for a set

of latent variables, X, which generate the forecasts at all the levels, through the

summation matrix S. For example, for a 3 levels hierarchy with two nodes in the

second level, with 4 bottom forecasters, the matrix S would be the following:

S =



1 1 1 1

1 1 0 0

0 0 1 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


(28)

If the covariance matrix of ε, W , is known, the optimal solution of the reconciliation

is then given by solving the generalized least squares problem [24]

X∗ = argmin
X

1

2
‖T −XST ‖W (29)

where X∗ is the set of reconciled bottom forecasts, with the analytical solution

X∗ = (STW †S)−1STW †T T (30)

where W † is the pseudoinverse of W . In the following we limit ourself to the case in

which W is diagonal, the simplest case being the one proposed in [24], in which W

is the identity matrix. We start splitting problem (29) among the nodes of the rooted

tree:

argmin
X

n∑
i=1

wi
2
‖t̂i −XsTi ‖22 (31)

where si ∈ IRnb are the ith rows of the summation matrix S and t̂i are the base

forecasts. We can than decompose the problem introducing additional variables yi:
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argmin
X,Y

n∑
i=1

wi
2
‖t̂i − yi‖22

s.t yi = XsTi ∀ i ∈ {n}

(32)

we proceed with an augmented Lagrangian relaxation to turn the problem in a set of

unconstrained optimizations, and solve it with an ADMM [28] strategy. The overall

problem becomes:

argmin
X,Y

∑
i∈P

wi
2
‖t̂i − yi‖22 +

1

2ρ
‖yi −XsTi + λi‖22 +

∑
i∈B

wi
2
‖t̂i − xi‖22 (33)

where λi ∈ IRT are the Lagrangian multipliers associated to the constraints in (32), P
is the set of nodes not belonging to the set of terminal nodes B, formally P = τ \B(τ).

Problem 33 can be interpreted as a sharing problem, in which each node of the

hierarchy tries to minimize the distance of its decision variable (the latent variables,

that is the reconciled forecasts) from its target (the original base forecasts t̂i), while

being subject to the structural constrained encoded by the summation matrix S.

We then use a parallelized formulation of the sharing problem, which makes use of

ADMM [28]. The resulting formulation is the following:

xk+1
i = argmin

xi

wi
2
‖t̂i − xi‖22 +

1

2ρ
‖xi − ri‖22 ∀ i ∈ B

yk+1
i = argmin

yi

wi
2
‖t̂i − yi‖22 +

1

2ρ
‖Xk+1sTi − yi + λi‖22 ∀ i ∈ P

λk+1
i = λki +Xk+1sTi − yk+1

i ∀ i ∈ P

(34)

where ri is a reference signal coming from the parent node of node i:

ri =
∑
a∈Ai

(
yi −XksTa

)
/na + xki − λa (35)

where Ai is the set of ancestors of node i and na is the number of the children of

the ancestor a. Intuitively, (34) and (35) divides equally (division by na in (35)) the

quadratic loss needed to respect the consistency constraints when moving from the

target (the original forecasts). Note that the minimizations in (34) have analytical

solutions, so that the final algorithm can be rewritten as:

xk+1
i =

ri + t̂iρwi
nl + ρwi

∀ i ∈ B

yk+1
i =

ρwit̂i +Xk+1sTi + λi
1 + ρwi

∀ i ∈ P

λk+1
i = λki +Xk+1sTi − yi ∀ i ∈ P

(36)

where nl is the number of levels in the hierarchy. The algorithm can thus be com-

puted only using summation and multiplication; furthermore, it can be solved fol-

lowing a forward-backward strategy. The forward passage consist in each parent

30



node sending the updated Lagrangian multipliers λi downward through the hier-

archy. When the Lagrangian is received by a non-terminal node, this will send it,

together with its own Lagrangian, to its children. This allows terminal nodes to

compute xi, since these depend on the the sum of the λi coming from all of their an-

cestors, as described in (35). In the backward passage, the terminal nodes compute

their update for xi as in (36), and send it upward to their ancestors. Note that each

ancestor only needs information from its own children to compute its minimization,

since Xk+1sTi filters out all the other optimization variables in Xk+1. As soon as the

ancestors computes their optimization, they send the solution, and so on, up to the

root node. Lagrangian multipliers are updated in a similar fashion.

1.5.8 Inducing regularization

It is easy to see that when W is the identity matrix, the solution of (29) just retrieves

a set of bottom level forecasts which mimimize the distance of aggregate consistent

forecasts with the original base forecasts T . This would totally ignore the historical

accuracy of the base forecasters. In fact, in the case in which some base forecasters

present a higher accuracy with respect to the others, we should include it in the

reconciliation. This is possible through matrix W . Anyway, estimating W is difficult

and was avoided in [24], where it was replaced with the identity matrix. In [25] W

is directly estimated for historical error covariance matrix. We follow the approach

reported there, also used in [26]:

W = θWd + (1− θ)W1

Wd = diag(W1)

W1 = E
(
ee′
)

θ =

∑
i6=j V ar (r̂i,j)∑

i6=j r̂
2
i,j

(37)

where r̂i,j are the elements of the one step ahead sampled covariance matrix. More

details on the computation of θ can be found in [29]. In practice, though, this

method alone can induce too large adjustments in the bottom level forecasts, since

it does not allow the base forecasters to be unchanged, and could lead to reconciled

forecasts with poor prediction accuracy. Regularization technique can be applied

to the reconciliation problem with favorable results, as shown in [26], where large

displacement of X∗ from the bottom level base forecasters are punished, inducing a

sparsity structure in the forecasts corrections. This method can be readily included

in our distributed algorithm, adding to the second line of (34) a punishment for the

deviation of the upper level forecasts from the one generated by the original bottom

level forecasts Tb:

k

(
1− α

2
‖yi − TbsTi ‖22 + α‖yi − TbsTi ‖1

)
(38)
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Similarly, the same punishment can be added for the bottom level forecasts (first line

of (34)). In this case, the minimization in (34) has still a closed form, which is equal

to the proximal operator of the L1 norm, also known as the soft threshold operator

[30]. For completeness, the final equations are reported below:

xk+1
i =


ax,i−ρα
bx,i

if ax,i−ρα
bx,i

> 0

ax,i+ρα
bx,i

if ax,i+ρα
bx,i

< 0

ti otherwise

yk+1
i =


ay,i−ρα
by,i

if ay,i−ρα
by,i

> 0

ay,i+ρα
by,i

if ay,i+ρα
by,i

< 0

ti otherwise

(39)

where ti are the original base forecasters of the ith node, and

ax,i = ti (ρwi + ρ(1− α)) + ri

bx,i = ρwi + ρ(1− α) + nl

ay,i = ρwiti +XsTi + λi + ρ(1− α)Tbs
T
i

by,i = ρwi + ρ(1− α) + 1

(40)

and the λ update is the same as in (34).

1.5.9 Results

In order to estimate the effect of forecast reconciliation, we used 2200 power profiles

coming from a smart meter trial measurement campaign in Great Britain provided

by AECOM, which is available at https://www.ukdataservice.ac.uk/. Fig. 16

shows the performance of the reconciliation technique by means of RMSE, as a

function of the step ahead. The first part shows the forecasters performance referred

to all the hierarchy, the second part refers to the upper level, while the last one

refers to the bottom level. The consistent labels show the sum-consistent forecasts

obtained summing the original bottom level base forecasters, using the summation

matrix S, that is, following a bottom-up strategy. We can achieve better performance

using the ordinary least squares approach, which results in an improvement in the

bottom level forecasters. The same solution can be retrieved through the distributed

algorithm (36). The dashed lines refers to the minT solution, that is, the one achieved

using matrix (37) as weight matrix of the generalized least squares problem. In this

case, both the top level and the bottom level accuracy increase.

2 Achievement of deliverable

2.1 Date

See next section.
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Figure 16: RMSE as a function of step ahead, divided by level of aggregation. Origi-
nal: base forecaster. Consistent: forecasted profile starting from the original bottom 
level base forecasters. Reconciled: reconciled forecasts using ordinary least squares. 
minT: using (37) as weighting matrix.

2.2 Demonstration of the deliverable

This deliverable consists of data analysis work. The comparison of the performance 
of the various forecasting techniques is presented in the previous sections. Prelimi-

nary analysis shows that the performance of the forecasting algorithms is satisfac-

tory. An in depth analysis of their adequacy for the distributed control design will 
be the subject of the rest of the work performed by SUPSI in WP1.

3 Impact

This work compares the performances of different multi-step-ahead forecasters for 
single residential power measurements and their aggregate, up to 24 hours. The 
output of this deliverable is essential for the work that will be performed in the 
WP1 tasks involving the design and test of distributed demand side management 
control algorithms. Indeed, those algorithms will make use of the different forecast 
techniques presented above.
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4 Appendices

4.1 Synthetic power profile generation

To our knowlege, one of the most fungible datasets for residential energy consump-

tion forecasting is the Apartment dataset of the UMass Smart∗ Dataset [31]. Unfortu-

nately, these data come from american consumers, which are not very representative

of European energy consumptions. Moreover they do not possess PV installations

which we would like to include in the analysis. Due to the scarcity of energy con-

sumption datasets, researchers in this field have recently tried to produce synthetic

datasets for forecasting and analysis, based on statistical analysis or on simulation

[32][33].

We decided to follow the latter strategy, producing our dataset through a dynamic

simulation.For this task we built the code from scratch relying on the standard scipy

ODE integrator.

In the following we give a detailed description of the reference system we have consid-

ered for the simulation. Since it is not of general interest to describe all the possible

configurations of the simulated systems, we just describe a typical configuration,

on which all the simulated systems are based. In order to obtain a representative

dataset for Switzerland, we used the STASCH6 standard [34] and its variants as a

reference for the heating system and the control logic.

4.1.1 Heating system and control logic

The STASCH6 standard comprehends 3 main components: an heatpump (HP), a

water tank used as an energy buffer, and a heating element delivering heat to the

building. The HP control logic is based on two temperature sensors placed at dif-

ferent heights of the water tank, while the circulation pump connecting the tank

with the building’s heating element is controlled by an hysteresis on the tempera-

ture measure by a sensor placed inside the house.

We describe the control logic in a sequential way, following the heating components

of the system. The first decision is taken by the building central controller, which

decides its working mode, that is, if the building needs to be cooled or heated, based

on a moving average of the historical data of the external temperature:
wmt = −1 if Tma,t > Tmax,ma

wmt = 1 if Tma,t < Tmin,ma

wmt = 0 otherwise

(41)

where the working mode wmt is negative when the building requires to be cooled,

positive when heating is required, and 0 when no actions are needed.Tmax,ma and

Tmin,ma represent the maximum and minimum values of the external temperature’s

moving average, which is based on the past 7 days. The actual activation of the
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heating element is controlled by the hysteresis on the internal temperature of the

building, Tz. If the working mode is positive, this is given by:
shy,t = 1 if ( Tz < Tmin,hy −∆T/2)

or (Tz < Tmin,hy + ∆T/2 and shy,t−1)

shy = 0 otherwise

(42)

where shy,t is the state of the hysteresis at time t, 1 meaning that the circulation

pump of the heating element must be activated, and DT was chosen to be equal

to 1◦C. For completeness, we report also the control logic when the building is in

cooling mode: 
shy,t = 1 if ( Tz > Tmax,hy + ∆T/2)

or (Tz > Tmax,hy −∆T/2 and shy,t−1)

shy = 0 otherwise

(43)

The incoming water temperature in the heating element is then modulated linearly

through a 3-way valve between a maximum and minimum value, based on the ex-

ternal temperature, both in the heating and cooling modes. When operative, the

heating element requests hot or cold water to the water tank, which control logic is

based on two temperature sensors located in two different layers. When the building

is in heating mode, the control logic is a simple hysteresis based on the temperature

of the sensor in the uppermost layer, which is identical to the one in (42). When in

cooling mode, the control logic is the following:

shy,t = −1 if ( Tup > T cmax + ∆T/2)

or Tlow > T cmax + ∆T/2

shy,t = 0 if ( Tlow < T cmin) or (Tup < T cmax −∆T/2)

shy,t = shy,t−1 otherwise

(44)

where Tup and Tlow are the temperature measured by the upper and lower sensors,

respectively, and T cmin and T cmax are the minimum and maximum desired tempera-

tures of the water in the tank while in cooling mode.

The value of shy,t is then communicated to the HP. In the case in which the HP is also

used for the domestic hot water (DHW), the DHW tank is always served with priority

by the HP.

4.1.2 Building model

We modeled the building thermal dynamics with a simple one state RC equivalent

model. The main reason for this choice is that it is hard to generalize RC mod-

els with higher number of states, since no value can be found in the literature for

the needed parameters. Estimating an RC model from data requires different mea-
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surements of temperatures, internal and solar gains, at a resolution of at least 10

minutes. This kind of datasets are extremely hard to find, and limited to only a few,

often undwelled, cases. These equivalent RC circuit parameters could, in theory, be

estimated starting from first principles, but several studies show that this can give

worse results then estimating a model from data. The second reason is that, while a

higher order model leads in general to smaller one step ahead residuals compared to

a lower order model, the loss of accuracy passing from a one state model to an higher

order one when considering a longer period of simulation is much lower [35]. Last,

when considering RC models for buildings with a number of states higher than 3,

the chances of overfitting are high, and additional measurements such as the heat

fluxes between thermal zones are required to guarantee observability. Alternatively,

pseudo-random binary sequences must be applied to the heating systems in order

to excite the system in a wide range of frequencies [36], while being uncorrelated

with other exogenous inputs, which technique induce high changes in internal tem-

perature of the building and cannot clearly be applied to occupied building.

We adopted the following methodology to retrieve representative R values for the sin-

gle state RC equivalent model. We retrieved the distribution of year of construction

for residential buildings in Switzerland from the swiss Federal Statistical Office [37].

We then combined them with the estimated mean heating needs per squared meter,

based on construction year [38]. In this way we get a distribution of energy demand

for heating, Ed
[
kWh/m2/year

]
. We then retrieved the U values per squared meter

(the inverse of the R parameter per squared meter), dividing Ed for 1500 equivalent

hour of the building’s heating system per year. This gave us the estimated U value

distribution in
[
kW/m2

]
. In Fig. 17, the final distribution for Switzerland is shown.

For comparison, we also plotted the distribution of the declared U values from the

EU28 members, which is available for the year 2014 at [39]. For additional com-

parison, we identified a one state RC equivalent circuit from a monitored building

located in Biel-Banken. The model is the following;

C
∂Tz
∂t

=
Text − Tz

R
+ kQh +AeqIs (45)

where Text is the the external temperature, R is the equivalent thermal resistance for

the building, k is a parameter weighting the estimated power coming from the heat-

ing system Qh, Is is the incoming solar radiation and Aeq is the estimated equivalent

window area.

4.1.3 Floor heating

Modeling floor heating requires to simulate an N-states system, since the temper-

ature of the water in a given point of the serpentines depends on in a non-trivial

way on all the temperatures of the previous portion of the serpentines and of the

surrounding floor. Furthermore, simulating the temperature of the water in the ser-

pentine in a dynamic way could lead to prohibitive computational time (considering
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Figure 17: Comparison of U value distributions for Switzerland and for the member
of EU28. The vertical line shows the identified U value for a monitored building
located in Biel-Benken

we want to simulate hundreds of buildings), due to the CourantFriedrichsLewy con-

dition. Considering a typical mass flow in the serpentine of 0.1 [kg/s], a radius of the

tubes of 2 [cm], and a discretization of 1 meter along the serpentine, the maximum

allowable time-step is in the range of 2 seconds (considering implicit solution of the

transport equation inside the tube). Since we do not simulate thermal activated

building structures (TABS), in which the water of the heating system flows inside

the building’s concrete structure, but only underfloor heating pipes, which effects

due to thermal inertia are less significant, we chose to neglect the thermal transient

of the screed layer. Considering a fixed and uniform temperature for the ground

and the building internal temperature at each time-step and stationary conditions,

we can retrieve the analytical expression of the temperature profile along the pipe,

through the energy balance on an infinitesimal element of the pipe. This can be

expressed as:
∂Tx
∂t

= Φx − Φx+∂x + q̇up + q̇down (46)

where x is the distance from the pipe entrance, Tx is the temperature of the water

inside the pipe at x, Φ are enthalpy flows at the entrance and exit of the considered

infinitesimal volume, q̇up and q̇down are the heating powers from the building and from

the ground. Expressing the latter through equivalent resistance taking into account

convective and conductive effects, the balance in steady state can be rewritten as:

ṁcp
ρ∗

∂Tx
∂x

=
RdownTz +RupTg
Rdown +Rup

− Tx = T a − Tx (47)
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where T a is the asymptotic temperature and where:

Rdown =
1

hinw
+

1

hu,eqw
+Ru (48)

Rup =
1

hinw
+Rg (49)

ρ∗ =
Rup +Rdown
RupRdown

(50)

where w is the diameter of the tube, hin is the internal coefficient of heat transfer,

which can be retrieve using available empirical relation for fully developed flow with

fixed temperature at the boundary conditions [40], hu,eq is the heat transfer coef-

ficient between the floor and the building air including both the effect for natural

convection and radiation. The values of hu,eq can be found in the literature [41],[42].

The value of the thermal resistances Ru and Rg, towards the floor and the ground,

can be found in the literature as well. We can reformulate (47), making it adimen-

sional through a change of variable:

∂Θ

∂X
= −Θ (51)

from which solution we can retrieve the temperature profile of the water inside the

pipe:

Tx = T a + (T0 − T a)e
−xρ∗
ṁcp (52)

where T0 is the temperature of the water at the pipe inlet. We can use (52) to retrieve

the heating power flowing into the building, integrating q̇up(x) along the pipe.

Q̇up =

∫ L

0
q̇up(x)dx =

∫ L

0

T (x)− Tz
Rup

dx (53)

where L is the length of the serpentine. Integrating, we obtain

Q̇up =
(T a − Tz)L− (TL − T0) ṁcpρ∗

Rup
(54)

where TL is the temperature of the water at the outlet of the serpentine. Note that

the equation (54) tends to (TL − T0)ṁcp when Rdown increase and Rup is kept fixed.

The nominal mass flow of the heating system and the length of the serpentine are

found as the solution of the following optimization problem:

argmin
L,ṁ

(
Q̇up(L)− Q̇nom

)2
+ 10−3 (ṁ− ṁnom)2 (55)

where ṁnom is a reference mass flow, equal to 0.1 [kg/s] and Q̇nom is the power re-

quired to keep the building internal temperature constant under reference condi-

tions (we used an external temperature of -4◦C and a desired internal temperature
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of 20 ◦C):

Q̇nom =
∆Tref
R

(56)

where R is the resistance of an equivalent RC circuit describing the heating dynamics

of the building.

4.1.4 Water tanks and boilers

The water tank connected with the floor heating, which is used as a buffer by the

heat pump, and the boiler for the DHW, are modeled as a N-states fully-mixed strat-

ified tanks. Despite not being able to model buoyancy driven effects such as heat

plumes and transient de-stratification, this kind of models are suitable for 1D sim-

ulations and control [43].

The dynamic equation describing the evolution of the temperature of the tank’s lay-

ers is the following:

C
∂Ti
∂t

= Q̇ubuo,i + Q̇dbuo,i + Q̇h,i + Q̇loss,i + Q̇ucond,i + Q̇dcond,i + cpṁ(Ti−1 − Ti) (57)

where Ti is the temperature of the ith layer, Qubuo,Q
d
buo,Q

u
cond,Q

u
cond are the thermal

powers due to buoyancy and conduction, from the lower and upper layer, respec-

tively. The last term represents the enthalpy flow due to mass exchange, while C is

the thermal capacity of the layer, in [J/K] and Qh,i is the thermal power due to an

electric resistance (for the boiler) or an heat exchange (for the heating system buffer).

The expression for the above thermal power are the following:

Q̇ubuo,i = k max(Ti+1 − Ti, 0)N, 0 for i = N (58)

Q̇dbuo,i = k max(Ti−1 − Ti, 0)N, 0 for i = 1 (59)

Q̇ucond,i = uamb(Ti+1 − Ti), 0 for i = N (60)

Q̇dcond,i = uamb(Ti−1 − Ti), 0 for i = 1 (61)

Q̇loss,i = uamb(Text − Ti) (62)

Q̇h,i = Q̇tot/nh if i ∈ I (63)

(64)

where N is the number of layers, uamb is the equivalent thermal loss coefficient with

the ambient and I is the set of the nh layers heated by the heat exchange (or electric

resistance). The buoyancy model is the one proposed in the IDEAS library [44].

Detailed description of the parameters for the boiler model can be found in [45].

4.1.5 Heat pump model

The heat pump is modeled by means of interpolated tables, in which heating and

electrical power are available as a function of the evaporator and the condenser

temperatures. The tables were taken from the energy simulation software Polysun

(Vela Solaris AG, Winterthur, Switzerland). When the heat pump produces heat
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for both the heating system and the domestic hot water, its control logic prioritizes

the latter, meaning that the buffer is heated as long as the DHW tank temperature

sensor reaches the upper bound of its hysteresis control.
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